Commit Graph

85 Commits

Author SHA1 Message Date
Richard Gobert
4b0ebbca3e net: gro: move L3 flush checks to tcp_gro_receive and udp_gro_receive_segment
{inet,ipv6}_gro_receive functions perform flush checks (ttl, flags,
iph->id, ...) against all packets in a loop. These flush checks are used in
all merging UDP and TCP flows.

These checks need to be done only once and only against the found p skb,
since they only affect flush and not same_flow.

This patch leverages correct network header offsets from the cb for both
outer and inner network headers - allowing these checks to be done only
once, in tcp_gro_receive and udp_gro_receive_segment. As a result,
NAPI_GRO_CB(p)->flush is not used at all. In addition, flush_id checks are
more declarative and contained in inet_gro_flush, thus removing the need
for flush_id in napi_gro_cb.

This results in less parsing code for non-loop flush tests for TCP and UDP
flows.

To make sure results are not within noise range - I've made netfilter drop
all TCP packets, and measured CPU performance in GRO (in this case GRO is
responsible for about 50% of the CPU utilization).

perf top while replaying 64 parallel IP/TCP streams merging in GRO:
(gro_receive_network_flush is compiled inline to tcp_gro_receive)
net-next:
        6.94% [kernel] [k] inet_gro_receive
        3.02% [kernel] [k] tcp_gro_receive

patch applied:
        4.27% [kernel] [k] tcp_gro_receive
        4.22% [kernel] [k] inet_gro_receive

perf top while replaying 64 parallel IP/IP/TCP streams merging in GRO (same
results for any encapsulation, in this case inet_gro_receive is top
offender in net-next)
net-next:
        10.09% [kernel] [k] inet_gro_receive
        2.08% [kernel] [k] tcp_gro_receive

patch applied:
        6.97% [kernel] [k] inet_gro_receive
        3.68% [kernel] [k] tcp_gro_receive

Signed-off-by: Richard Gobert <richardbgobert@gmail.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://lore.kernel.org/r/20240509190819.2985-3-richardbgobert@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-05-13 14:44:06 -07:00
Richard Gobert
186b1ea73a net: gro: use cb instead of skb->network_header
This patch converts references of skb->network_header to napi_gro_cb's
network_offset and inner_network_offset.

Signed-off-by: Richard Gobert <richardbgobert@gmail.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://lore.kernel.org/r/20240509190819.2985-2-richardbgobert@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-05-13 14:44:06 -07:00
Richard Gobert
5ef31ea5d0 net: gro: fix udp bad offset in socket lookup by adding {inner_}network_offset to napi_gro_cb
Commits a602456 ("udp: Add GRO functions to UDP socket") and 57c67ff ("udp:
additional GRO support") introduce incorrect usage of {ip,ipv6}_hdr in the
complete phase of gro. The functions always return skb->network_header,
which in the case of encapsulated packets at the gro complete phase, is
always set to the innermost L3 of the packet. That means that calling
{ip,ipv6}_hdr for skbs which completed the GRO receive phase (both in
gro_list and *_gro_complete) when parsing an encapsulated packet's _outer_
L3/L4 may return an unexpected value.

This incorrect usage leads to a bug in GRO's UDP socket lookup.
udp{4,6}_lib_lookup_skb functions use ip_hdr/ipv6_hdr respectively. These
*_hdr functions return network_header which will point to the innermost L3,
resulting in the wrong offset being used in __udp{4,6}_lib_lookup with
encapsulated packets.

This patch adds network_offset and inner_network_offset to napi_gro_cb, and
makes sure both are set correctly.

To fix the issue, network_offsets union is used inside napi_gro_cb, in
which both the outer and the inner network offsets are saved.

Reproduction example:

Endpoint configuration example (fou + local address bind)

    # ip fou add port 6666 ipproto 4
    # ip link add name tun1 type ipip remote 2.2.2.1 local 2.2.2.2 encap fou encap-dport 5555 encap-sport 6666 mode ipip
    # ip link set tun1 up
    # ip a add 1.1.1.2/24 dev tun1

Netperf TCP_STREAM result on net-next before patch is applied:

net-next main, GRO enabled:
    $ netperf -H 1.1.1.2 -t TCP_STREAM -l 5
    Recv   Send    Send
    Socket Socket  Message  Elapsed
    Size   Size    Size     Time     Throughput
    bytes  bytes   bytes    secs.    10^6bits/sec

    131072  16384  16384    5.28        2.37

net-next main, GRO disabled:
    $ netperf -H 1.1.1.2 -t TCP_STREAM -l 5
    Recv   Send    Send
    Socket Socket  Message  Elapsed
    Size   Size    Size     Time     Throughput
    bytes  bytes   bytes    secs.    10^6bits/sec

    131072  16384  16384    5.01     2745.06

patch applied, GRO enabled:
    $ netperf -H 1.1.1.2 -t TCP_STREAM -l 5
    Recv   Send    Send
    Socket Socket  Message  Elapsed
    Size   Size    Size     Time     Throughput
    bytes  bytes   bytes    secs.    10^6bits/sec

    131072  16384  16384    5.01     2877.38

Fixes: a6024562ff ("udp: Add GRO functions to UDP socket")
Signed-off-by: Richard Gobert <richardbgobert@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-05-02 11:02:48 +02:00
Eric Dumazet
61a0be1a53 net: move ip_packet_offload and ipv6_packet_offload to net_hotdata
These structures are used in GRO and GSO paths.

v2: ipv6_packet_offload definition depends on CONFIG_INET

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://lore.kernel.org/r/20240306160031.874438-7-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-03-07 21:12:42 -08:00
Richard Gobert
dff0b0161a net: gro: parse ipv6 ext headers without frag0 invalidation
The existing code always pulls the IPv6 header and sets the transport
offset initially. Then optionally again pulls any extension headers in
ipv6_gso_pull_exthdrs and sets the transport offset again on return from
that call. skb->data is set at the start of the first extension header
before calling ipv6_gso_pull_exthdrs, and must disable the frag0
optimization because that function uses pskb_may_pull/pskb_pull instead of
skb_gro_ helpers. It sets the GRO offset to the TCP header with
skb_gro_pull and sets the transport header. Then returns skb->data to its
position before this block.

This commit introduces a new helper function - ipv6_gro_pull_exthdrs -
which is used in ipv6_gro_receive to pull ipv6 ext headers instead of
ipv6_gso_pull_exthdrs. Thus, there is no modification of skb->data, all
operations use skb_gro_* helpers, and the frag0 fast path can be taken for
IPv6 packets with ext headers.

Signed-off-by: Richard Gobert <richardbgobert@gmail.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/504130f6-b56c-4dcc-882c-97942c59f5b7@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-01-05 08:11:49 -08:00
Richard Gobert
f2e3fc2158 net: gso: add HBH extension header offload support
This commit adds net_offload to IPv6 Hop-by-Hop extension headers (as it
is done for routing and dstopts) since it is supported in GSO and GRO.
This allows to remove specific HBH conditionals in GSO and GRO when
pulling and parsing an incoming packet.

Signed-off-by: Richard Gobert <richardbgobert@gmail.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/d4f8825a-1d55-4b12-9d67-a254dbbfa6ae@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-01-05 08:11:49 -08:00
Eric Dumazet
d457a0e329 net: move gso declarations and functions to their own files
Move declarations into include/net/gso.h and code into net/core/gso.c

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Stanislav Fomichev <sdf@google.com>
Reviewed-by: Simon Horman <simon.horman@corigine.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://lore.kernel.org/r/20230608191738.3947077-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-06-10 00:11:41 -07:00
Coco Li
89300468e2 IPv6/GRO: generic helper to remove temporary HBH/jumbo header in driver
IPv6/TCP and GRO stacks can build big TCP packets with an added
temporary Hop By Hop header.

Is GSO is not involved, then the temporary header needs to be removed in
the driver. This patch provides a generic helper for drivers that need
to modify their headers in place.

Tested:
Compiled and ran with ethtool -K eth1 tso off
Could send Big TCP packets

Signed-off-by: Coco Li <lixiaoyan@google.com>
Link: https://lore.kernel.org/r/20221210041646.3587757-1-lixiaoyan@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-12 15:41:44 -08:00
Richard Gobert
d427c8999b net-next: skbuff: refactor pskb_pull
pskb_may_pull already contains all of the checks performed by
pskb_pull.
Use pskb_may_pull for validation in pskb_pull, eliminating the
duplication and making __pskb_pull obsolete.
Replace __pskb_pull with pskb_pull where applicable.

Signed-off-by: Richard Gobert <richardbgobert@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-09-30 12:31:46 +01:00
Richard Gobert
cb628a9a7e net-next: gro: Fix use of skb_gro_header_slow
In the cited commit, the function ipv6_gro_receive was accidentally
changed to use skb_gro_header_slow, without attempting the fast path.
Fix it.

Fixes: 35ffb66547 ("net: gro: skb_gro_header helper function")
Signed-off-by: Richard Gobert <richardbgobert@gmail.com>
Link: https://lore.kernel.org/r/20220911184835.GA105063@debian
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-09-20 11:47:25 +02:00
Richard Gobert
35ffb66547 net: gro: skb_gro_header helper function
Introduce a simple helper function to replace a common pattern.
When accessing the GRO header, we fetch the pointer from frag0,
then test its validity and fetch it from the skb when necessary.

This leads to the pattern
skb_gro_header_fast -> skb_gro_header_hard -> skb_gro_header_slow
recurring many times throughout GRO code.

This patch replaces these patterns with a single inlined function
call, improving code readability.

Signed-off-by: Richard Gobert <richardbgobert@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20220823071034.GA56142@debian
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-08-25 10:33:21 +02:00
Eric Dumazet
81fbc81213 ipv6/gro: insert temporary HBH/jumbo header
Following patch will add GRO_IPV6_MAX_SIZE, allowing gro to build
BIG TCP ipv6 packets (bigger than 64K).

This patch changes ipv6_gro_complete() to insert a HBH/jumbo header
so that resulting packet can go through IPv6/TCP stacks.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Alexander Duyck <alexanderduyck@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-16 10:18:56 +01:00
Eric Dumazet
09f3d1a3a5 ipv6/gso: remove temporary HBH/jumbo header
ipv6 tcp and gro stacks will soon be able to build big TCP packets,
with an added temporary Hop By Hop header.

If GSO is involved for these large packets, we need to remove
the temporary HBH header before segmentation happens.

v2: perform HBH removal from ipv6_gso_segment() instead of
    skb_segment() (Alexander feedback)

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Alexander Duyck <alexanderduyck@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-05-16 10:18:56 +01:00
Jakub Kicinski
aaa25a2fa7 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
tools/testing/selftests/net/mptcp/mptcp_join.sh
  34aa6e3bcc ("selftests: mptcp: add ip mptcp wrappers")

  857898eb4b ("selftests: mptcp: add missing join check")
  6ef84b1517 ("selftests: mptcp: more robust signal race test")
https://lore.kernel.org/all/20220221131842.468893-1-broonie@kernel.org/

drivers/net/ethernet/mellanox/mlx5/core/en/tc/act/act.h
drivers/net/ethernet/mellanox/mlx5/core/en/tc/act/ct.c
  fb7e76ea3f ("net/mlx5e: TC, Skip redundant ct clear actions")
  c63741b426 ("net/mlx5e: Fix MPLSoUDP encap to use MPLS action information")

  09bf979232 ("net/mlx5e: TC, Move pedit_headers_action to parse_attr")
  84ba8062e3 ("net/mlx5e: Test CT and SAMPLE on flow attr")
  efe6f961cd ("net/mlx5e: CT, Don't set flow flag CT for ct clear flow")
  3b49a7edec ("net/mlx5e: TC, Reject rules with multiple CT actions")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-24 17:54:25 -08:00
Tao Liu
cc20cced05 gso: do not skip outer ip header in case of ipip and net_failover
We encounter a tcp drop issue in our cloud environment. Packet GROed in
host forwards to a VM virtio_net nic with net_failover enabled. VM acts
as a IPVS LB with ipip encapsulation. The full path like:
host gro -> vm virtio_net rx -> net_failover rx -> ipvs fullnat
 -> ipip encap -> net_failover tx -> virtio_net tx

When net_failover transmits a ipip pkt (gso_type = 0x0103, which means
SKB_GSO_TCPV4, SKB_GSO_DODGY and SKB_GSO_IPXIP4), there is no gso
did because it supports TSO and GSO_IPXIP4. But network_header points to
inner ip header.

Call Trace:
 tcp4_gso_segment        ------> return NULL
 inet_gso_segment        ------> inner iph, network_header points to
 ipip_gso_segment
 inet_gso_segment        ------> outer iph
 skb_mac_gso_segment

Afterwards virtio_net transmits the pkt, only inner ip header is modified.
And the outer one just keeps unchanged. The pkt will be dropped in remote
host.

Call Trace:
 inet_gso_segment        ------> inner iph, outer iph is skipped
 skb_mac_gso_segment
 __skb_gso_segment
 validate_xmit_skb
 validate_xmit_skb_list
 sch_direct_xmit
 __qdisc_run
 __dev_queue_xmit        ------> virtio_net
 dev_hard_start_xmit
 __dev_queue_xmit        ------> net_failover
 ip_finish_output2
 ip_output
 iptunnel_xmit
 ip_tunnel_xmit
 ipip_tunnel_xmit        ------> ipip
 dev_hard_start_xmit
 __dev_queue_xmit
 ip_finish_output2
 ip_output
 ip_forward
 ip_rcv
 __netif_receive_skb_one_core
 netif_receive_skb_internal
 napi_gro_receive
 receive_buf
 virtnet_poll
 net_rx_action

The root cause of this issue is specific with the rare combination of
SKB_GSO_DODGY and a tunnel device that adds an SKB_GSO_ tunnel option.
SKB_GSO_DODGY is set from external virtio_net. We need to reset network
header when callbacks.gso_segment() returns NULL.

This patch also includes ipv6_gso_segment(), considering SIT, etc.

Fixes: cb32f511a7 ("ipip: add GSO/TSO support")
Signed-off-by: Tao Liu <thomas.liu@ucloud.cn>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-21 11:41:30 +00:00
Jakub Kicinski
6fc2f3832d ipv6: gro: flush instead of assuming different flows on hop_limit mismatch
IPv6 GRO considers packets to belong to different flows when their
hop_limit is different. This seems counter-intuitive, the flow is
the same. hop_limit may vary because of various bugs or hacks but
that doesn't mean it's okay for GRO to reorder packets.

Practical impact of this problem on overall TCP performance
is unclear, but TCP itself detects this reordering and bumps
TCPSACKReorder resulting in user complaints.

Eric warns that there may be performance regressions in setups
which do packet spraying across links with similar RTT but different
hop count. To be safe let's target -next and not treat this
as a fix. If the packet spraying is using flow label there should
be no difference in behavior as flow label is checked first.

Note that the code plays an easy to miss trick by upcasting next_hdr
to a u16 pointer and compares next_hdr and hop_limit in one go.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-01-25 13:05:11 +00:00
Jakub Kicinski
fc993be36f Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-02 11:44:56 -08:00
Jiapeng Chong
1ebb87cc89 gro: Fix inconsistent indenting
Eliminate the follow smatch warning:

net/ipv6/ip6_offload.c:249 ipv6_gro_receive() warn: inconsistent
indenting.

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-02 12:21:11 +00:00
Eric Dumazet
627b94f75b gro: remove rcu_read_lock/rcu_read_unlock from gro_complete handlers
All gro_complete() handlers are called from napi_gro_complete()
while rcu_read_lock() has been called.

There is no point stacking more rcu_read_lock()

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-24 17:21:42 -08:00
Eric Dumazet
fc1ca3348a gro: remove rcu_read_lock/rcu_read_unlock from gro_receive handlers
All gro_receive() handlers are called from dev_gro_receive()
while rcu_read_lock() has been called.

There is no point stacking more rcu_read_lock()

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-11-24 17:21:42 -08:00
Leon Romanovsky
04f00ab227 net/core: move gro function declarations to separate header
Fir the following compilation warnings:
 1031 | INDIRECT_CALLABLE_SCOPE void udp_v6_early_demux(struct sk_buff *skb)

net/ipv6/ip6_offload.c:182:41: warning: no previous prototype for ‘ipv6_gro_receive’ [-Wmissing-prototypes]
  182 | INDIRECT_CALLABLE_SCOPE struct sk_buff *ipv6_gro_receive(struct list_head *head,
      |                                         ^~~~~~~~~~~~~~~~
net/ipv6/ip6_offload.c:320:29: warning: no previous prototype for ‘ipv6_gro_complete’ [-Wmissing-prototypes]
  320 | INDIRECT_CALLABLE_SCOPE int ipv6_gro_complete(struct sk_buff *skb, int nhoff)
      |                             ^~~~~~~~~~~~~~~~~
net/ipv6/ip6_offload.c:182:41: warning: no previous prototype for ‘ipv6_gro_receive’ [-Wmissing-prototypes]
  182 | INDIRECT_CALLABLE_SCOPE struct sk_buff *ipv6_gro_receive(struct list_head *head,
      |                                         ^~~~~~~~~~~~~~~~
net/ipv6/ip6_offload.c:320:29: warning: no previous prototype for ‘ipv6_gro_complete’ [-Wmissing-prototypes]
  320 | INDIRECT_CALLABLE_SCOPE int ipv6_gro_complete(struct sk_buff *skb, int nhoff)

Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-04 18:37:57 -08:00
Eric Dumazet
6db693285c udp: move gro declarations to net/udp.h
This removes following warnings :
  CC      net/ipv4/udp_offload.o
net/ipv4/udp_offload.c:504:17: warning: no previous prototype for 'udp4_gro_receive' [-Wmissing-prototypes]
  504 | struct sk_buff *udp4_gro_receive(struct list_head *head, struct sk_buff *skb)
      |                 ^~~~~~~~~~~~~~~~
net/ipv4/udp_offload.c:584:29: warning: no previous prototype for 'udp4_gro_complete' [-Wmissing-prototypes]
  584 | INDIRECT_CALLABLE_SCOPE int udp4_gro_complete(struct sk_buff *skb, int nhoff)
      |                             ^~~~~~~~~~~~~~~~~

  CHECK   net/ipv6/udp_offload.c
net/ipv6/udp_offload.c:115:16: warning: symbol 'udp6_gro_receive' was not declared. Should it be static?
net/ipv6/udp_offload.c:148:29: warning: symbol 'udp6_gro_complete' was not declared. Should it be static?
  CC      net/ipv6/udp_offload.o
net/ipv6/udp_offload.c:115:17: warning: no previous prototype for 'udp6_gro_receive' [-Wmissing-prototypes]
  115 | struct sk_buff *udp6_gro_receive(struct list_head *head, struct sk_buff *skb)
      |                 ^~~~~~~~~~~~~~~~
net/ipv6/udp_offload.c:148:29: warning: no previous prototype for 'udp6_gro_complete' [-Wmissing-prototypes]
  148 | INDIRECT_CALLABLE_SCOPE int udp6_gro_complete(struct sk_buff *skb, int nhoff)
      |                             ^~~~~~~~~~~~~~~~~
Signed-off-by: Eric Dumazet <edumazet@google.com>

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-23 20:10:15 -07:00
Eric Dumazet
5521d95e07 net: move tcp gro declarations to net/tcp.h
This patch removes following (C=1 W=1) warnings for CONFIG_RETPOLINE=y :

net/ipv4/tcp_offload.c:306:16: warning: symbol 'tcp4_gro_receive' was not declared. Should it be static?
net/ipv4/tcp_offload.c:306:17: warning: no previous prototype for 'tcp4_gro_receive' [-Wmissing-prototypes]
net/ipv4/tcp_offload.c:319:29: warning: symbol 'tcp4_gro_complete' was not declared. Should it be static?
net/ipv4/tcp_offload.c:319:29: warning: no previous prototype for 'tcp4_gro_complete' [-Wmissing-prototypes]
  CHECK   net/ipv6/tcpv6_offload.c
net/ipv6/tcpv6_offload.c:16:16: warning: symbol 'tcp6_gro_receive' was not declared. Should it be static?
net/ipv6/tcpv6_offload.c:29:29: warning: symbol 'tcp6_gro_complete' was not declared. Should it be static?
  CC      net/ipv6/tcpv6_offload.o
net/ipv6/tcpv6_offload.c:16:17: warning: no previous prototype for 'tcp6_gro_receive' [-Wmissing-prototypes]
   16 | struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)
      |                 ^~~~~~~~~~~~~~~~
net/ipv6/tcpv6_offload.c:29:29: warning: no previous prototype for 'tcp6_gro_complete' [-Wmissing-prototypes]
   29 | INDIRECT_CALLABLE_SCOPE int tcp6_gro_complete(struct sk_buff *skb, int thoff)
      |                             ^~~~~~~~~~~~~~~~~

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-23 20:10:15 -07:00
Thomas Gleixner
2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00
Willem de Bruijn
418e897e07 gso: validate gso_type on ipip style tunnels
Commit 121d57af30 ("gso: validate gso_type in GSO handlers") added
gso_type validation to existing gso_segment callback functions, to
filter out illegal and potentially dangerous SKB_GSO_DODGY packets.

Convert tunnels that now call inet_gso_segment and ipv6_gso_segment
directly to have their own callbacks and extend validation to these.

Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-20 11:24:27 -08:00
Paolo Abeni
028e0a4766 net: use indirect call wrappers at GRO transport layer
This avoids an indirect call in the receive path for TCP and UDP
packets. TCP takes precedence on UDP, so that we have a single
additional conditional in the common case.

When IPV6 is build as module, all gro symbols except UDPv6 are
builtin, while the latter belong to the ipv6 module, so we
need some special care.

v1 -> v2:
 - adapted to INDIRECT_CALL_ changes
v2 -> v3:
 - fix build issue with CONFIG_IPV6=m

Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-15 13:23:02 -08:00
Paolo Abeni
aaa5d90b39 net: use indirect call wrappers at GRO network layer
This avoids an indirect calls for L3 GRO receive path, both
for ipv4 and ipv6, if the latter is not compiled as a module.

Note that when IPv6 is compiled as builtin, it will be checked first,
so we have a single additional compare for the more common path.

v1 -> v2:
 - adapted to INDIRECT_CALL_ changes

Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-15 13:23:02 -08:00
Eric Dumazet
0b215b9798 ipv6: gro: do not use slow memcmp() in ipv6_gro_receive()
ipv6_gro_receive() compares 34 bytes using slow memcmp(),
while handcoding with a couple of ipv6_addr_equal() is much faster.

Before this patch, "perf top -e cycles:pp -C <cpu>" would
see memcmp() using ~10% of cpu cycles on a 40Gbit NIC
receiving IPv6 TCP traffic.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-06 14:59:27 -08:00
Toke Høiland-Jørgensen
c56cae23c6 gso_segment: Reset skb->mac_len after modifying network header
When splitting a GSO segment that consists of encapsulated packets, the
skb->mac_len of the segments can end up being set wrong, causing packet
drops in particular when using act_mirred and ifb interfaces in
combination with a qdisc that splits GSO packets.

This happens because at the time skb_segment() is called, network_header
will point to the inner header, throwing off the calculation in
skb_reset_mac_len(). The network_header is subsequently adjust by the
outer IP gso_segment handlers, but they don't set the mac_len.

Fix this by adding skb_reset_mac_len() calls to both the IPv4 and IPv6
gso_segment handlers, after they modify the network_header.

Many thanks to Eric Dumazet for his help in identifying the cause of
the bug.

Acked-by: Dave Taht <dave.taht@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@toke.dk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-13 12:09:32 -07:00
David Miller
d4546c2509 net: Convert GRO SKB handling to list_head.
Manage pending per-NAPI GRO packets via list_head.

Return an SKB pointer from the GRO receive handlers.  When GRO receive
handlers return non-NULL, it means that this SKB needs to be completed
at this time and removed from the NAPI queue.

Several operations are greatly simplified by this transformation,
especially timing out the oldest SKB in the list when gro_count
exceeds MAX_GRO_SKBS, and napi_gro_flush() which walks the queue
in reverse order.

Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-26 11:33:04 +09:00
Willem de Bruijn
ee80d1ebe5 udp: add udp gso
Implement generic segmentation offload support for udp datagrams. A
follow-up patch adds support to the protocol stack to generate such
packets.

UDP GSO is not UFO. UFO fragments a single large datagram. GSO splits
a large payload into a number of discrete UDP datagrams.

The implementation adds a GSO type SKB_UDP_GSO_L4 to differentiate it
from UFO (SKB_UDP_GSO).

IPPROTO_UDPLITE is excluded, as that protocol has no gso handler
registered.

[ Export __udp_gso_segment for ipv6. -DaveM ]

Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-26 15:07:42 -04:00
Alexey Kodanev
3d0241d57c gso: fix payload length when gso_size is zero
When gso_size reset to zero for the tail segment in skb_segment(), later
in ipv6_gso_segment(), __skb_udp_tunnel_segment() and gre_gso_segment()
we will get incorrect results (payload length, pcsum) for that segment.
inet_gso_segment() already has a check for gso_size before calculating
payload.

The issue was found with LTP vxlan & gre tests over ixgbe NIC.

Fixes: 07b26c9454 ("gso: Support partial splitting at the frag_list pointer")
Signed-off-by: Alexey Kodanev <alexey.kodanev@oracle.com>
Acked-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-08 10:12:15 -07:00
David S. Miller
e3e86b5119 ipv6: Fix leak in ipv6_gso_segment().
If ip6_find_1stfragopt() fails and we return an error we have to free
up 'segs' because nobody else is going to.

Fixes: 2423496af3 ("ipv6: Prevent overrun when parsing v6 header options")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-04 21:41:10 -04:00
David S. Miller
7dd7eb9513 ipv6: Check ip6_find_1stfragopt() return value properly.
Do not use unsigned variables to see if it returns a negative
error or not.

Fixes: 2423496af3 ("ipv6: Prevent overrun when parsing v6 header options")
Reported-by: Julia Lawall <julia.lawall@lip6.fr>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-17 22:54:11 -04:00
Craig Gallek
2423496af3 ipv6: Prevent overrun when parsing v6 header options
The KASAN warning repoted below was discovered with a syzkaller
program.  The reproducer is basically:
  int s = socket(AF_INET6, SOCK_RAW, NEXTHDR_HOP);
  send(s, &one_byte_of_data, 1, MSG_MORE);
  send(s, &more_than_mtu_bytes_data, 2000, 0);

The socket() call sets the nexthdr field of the v6 header to
NEXTHDR_HOP, the first send call primes the payload with a non zero
byte of data, and the second send call triggers the fragmentation path.

The fragmentation code tries to parse the header options in order
to figure out where to insert the fragment option.  Since nexthdr points
to an invalid option, the calculation of the size of the network header
can made to be much larger than the linear section of the skb and data
is read outside of it.

This fix makes ip6_find_1stfrag return an error if it detects
running out-of-bounds.

[   42.361487] ==================================================================
[   42.364412] BUG: KASAN: slab-out-of-bounds in ip6_fragment+0x11c8/0x3730
[   42.365471] Read of size 840 at addr ffff88000969e798 by task ip6_fragment-oo/3789
[   42.366469]
[   42.366696] CPU: 1 PID: 3789 Comm: ip6_fragment-oo Not tainted 4.11.0+ #41
[   42.367628] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.1-1ubuntu1 04/01/2014
[   42.368824] Call Trace:
[   42.369183]  dump_stack+0xb3/0x10b
[   42.369664]  print_address_description+0x73/0x290
[   42.370325]  kasan_report+0x252/0x370
[   42.370839]  ? ip6_fragment+0x11c8/0x3730
[   42.371396]  check_memory_region+0x13c/0x1a0
[   42.371978]  memcpy+0x23/0x50
[   42.372395]  ip6_fragment+0x11c8/0x3730
[   42.372920]  ? nf_ct_expect_unregister_notifier+0x110/0x110
[   42.373681]  ? ip6_copy_metadata+0x7f0/0x7f0
[   42.374263]  ? ip6_forward+0x2e30/0x2e30
[   42.374803]  ip6_finish_output+0x584/0x990
[   42.375350]  ip6_output+0x1b7/0x690
[   42.375836]  ? ip6_finish_output+0x990/0x990
[   42.376411]  ? ip6_fragment+0x3730/0x3730
[   42.376968]  ip6_local_out+0x95/0x160
[   42.377471]  ip6_send_skb+0xa1/0x330
[   42.377969]  ip6_push_pending_frames+0xb3/0xe0
[   42.378589]  rawv6_sendmsg+0x2051/0x2db0
[   42.379129]  ? rawv6_bind+0x8b0/0x8b0
[   42.379633]  ? _copy_from_user+0x84/0xe0
[   42.380193]  ? debug_check_no_locks_freed+0x290/0x290
[   42.380878]  ? ___sys_sendmsg+0x162/0x930
[   42.381427]  ? rcu_read_lock_sched_held+0xa3/0x120
[   42.382074]  ? sock_has_perm+0x1f6/0x290
[   42.382614]  ? ___sys_sendmsg+0x167/0x930
[   42.383173]  ? lock_downgrade+0x660/0x660
[   42.383727]  inet_sendmsg+0x123/0x500
[   42.384226]  ? inet_sendmsg+0x123/0x500
[   42.384748]  ? inet_recvmsg+0x540/0x540
[   42.385263]  sock_sendmsg+0xca/0x110
[   42.385758]  SYSC_sendto+0x217/0x380
[   42.386249]  ? SYSC_connect+0x310/0x310
[   42.386783]  ? __might_fault+0x110/0x1d0
[   42.387324]  ? lock_downgrade+0x660/0x660
[   42.387880]  ? __fget_light+0xa1/0x1f0
[   42.388403]  ? __fdget+0x18/0x20
[   42.388851]  ? sock_common_setsockopt+0x95/0xd0
[   42.389472]  ? SyS_setsockopt+0x17f/0x260
[   42.390021]  ? entry_SYSCALL_64_fastpath+0x5/0xbe
[   42.390650]  SyS_sendto+0x40/0x50
[   42.391103]  entry_SYSCALL_64_fastpath+0x1f/0xbe
[   42.391731] RIP: 0033:0x7fbbb711e383
[   42.392217] RSP: 002b:00007ffff4d34f28 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
[   42.393235] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fbbb711e383
[   42.394195] RDX: 0000000000001000 RSI: 00007ffff4d34f60 RDI: 0000000000000003
[   42.395145] RBP: 0000000000000046 R08: 00007ffff4d34f40 R09: 0000000000000018
[   42.396056] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000400aad
[   42.396598] R13: 0000000000000066 R14: 00007ffff4d34ee0 R15: 00007fbbb717af00
[   42.397257]
[   42.397411] Allocated by task 3789:
[   42.397702]  save_stack_trace+0x16/0x20
[   42.398005]  save_stack+0x46/0xd0
[   42.398267]  kasan_kmalloc+0xad/0xe0
[   42.398548]  kasan_slab_alloc+0x12/0x20
[   42.398848]  __kmalloc_node_track_caller+0xcb/0x380
[   42.399224]  __kmalloc_reserve.isra.32+0x41/0xe0
[   42.399654]  __alloc_skb+0xf8/0x580
[   42.400003]  sock_wmalloc+0xab/0xf0
[   42.400346]  __ip6_append_data.isra.41+0x2472/0x33d0
[   42.400813]  ip6_append_data+0x1a8/0x2f0
[   42.401122]  rawv6_sendmsg+0x11ee/0x2db0
[   42.401505]  inet_sendmsg+0x123/0x500
[   42.401860]  sock_sendmsg+0xca/0x110
[   42.402209]  ___sys_sendmsg+0x7cb/0x930
[   42.402582]  __sys_sendmsg+0xd9/0x190
[   42.402941]  SyS_sendmsg+0x2d/0x50
[   42.403273]  entry_SYSCALL_64_fastpath+0x1f/0xbe
[   42.403718]
[   42.403871] Freed by task 1794:
[   42.404146]  save_stack_trace+0x16/0x20
[   42.404515]  save_stack+0x46/0xd0
[   42.404827]  kasan_slab_free+0x72/0xc0
[   42.405167]  kfree+0xe8/0x2b0
[   42.405462]  skb_free_head+0x74/0xb0
[   42.405806]  skb_release_data+0x30e/0x3a0
[   42.406198]  skb_release_all+0x4a/0x60
[   42.406563]  consume_skb+0x113/0x2e0
[   42.406910]  skb_free_datagram+0x1a/0xe0
[   42.407288]  netlink_recvmsg+0x60d/0xe40
[   42.407667]  sock_recvmsg+0xd7/0x110
[   42.408022]  ___sys_recvmsg+0x25c/0x580
[   42.408395]  __sys_recvmsg+0xd6/0x190
[   42.408753]  SyS_recvmsg+0x2d/0x50
[   42.409086]  entry_SYSCALL_64_fastpath+0x1f/0xbe
[   42.409513]
[   42.409665] The buggy address belongs to the object at ffff88000969e780
[   42.409665]  which belongs to the cache kmalloc-512 of size 512
[   42.410846] The buggy address is located 24 bytes inside of
[   42.410846]  512-byte region [ffff88000969e780, ffff88000969e980)
[   42.411941] The buggy address belongs to the page:
[   42.412405] page:ffffea000025a780 count:1 mapcount:0 mapping:          (null) index:0x0 compound_mapcount: 0
[   42.413298] flags: 0x100000000008100(slab|head)
[   42.413729] raw: 0100000000008100 0000000000000000 0000000000000000 00000001800c000c
[   42.414387] raw: ffffea00002a9500 0000000900000007 ffff88000c401280 0000000000000000
[   42.415074] page dumped because: kasan: bad access detected
[   42.415604]
[   42.415757] Memory state around the buggy address:
[   42.416222]  ffff88000969e880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[   42.416904]  ffff88000969e900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[   42.417591] >ffff88000969e980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[   42.418273]                    ^
[   42.418588]  ffff88000969ea00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[   42.419273]  ffff88000969ea80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[   42.419882] ==================================================================

Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Craig Gallek <kraig@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-17 14:55:59 -04:00
Paolo Abeni
294acf1c01 net/tunnel: set inner protocol in network gro hooks
The gso code of several tunnels type (gre and udp tunnels)
takes for granted that the skb->inner_protocol is properly
initialized and drops the packet elsewhere.

On the forwarding path no one is initializing such field,
so gro encapsulated packets are dropped on forward.

Since commit 3872035241 ("gre: Use inner_proto to obtain
inner header protocol"), this can be reproduced when the
encapsulated packets use gre as the tunneling protocol.

The issue happens also with vxlan and geneve tunnels since
commit 8bce6d7d0d ("udp: Generalize skb_udp_segment"), if the
forwarding host's ingress nic has h/w offload for such tunnel
and a vxlan/geneve device is configured on top of it, regardless
of the configured peer address and vni.

To address the issue, this change initialize the inner_protocol
field for encapsulated packets in both ipv4 and ipv6 gro complete
callbacks.

Fixes: 3872035241 ("gre: Use inner_proto to obtain inner header protocol")
Fixes: 8bce6d7d0d ("udp: Generalize skb_udp_segment")
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Acked-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-09 13:19:52 -08:00
Steffen Klassert
5f114163f2 net: Add a skb_gro_flush_final helper.
Add a skb_gro_flush_final helper to prepare for  consuming
skbs in call_gro_receive. We will extend this helper to not
touch the skb if the skb is consumed by a gro callback with
a followup patch. We need this to handle the upcomming IPsec
ESP callbacks as they reinject the skb to the napi_gro_receive
asynchronous. The handler is used in all gro_receive functions
that can call the ESP gro handlers.

Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2017-02-15 09:39:39 +01:00
Herbert Xu
57ea52a865 gro: Disable frag0 optimization on IPv6 ext headers
The GRO fast path caches the frag0 address.  This address becomes
invalid if frag0 is modified by pskb_may_pull or its variants.
So whenever that happens we must disable the frag0 optimization.

This is usually done through the combination of gro_header_hard
and gro_header_slow, however, the IPv6 extension header path did
the pulling directly and would continue to use the GRO fast path
incorrectly.

This patch fixes it by disabling the fast path when we enter the
IPv6 extension header path.

Fixes: 78a478d0ef ("gro: Inline skb_gro_header and cache frag0 virtual address")
Reported-by: Slava Shwartsman <slavash@mellanox.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-10 21:30:33 -05:00
Artem Savkov
6b6ebb6b01 ip6_offload: check segs for NULL in ipv6_gso_segment.
segs needs to be checked for being NULL in ipv6_gso_segment() before calling
skb_shinfo(segs), otherwise kernel can run into a NULL-pointer dereference:

[   97.811262] BUG: unable to handle kernel NULL pointer dereference at 00000000000000cc
[   97.819112] IP: [<ffffffff816e52f9>] ipv6_gso_segment+0x119/0x2f0
[   97.825214] PGD 0 [   97.827047]
[   97.828540] Oops: 0000 [#1] SMP
[   97.831678] Modules linked in: vhost_net vhost macvtap macvlan nfsv3 rpcsec_gss_krb5
nfsv4 dns_resolver nfs fscache xt_CHECKSUM iptable_mangle ipt_MASQUERADE nf_nat_masquerade_ipv4
iptable_nat nf_nat_ipv4 nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack
ipt_REJECT nf_reject_ipv4 tun ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter
bridge stp llc snd_hda_codec_realtek snd_hda_codec_hdmi snd_hda_codec_generic snd_hda_intel
snd_hda_codec edac_mce_amd snd_hda_core edac_core snd_hwdep kvm_amd snd_seq kvm snd_seq_device
snd_pcm irqbypass snd_timer ppdev parport_serial snd parport_pc k10temp pcspkr soundcore parport
sp5100_tco shpchp sg wmi i2c_piix4 acpi_cpufreq nfsd auth_rpcgss nfs_acl lockd grace sunrpc
ip_tables xfs libcrc32c sr_mod cdrom sd_mod ata_generic pata_acpi amdkfd amd_iommu_v2 radeon
broadcom bcm_phy_lib i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops
ttm ahci serio_raw tg3 firewire_ohci libahci pata_atiixp drm ptp libata firewire_core pps_core
i2c_core crc_itu_t fjes dm_mirror dm_region_hash dm_log dm_mod
[   97.927721] CPU: 1 PID: 3504 Comm: vhost-3495 Not tainted 4.9.0-7.el7.test.x86_64 #1
[   97.935457] Hardware name: AMD Snook/Snook, BIOS ESK0726A 07/26/2010
[   97.941806] task: ffff880129a1c080 task.stack: ffffc90001bcc000
[   97.947720] RIP: 0010:[<ffffffff816e52f9>]  [<ffffffff816e52f9>] ipv6_gso_segment+0x119/0x2f0
[   97.956251] RSP: 0018:ffff88012fc43a10  EFLAGS: 00010207
[   97.961557] RAX: 0000000000000000 RBX: ffff8801292c8700 RCX: 0000000000000594
[   97.968687] RDX: 0000000000000593 RSI: ffff880129a846c0 RDI: 0000000000240000
[   97.975814] RBP: ffff88012fc43a68 R08: ffff880129a8404e R09: 0000000000000000
[   97.982942] R10: 0000000000000000 R11: ffff880129a84076 R12: 00000020002949b3
[   97.990070] R13: ffff88012a580000 R14: 0000000000000000 R15: ffff88012a580000
[   97.997198] FS:  0000000000000000(0000) GS:ffff88012fc40000(0000) knlGS:0000000000000000
[   98.005280] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   98.011021] CR2: 00000000000000cc CR3: 0000000126c5d000 CR4: 00000000000006e0
[   98.018149] Stack:
[   98.020157]  00000000ffffffff ffff88012fc43ac8 ffffffffa017ad0a 000000000000000e
[   98.027584]  0000001300000000 0000000077d59998 ffff8801292c8700 00000020002949b3
[   98.035010]  ffff88012a580000 0000000000000000 ffff88012a580000 ffff88012fc43a98
[   98.042437] Call Trace:
[   98.044879]  <IRQ> [   98.046803]  [<ffffffffa017ad0a>] ? tg3_start_xmit+0x84a/0xd60 [tg3]
[   98.053156]  [<ffffffff815eeee0>] skb_mac_gso_segment+0xb0/0x130
[   98.059158]  [<ffffffff815eefd3>] __skb_gso_segment+0x73/0x110
[   98.064985]  [<ffffffff815ef40d>] validate_xmit_skb+0x12d/0x2b0
[   98.070899]  [<ffffffff815ef5d2>] validate_xmit_skb_list+0x42/0x70
[   98.077073]  [<ffffffff81618560>] sch_direct_xmit+0xd0/0x1b0
[   98.082726]  [<ffffffff815efd86>] __dev_queue_xmit+0x486/0x690
[   98.088554]  [<ffffffff8135c135>] ? cpumask_next_and+0x35/0x50
[   98.094380]  [<ffffffff815effa0>] dev_queue_xmit+0x10/0x20
[   98.099863]  [<ffffffffa09ce057>] br_dev_queue_push_xmit+0xa7/0x170 [bridge]
[   98.106907]  [<ffffffffa09ce161>] br_forward_finish+0x41/0xc0 [bridge]
[   98.113430]  [<ffffffff81627cf2>] ? nf_iterate+0x52/0x60
[   98.118735]  [<ffffffff81627d6b>] ? nf_hook_slow+0x6b/0xc0
[   98.124216]  [<ffffffffa09ce32c>] __br_forward+0x14c/0x1e0 [bridge]
[   98.130480]  [<ffffffffa09ce120>] ? br_dev_queue_push_xmit+0x170/0x170 [bridge]
[   98.137785]  [<ffffffffa09ce4bd>] br_forward+0x9d/0xb0 [bridge]
[   98.143701]  [<ffffffffa09cfbb7>] br_handle_frame_finish+0x267/0x560 [bridge]
[   98.150834]  [<ffffffffa09d0064>] br_handle_frame+0x174/0x2f0 [bridge]
[   98.157355]  [<ffffffff8102fb89>] ? sched_clock+0x9/0x10
[   98.162662]  [<ffffffff810b63b2>] ? sched_clock_cpu+0x72/0xa0
[   98.168403]  [<ffffffff815eccf5>] __netif_receive_skb_core+0x1e5/0xa20
[   98.174926]  [<ffffffff813659f9>] ? timerqueue_add+0x59/0xb0
[   98.180580]  [<ffffffff815ed548>] __netif_receive_skb+0x18/0x60
[   98.186494]  [<ffffffff815ee625>] process_backlog+0x95/0x140
[   98.192145]  [<ffffffff815edccd>] net_rx_action+0x16d/0x380
[   98.197713]  [<ffffffff8170cff1>] __do_softirq+0xd1/0x283
[   98.203106]  [<ffffffff8170b2bc>] do_softirq_own_stack+0x1c/0x30
[   98.209107]  <EOI> [   98.211029]  [<ffffffff8108a5c0>] do_softirq+0x50/0x60
[   98.216166]  [<ffffffff815ec853>] netif_rx_ni+0x33/0x80
[   98.221386]  [<ffffffffa09eeff7>] tun_get_user+0x487/0x7f0 [tun]
[   98.227388]  [<ffffffffa09ef3ab>] tun_sendmsg+0x4b/0x60 [tun]
[   98.233129]  [<ffffffffa0b68932>] handle_tx+0x282/0x540 [vhost_net]
[   98.239392]  [<ffffffffa0b68c25>] handle_tx_kick+0x15/0x20 [vhost_net]
[   98.245916]  [<ffffffffa0abacfe>] vhost_worker+0x9e/0xf0 [vhost]
[   98.251919]  [<ffffffffa0abac60>] ? vhost_umem_alloc+0x40/0x40 [vhost]
[   98.258440]  [<ffffffff81003a47>] ? do_syscall_64+0x67/0x180
[   98.264094]  [<ffffffff810a44d9>] kthread+0xd9/0xf0
[   98.268965]  [<ffffffff810a4400>] ? kthread_park+0x60/0x60
[   98.274444]  [<ffffffff8170a4d5>] ret_from_fork+0x25/0x30
[   98.279836] Code: 8b 93 d8 00 00 00 48 2b 93 d0 00 00 00 4c 89 e6 48 89 df 66 89 93 c2 00 00 00 ff 10 48 3d 00 f0 ff ff 49 89 c2 0f 87 52 01 00 00 <41> 8b 92 cc 00 00 00 48 8b 80 d0 00 00 00 44 0f b7 74 10 06 66
[   98.299425] RIP  [<ffffffff816e52f9>] ipv6_gso_segment+0x119/0x2f0
[   98.305612]  RSP <ffff88012fc43a10>
[   98.309094] CR2: 00000000000000cc
[   98.312406] ---[ end trace 726a2c7a2d2d78d0 ]---

Signed-off-by: Artem Savkov <asavkov@redhat.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-02 13:34:58 -05:00
Sabrina Dubroca
fcd91dd449 net: add recursion limit to GRO
Currently, GRO can do unlimited recursion through the gro_receive
handlers.  This was fixed for tunneling protocols by limiting tunnel GRO
to one level with encap_mark, but both VLAN and TEB still have this
problem.  Thus, the kernel is vulnerable to a stack overflow, if we
receive a packet composed entirely of VLAN headers.

This patch adds a recursion counter to the GRO layer to prevent stack
overflow.  When a gro_receive function hits the recursion limit, GRO is
aborted for this skb and it is processed normally.  This recursion
counter is put in the GRO CB, but could be turned into a percpu counter
if we run out of space in the CB.

Thanks to Vladimír Beneš <vbenes@redhat.com> for the initial bug report.

Fixes: CVE-2016-7039
Fixes: 9b174d88c2 ("net: Add Transparent Ethernet Bridging GRO support.")
Fixes: 66e5133f19 ("vlan: Add GRO support for non hardware accelerated vlan")
Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Reviewed-by: Jiri Benc <jbenc@redhat.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-20 14:32:22 -04:00
Steffen Klassert
07b26c9454 gso: Support partial splitting at the frag_list pointer
Since commit 8a29111c7 ("net: gro: allow to build full sized skb")
gro may build buffers with a frag_list. This can hurt forwarding
because most NICs can't offload such packets, they need to be
segmented in software. This patch splits buffers with a frag_list
at the frag_list pointer into buffers that can be TSO offloaded.

Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Acked-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 20:59:34 -04:00
Tom Herbert
b8921ca83e ip4ip6: Support for GSO/GRO
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20 18:03:17 -04:00
Tom Herbert
815d22e55b ip6ip6: Support for GSO/GRO
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20 18:03:17 -04:00
Tom Herbert
7e13318daa net: define gso types for IPx over IPv4 and IPv6
This patch defines two new GSO definitions SKB_GSO_IPXIP4 and
SKB_GSO_IPXIP6 along with corresponding NETIF_F_GSO_IPXIP4 and
NETIF_F_GSO_IPXIP6. These are used to described IP in IP
tunnel and what the outer protocol is. The inner protocol
can be deduced from other GSO types (e.g. SKB_GSO_TCPV4 and
SKB_GSO_TCPV6). The GSO types of SKB_GSO_IPIP and SKB_GSO_SIT
are removed (these are both instances of SKB_GSO_IPXIP4).
SKB_GSO_IPXIP6 will be used when support for GSO with IP
encapsulation over IPv6 is added.

Signed-off-by: Tom Herbert <tom@herbertland.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20 18:03:15 -04:00
Tom Herbert
5c7cdf339a gso: Remove arbitrary checks for unsupported GSO
In several gso_segment functions there are checks of gso_type against
a seemingly arbitrary list of SKB_GSO_* flags. This seems like an
attempt to identify unsupported GSO types, but since the stack is
the one that set these GSO types in the first place this seems
unnecessary to do. If a combination isn't valid in the first
place that stack should not allow setting it.

This is a code simplication especially for add new GSO types.

Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20 18:03:15 -04:00
Alexander Duyck
802ab55adc GSO: Support partial segmentation offload
This patch adds support for something I am referring to as GSO partial.
The basic idea is that we can support a broader range of devices for
segmentation if we use fixed outer headers and have the hardware only
really deal with segmenting the inner header.  The idea behind the naming
is due to the fact that everything before csum_start will be fixed headers,
and everything after will be the region that is handled by hardware.

With the current implementation it allows us to add support for the
following GSO types with an inner TSO_MANGLEID or TSO6 offload:
NETIF_F_GSO_GRE
NETIF_F_GSO_GRE_CSUM
NETIF_F_GSO_IPIP
NETIF_F_GSO_SIT
NETIF_F_UDP_TUNNEL
NETIF_F_UDP_TUNNEL_CSUM

In the case of hardware that already supports tunneling we may be able to
extend this further to support TSO_TCPV4 without TSO_MANGLEID if the
hardware can support updating inner IPv4 headers.

Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-14 16:23:41 -04:00
Alexander Duyck
1530545ed6 GRO: Add support for TCP with fixed IPv4 ID field, limit tunnel IP ID values
This patch does two things.

First it allows TCP to aggregate TCP frames with a fixed IPv4 ID field.  As
a result we should now be able to aggregate flows that were converted from
IPv6 to IPv4.  In addition this allows us more flexibility for future
implementations of segmentation as we may be able to use a fixed IP ID when
segmenting the flow.

The second thing this does is that it places limitations on the outer IPv4
ID header in the case of tunneled frames.  Specifically it forces the IP ID
to be incrementing by 1 unless the DF bit is set in the outer IPv4 header.
This way we can avoid creating overlapping series of IP IDs that could
possibly be fragmented if the frame goes through GRO and is then
resegmented via GSO.

Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-14 16:23:41 -04:00
Alexander Duyck
cbc53e08a7 GSO: Add GSO type for fixed IPv4 ID
This patch adds support for TSO using IPv4 headers with a fixed IP ID
field.  This is meant to allow us to do a lossless GRO in the case of TCP
flows that use a fixed IP ID such as those that convert IPv6 header to IPv4
headers.

In addition I am adding a feature that for now I am referring to TSO with
IP ID mangling.  Basically when this flag is enabled the device has the
option to either output the flow with incrementing IP IDs or with a fixed
IP ID regardless of what the original IP ID ordering was.  This is useful
in cases where the DF bit is set and we do not care if the original IP ID
value is maintained.

Signed-off-by: Alexander Duyck <aduyck@mirantis.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-14 16:23:40 -04:00
Tom Herbert
a6024562ff udp: Add GRO functions to UDP socket
This patch adds GRO functions (gro_receive and gro_complete) to UDP
sockets. udp_gro_receive is changed to perform socket lookup on a
packet. If a socket is found the related GRO functions are called.

This features obsoletes using UDP offload infrastructure for GRO
(udp_offload). This has the advantage of not being limited to provide
offload on a per port basis, GRO is now applied to whatever individual
UDP sockets are bound to.  This also allows the possbility of
"application defined GRO"-- that is we can attach something like
a BPF program to a UDP socket to perfrom GRO on an application
layer protocol.

Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-07 16:53:29 -04:00
Jesse Gross
fac8e0f579 tunnels: Don't apply GRO to multiple layers of encapsulation.
When drivers express support for TSO of encapsulated packets, they
only mean that they can do it for one layer of encapsulation.
Supporting additional levels would mean updating, at a minimum,
more IP length fields and they are unaware of this.

No encapsulation device expresses support for handling offloaded
encapsulated packets, so we won't generate these types of frames
in the transmit path. However, GRO doesn't have a check for
multiple levels of encapsulation and will attempt to build them.

UDP tunnel GRO actually does prevent this situation but it only
handles multiple UDP tunnels stacked on top of each other. This
generalizes that solution to prevent any kind of tunnel stacking
that would cause problems.

Fixes: bf5a755f ("net-gre-gro: Add GRE support to the GRO stack")
Signed-off-by: Jesse Gross <jesse@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-20 16:33:40 -04:00