IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmXvm7IACgkQ6rmadz2v
bTqdMA//VMHNHVLb4oROoXyQD9fw2mCmIUEKzP88RXfqcxsfEX7HF+k8B5ZTk0ro
CHXTAnc79+Qqg0j24bkQKxup/fKBQVw9D+Ia4b3ytlm1I2MtyU/16xNEzVhAPU2D
iKk6mVBsEdCbt/GjpWORy/VVnZlZpC7BOpZLxsbbxgXOndnCegyjXzSnLGJGxdvi
zkrQTn2SrFzLi6aNpVLqrv6Nks6HJusfCKsIrtlbkQ85dulasHOtwK9s6GF60nte
aaho+MPx3L+lWEgapsm8rR779pHaYIB/GbZUgEPxE/xUJ/V8BzDgFNLMzEiIBRMN
a0zZam11BkBzCfcO9gkvDRByaei/dZz2jdqfU4GlHklFj1WFfz8Q7fRLEPINksvj
WXLgJADGY5mtGbjG21FScThxzj+Ruqwx0a13ddlyI/W+P3y5yzSWsLwJG5F9p0oU
6nlkJ4U8yg+9E1ie5ae0TibqvRJzXPjfOERZGwYDSVvfQGzv1z+DGSOPMmgNcWYM
dIaO+A/+NS3zdbk8+1PP2SBbhHPk6kWyCUByWc7wMzCPTiwriFGY/DD2sN+Fsufo
zorzfikUQOlTfzzD5jbmT49U8hUQUf6QIWsu7BijSiHaaC7am4S8QB2O6ibJMqdv
yNiwvuX+ThgVIY3QKrLLqL0KPGeKMR5mtfq6rrwSpfp/b4g27FE=
=eFgA
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:
====================
pull-request: bpf-next 2024-03-11
We've added 59 non-merge commits during the last 9 day(s) which contain
a total of 88 files changed, 4181 insertions(+), 590 deletions(-).
The main changes are:
1) Enforce VM_IOREMAP flag and range in ioremap_page_range and introduce
VM_SPARSE kind and vm_area_[un]map_pages to be used in bpf_arena,
from Alexei.
2) Introduce bpf_arena which is sparse shared memory region between bpf
program and user space where structures inside the arena can have
pointers to other areas of the arena, and pointers work seamlessly for
both user-space programs and bpf programs, from Alexei and Andrii.
3) Introduce may_goto instruction that is a contract between the verifier
and the program. The verifier allows the program to loop assuming it's
behaving well, but reserves the right to terminate it, from Alexei.
4) Use IETF format for field definitions in the BPF standard
document, from Dave.
5) Extend struct_ops libbpf APIs to allow specify version suffixes for
stuct_ops map types, share the same BPF program between several map
definitions, and other improvements, from Eduard.
6) Enable struct_ops support for more than one page in trampolines,
from Kui-Feng.
7) Support kCFI + BPF on riscv64, from Puranjay.
8) Use bpf_prog_pack for arm64 bpf trampoline, from Puranjay.
9) Fix roundup_pow_of_two undefined behavior on 32-bit archs, from Toke.
====================
Link: https://lore.kernel.org/r/20240312003646.8692-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
prog->aux->sleepable is checked very frequently as part of (some) BPF
program run hot paths. So this extra aux indirection seems wasteful and
on busy systems might cause unnecessary memory cache misses.
Let's move sleepable flag into prog itself to eliminate unnecessary
pointer dereference.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Message-ID: <20240309004739.2961431-1-andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In global bpf functions recognize btf_decl_tag("arg:arena") as PTR_TO_ARENA.
Note, when the verifier sees:
__weak void foo(struct bar *p)
it recognizes 'p' as PTR_TO_MEM and 'struct bar' has to be a struct with scalars.
Hence the only way to use arena pointers in global functions is to tag them with "arg:arena".
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-7-alexei.starovoitov@gmail.com
rY = addr_space_cast(rX, 0, 1) tells the verifier that rY->type = PTR_TO_ARENA.
Any further operations on PTR_TO_ARENA register have to be in 32-bit domain.
The verifier will mark load/store through PTR_TO_ARENA with PROBE_MEM32.
JIT will generate them as kern_vm_start + 32bit_addr memory accesses.
rY = addr_space_cast(rX, 1, 0) tells the verifier that rY->type = unknown scalar.
If arena->map_flags has BPF_F_NO_USER_CONV set then convert cast_user to mov32 as well.
Otherwise JIT will convert it to:
rY = (u32)rX;
if (rY)
rY |= arena->user_vm_start & ~(u64)~0U;
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240308010812.89848-6-alexei.starovoitov@gmail.com
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
Recognize 'void *p__map' kfunc argument as 'struct bpf_map *p__map'.
It allows kfunc to have 'void *' argument for maps, since bpf progs
will call them as:
struct {
__uint(type, BPF_MAP_TYPE_ARENA);
...
} arena SEC(".maps");
bpf_kfunc_with_map(... &arena ...);
Underneath libbpf will load CONST_PTR_TO_MAP into the register via ld_imm64
insn. If kfunc was defined with 'struct bpf_map *' it would pass the
verifier as well, but bpf prog would need to type cast the argument
(void *)&arena, which is not clean.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20240307031228.42896-3-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
When open code iterators, bpf_loop or may_goto are used the following two
states are equivalent and safe to prune the search:
cur state: fp-8_w=scalar(id=3,smin=umin=smin32=umin32=2,smax=umax=smax32=umax32=11,var_off=(0x0; 0xf))
old state: fp-8_rw=scalar(id=2,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=11,var_off=(0x0; 0xf))
In other words "exact" state match should ignore liveness and precision
marks, since open coded iterator logic didn't complete their propagation,
reg_old->type == NOT_INIT && reg_cur->type != NOT_INIT is also not safe to
prune while looping, but range_within logic that applies to scalars,
ptr_to_mem, map_value, pkt_ptr is safe to rely on.
Avoid doing such comparison when regular infinite loop detection logic is
used, otherwise bounded loop logic will declare such "infinite loop" as
false positive. Such example is in progs/verifier_loops1.c
not_an_inifinite_loop().
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240306031929.42666-3-alexei.starovoitov@gmail.com
Introduce may_goto instruction that from the verifier pov is similar to
open coded iterators bpf_for()/bpf_repeat() and bpf_loop() helper, but it
doesn't iterate any objects.
In assembly 'may_goto' is a nop most of the time until bpf runtime has to
terminate the program for whatever reason. In the current implementation
may_goto has a hidden counter, but other mechanisms can be used.
For programs written in C the later patch introduces 'cond_break' macro
that combines 'may_goto' with 'break' statement and has similar semantics:
cond_break is a nop until bpf runtime has to break out of this loop.
It can be used in any normal "for" or "while" loop, like
for (i = zero; i < cnt; cond_break, i++) {
The verifier recognizes that may_goto is used in the program, reserves
additional 8 bytes of stack, initializes them in subprog prologue, and
replaces may_goto instruction with:
aux_reg = *(u64 *)(fp - 40)
if aux_reg == 0 goto pc+off
aux_reg -= 1
*(u64 *)(fp - 40) = aux_reg
may_goto instruction can be used by LLVM to implement __builtin_memcpy,
__builtin_strcmp.
may_goto is not a full substitute for bpf_for() macro.
bpf_for() doesn't have induction variable that verifiers sees,
so 'i' in bpf_for(i, 0, 100) is seen as imprecise and bounded.
But when the code is written as:
for (i = 0; i < 100; cond_break, i++)
the verifier see 'i' as precise constant zero,
hence cond_break (aka may_goto) doesn't help to converge the loop.
A static or global variable can be used as a workaround:
static int zero = 0;
for (i = zero; i < 100; cond_break, i++) // works!
may_goto works well with arena pointers that don't need to be bounds
checked on access. Load/store from arena returns imprecise unbounded
scalar and loops with may_goto pass the verifier.
Reserve new opcode BPF_JMP | BPF_JCOND for may_goto insn.
JCOND stands for conditional pseudo jump.
Since goto_or_nop insn was proposed, it may use the same opcode.
may_goto vs goto_or_nop can be distinguished by src_reg:
code = BPF_JMP | BPF_JCOND
src_reg = 0 - may_goto
src_reg = 1 - goto_or_nop
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240306031929.42666-2-alexei.starovoitov@gmail.com
When comparing current and cached states verifier should consider
bpf_func_state->callback_depth. Current state cannot be pruned against
cached state, when current states has more iterations left compared to
cached state. Current state has more iterations left when it's
callback_depth is smaller.
Below is an example illustrating this bug, minimized from mailing list
discussion [0] (assume that BPF_F_TEST_STATE_FREQ is set).
The example is not a safe program: if loop_cb point (1) is followed by
loop_cb point (2), then division by zero is possible at point (4).
struct ctx {
__u64 a;
__u64 b;
__u64 c;
};
static void loop_cb(int i, struct ctx *ctx)
{
/* assume that generated code is "fallthrough-first":
* if ... == 1 goto
* if ... == 2 goto
* <default>
*/
switch (bpf_get_prandom_u32()) {
case 1: /* 1 */ ctx->a = 42; return 0; break;
case 2: /* 2 */ ctx->b = 42; return 0; break;
default: /* 3 */ ctx->c = 42; return 0; break;
}
}
SEC("tc")
__failure
__flag(BPF_F_TEST_STATE_FREQ)
int test(struct __sk_buff *skb)
{
struct ctx ctx = { 7, 7, 7 };
bpf_loop(2, loop_cb, &ctx, 0); /* 0 */
/* assume generated checks are in-order: .a first */
if (ctx.a == 42 && ctx.b == 42 && ctx.c == 7)
asm volatile("r0 /= 0;":::"r0"); /* 4 */
return 0;
}
Prior to this commit verifier built the following checkpoint tree for
this example:
.------------------------------------- Checkpoint / State name
| .-------------------------------- Code point number
| | .---------------------------- Stack state {ctx.a,ctx.b,ctx.c}
| | | .------------------- Callback depth in frame #0
v v v v
- (0) {7P,7P,7},depth=0
- (3) {7P,7P,7},depth=1
- (0) {7P,7P,42},depth=1
- (3) {7P,7,42},depth=2
- (0) {7P,7,42},depth=2 loop terminates because of depth limit
- (4) {7P,7,42},depth=0 predicted false, ctx.a marked precise
- (6) exit
(a) - (2) {7P,7,42},depth=2
- (0) {7P,42,42},depth=2 loop terminates because of depth limit
- (4) {7P,42,42},depth=0 predicted false, ctx.a marked precise
- (6) exit
(b) - (1) {7P,7P,42},depth=2
- (0) {42P,7P,42},depth=2 loop terminates because of depth limit
- (4) {42P,7P,42},depth=0 predicted false, ctx.{a,b} marked precise
- (6) exit
- (2) {7P,7,7},depth=1 considered safe, pruned using checkpoint (a)
(c) - (1) {7P,7P,7},depth=1 considered safe, pruned using checkpoint (b)
Here checkpoint (b) has callback_depth of 2, meaning that it would
never reach state {42,42,7}.
While checkpoint (c) has callback_depth of 1, and thus
could yet explore the state {42,42,7} if not pruned prematurely.
This commit makes forbids such premature pruning,
allowing verifier to explore states sub-tree starting at (c):
(c) - (1) {7,7,7P},depth=1
- (0) {42P,7,7P},depth=1
...
- (2) {42,7,7},depth=2
- (0) {42,42,7},depth=2 loop terminates because of depth limit
- (4) {42,42,7},depth=0 predicted true, ctx.{a,b,c} marked precise
- (5) division by zero
[0] https://lore.kernel.org/bpf/9b251840-7cb8-4d17-bd23-1fc8071d8eef@linux.dev/
Fixes: bb124da69c ("bpf: keep track of max number of bpf_loop callback iterations")
Suggested-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240222154121.6991-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZeEKVAAKCRDbK58LschI
g7oYAQD5Jlv4fIVTvxvfZrTTZ2tU+OsPa75mc8SDKwpash3YygEA8kvESy8+t6pg
D6QmSf1DIZdFoSp/bV+pfkNWMeR8gwg=
=mTAj
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2024-02-29
We've added 119 non-merge commits during the last 32 day(s) which contain
a total of 150 files changed, 3589 insertions(+), 995 deletions(-).
The main changes are:
1) Extend the BPF verifier to enable static subprog calls in spin lock
critical sections, from Kumar Kartikeya Dwivedi.
2) Fix confusing and incorrect inference of PTR_TO_CTX argument type
in BPF global subprogs, from Andrii Nakryiko.
3) Larger batch of riscv BPF JIT improvements and enabling inlining
of the bpf_kptr_xchg() for RV64, from Pu Lehui.
4) Allow skeleton users to change the values of the fields in struct_ops
maps at runtime, from Kui-Feng Lee.
5) Extend the verifier's capabilities of tracking scalars when they
are spilled to stack, especially when the spill or fill is narrowing,
from Maxim Mikityanskiy & Eduard Zingerman.
6) Various BPF selftest improvements to fix errors under gcc BPF backend,
from Jose E. Marchesi.
7) Avoid module loading failure when the module trying to register
a struct_ops has its BTF section stripped, from Geliang Tang.
8) Annotate all kfuncs in .BTF_ids section which eventually allows
for automatic kfunc prototype generation from bpftool, from Daniel Xu.
9) Several updates to the instruction-set.rst IETF standardization
document, from Dave Thaler.
10) Shrink the size of struct bpf_map resp. bpf_array,
from Alexei Starovoitov.
11) Initial small subset of BPF verifier prepwork for sleepable bpf_timer,
from Benjamin Tissoires.
12) Fix bpftool to be more portable to musl libc by using POSIX's
basename(), from Arnaldo Carvalho de Melo.
13) Add libbpf support to gcc in CORE macro definitions,
from Cupertino Miranda.
14) Remove a duplicate type check in perf_event_bpf_event,
from Florian Lehner.
15) Fix bpf_spin_{un,}lock BPF helpers to actually annotate them
with notrace correctly, from Yonghong Song.
16) Replace the deprecated bpf_lpm_trie_key 0-length array with flexible
array to fix build warnings, from Kees Cook.
17) Fix resolve_btfids cross-compilation to non host-native endianness,
from Viktor Malik.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (119 commits)
selftests/bpf: Test if shadow types work correctly.
bpftool: Add an example for struct_ops map and shadow type.
bpftool: Generated shadow variables for struct_ops maps.
libbpf: Convert st_ops->data to shadow type.
libbpf: Set btf_value_type_id of struct bpf_map for struct_ops.
bpf: Replace bpf_lpm_trie_key 0-length array with flexible array
bpf, arm64: use bpf_prog_pack for memory management
arm64: patching: implement text_poke API
bpf, arm64: support exceptions
arm64: stacktrace: Implement arch_bpf_stack_walk() for the BPF JIT
bpf: add is_async_callback_calling_insn() helper
bpf: introduce in_sleepable() helper
bpf: allow more maps in sleepable bpf programs
selftests/bpf: Test case for lacking CFI stub functions.
bpf: Check cfi_stubs before registering a struct_ops type.
bpf: Clarify batch lookup/lookup_and_delete semantics
bpf, docs: specify which BPF_ABS and BPF_IND fields were zero
bpf, docs: Fix typos in instruction-set.rst
selftests/bpf: update tcp_custom_syncookie to use scalar packet offset
bpf: Shrink size of struct bpf_map/bpf_array.
...
====================
Link: https://lore.kernel.org/r/20240301001625.8800-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Currently we have a special case for BPF_FUNC_timer_set_callback,
let's introduce a helper we can extend for the kfunc that will come in
a later patch
Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/20240221-hid-bpf-sleepable-v3-3-1fb378ca6301@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
These 2 maps types are required for HID-BPF when a user wants to do
IO with a device from a sleepable tracing point.
Allowing BPF_MAP_TYPE_QUEUE (and therefore BPF_MAP_TYPE_STACK) allows
for a BPF program to prepare from an IRQ the list of HID commands to send
back to the device and then these commands can be retrieved from the
sleepable trace point.
Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/20240221-hid-bpf-sleepable-v3-1-1fb378ca6301@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
With latest llvm19, I hit the following selftest failures with
$ ./test_progs -j
libbpf: prog 'on_event': BPF program load failed: Permission denied
libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG --
combined stack size of 4 calls is 544. Too large
verification time 1344153 usec
stack depth 24+440+0+32
processed 51008 insns (limit 1000000) max_states_per_insn 19 total_states 1467 peak_states 303 mark_read 146
-- END PROG LOAD LOG --
libbpf: prog 'on_event': failed to load: -13
libbpf: failed to load object 'strobemeta_subprogs.bpf.o'
scale_test:FAIL:expect_success unexpected error: -13 (errno 13)
#498 verif_scale_strobemeta_subprogs:FAIL
The verifier complains too big of the combined stack size (544 bytes) which
exceeds the maximum stack limit 512. This is a regression from llvm19 ([1]).
In the above error log, the original stack depth is 24+440+0+32.
To satisfy interpreter's need, in verifier the stack depth is adjusted to
32+448+32+32=544 which exceeds 512, hence the error. The same adjusted
stack size is also used for jit case.
But the jitted codes could use smaller stack size.
$ egrep -r stack_depth | grep round_up
arm64/net/bpf_jit_comp.c: ctx->stack_size = round_up(prog->aux->stack_depth, 16);
loongarch/net/bpf_jit.c: bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
powerpc/net/bpf_jit_comp.c: cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
riscv/net/bpf_jit_comp32.c: round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
riscv/net/bpf_jit_comp64.c: bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
s390/net/bpf_jit_comp.c: u32 stack_depth = round_up(fp->aux->stack_depth, 8);
sparc/net/bpf_jit_comp_64.c: stack_needed += round_up(stack_depth, 16);
x86/net/bpf_jit_comp.c: EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
x86/net/bpf_jit_comp.c: int tcc_off = -4 - round_up(stack_depth, 8);
x86/net/bpf_jit_comp.c: round_up(stack_depth, 8));
x86/net/bpf_jit_comp.c: int tcc_off = -4 - round_up(stack_depth, 8);
x86/net/bpf_jit_comp.c: EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
In the above, STACK_ALIGN in riscv/net/bpf_jit_comp32.c is defined as 16.
So stack is aligned in either 8 or 16, x86/s390 having 8-byte stack alignment and
the rest having 16-byte alignment.
This patch calculates total stack depth based on 16-byte alignment if jit is requested.
For the above failing case, the new stack size will be 32+448+0+32=512 and no verification
failure. llvm19 regression will be discussed separately in llvm upstream.
The verifier change caused three test failures as these tests compared messages
with stack size. More specifically,
- test_global_funcs/global_func1: fail with interpreter mode and success with jit mode.
Adjusted stack sizes so both jit and interpreter modes will fail.
- async_stack_depth/{pseudo_call_check, async_call_root_check}: since jit and interpreter
will calculate different stack sizes, the failure msg is adjusted to omit those
specific stack size numbers.
[1] https://lore.kernel.org/bpf/32bde0f0-1881-46c9-931a-673be566c61d@linux.dev/
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240214232951.4113094-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Return result of btf_get_prog_ctx_type() is never used and callers only
check NULL vs non-NULL case to determine if given type matches expected
PTR_TO_CTX type. So rename function to `btf_is_prog_ctx_type()` and
return a simple true/false. We'll use this simpler interface to handle
kprobe program type's special typedef case in the next patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240212233221.2575350-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Collect argument information from the type information of stub functions to
mark arguments of BPF struct_ops programs with PTR_MAYBE_NULL if they are
nullable. A nullable argument is annotated by suffixing "__nullable" at
the argument name of stub function.
For nullable arguments, this patch sets a struct bpf_ctx_arg_aux to label
their reg_type with PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL. This
makes the verifier to check programs and ensure that they properly check
the pointer. The programs should check if the pointer is null before
accessing the pointed memory.
The implementer of a struct_ops type should annotate the arguments that can
be null. The implementer should define a stub function (empty) as a
placeholder for each defined operator. The name of a stub function should
be in the pattern "<st_op_type>__<operator name>". For example, for
test_maybe_null of struct bpf_testmod_ops, it's stub function name should
be "bpf_testmod_ops__test_maybe_null". You mark an argument nullable by
suffixing the argument name with "__nullable" at the stub function.
Since we already has stub functions for kCFI, we just reuse these stub
functions with the naming convention mentioned earlier. These stub
functions with the naming convention is only required if there are nullable
arguments to annotate. For functions having not nullable arguments, stub
functions are not necessary for the purpose of this patch.
This patch will prepare a list of struct bpf_ctx_arg_aux, aka arg_info, for
each member field of a struct_ops type. "arg_info" will be assigned to
"prog->aux->ctx_arg_info" of BPF struct_ops programs in
check_struct_ops_btf_id() so that it can be used by btf_ctx_access() later
to set reg_type properly for the verifier.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240209023750.1153905-4-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Move __kfunc_param_match_suffix() to btf.c and rename it as
btf_param_match_suffix(). It can be reused by bpf_struct_ops later.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240209023750.1153905-3-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Compiling with CONFIG_BPF_SYSCALL & !CONFIG_BPF_JIT throws the below
warning:
"WARN: resolve_btfids: unresolved symbol bpf_cpumask"
Fix it by adding the appropriate #ifdef.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Stanislav Fomichev <sdf@google.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20240208100115.602172-1-hbathini@linux.ibm.com
Allow transferring an imbalanced RCU lock state between subprog calls
during verification. This allows patterns where a subprog call returns
with an RCU lock held, or a subprog call releases an RCU lock held by
the caller. Currently, the verifier would end up complaining if the RCU
lock is not released when processing an exit from a subprog, which is
non-ideal if its execution is supposed to be enclosed in an RCU read
section of the caller.
Instead, simply only check whether we are processing exit for frame#0
and do not complain on an active RCU lock otherwise. We only need to
update the check when processing BPF_EXIT insn, as copy_verifier_state
is already set up to do the right thing.
Suggested-by: David Vernet <void@manifault.com>
Tested-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20240205055646.1112186-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, calling any helpers, kfuncs, or subprogs except the graph
data structure (lists, rbtrees) API kfuncs while holding a bpf_spin_lock
is not allowed. One of the original motivations of this decision was to
force the BPF programmer's hand into keeping the bpf_spin_lock critical
section small, and to ensure the execution time of the program does not
increase due to lock waiting times. In addition to this, some of the
helpers and kfuncs may be unsafe to call while holding a bpf_spin_lock.
However, when it comes to subprog calls, atleast for static subprogs,
the verifier is able to explore their instructions during verification.
Therefore, it is similar in effect to having the same code inlined into
the critical section. Hence, not allowing static subprog calls in the
bpf_spin_lock critical section is mostly an annoyance that needs to be
worked around, without providing any tangible benefit.
Unlike static subprog calls, global subprog calls are not safe to permit
within the critical section, as the verifier does not explore them
during verification, therefore whether the same lock will be taken
again, or unlocked, cannot be ascertained.
Therefore, allow calling static subprogs within a bpf_spin_lock critical
section, and only reject it in case the subprog linkage is global.
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20240204222349.938118-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add PTR_TRUSTED | PTR_MAYBE_NULL modifiers for PTR_TO_BTF_ID to
check_reg_type() to support passing trusted nullable PTR_TO_BTF_ID
registers into global functions accepting `__arg_trusted __arg_nullable`
arguments. This hasn't been caught earlier because tests were either
passing known non-NULL PTR_TO_BTF_ID registers or known NULL (SCALAR)
registers.
When utilizing this functionality in complicated real-world BPF
application that passes around PTR_TO_BTF_ID_OR_NULL, it became apparent
that verifier rejects valid case because check_reg_type() doesn't handle
this case explicitly. Existing check_reg_type() logic is already
anticipating this combination, so we just need to explicitly list this
combo in the switch statement.
Fixes: e2b3c4ff5d ("bpf: add __arg_trusted global func arg tag")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240202190529.2374377-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When check_stack_read_fixed_off() reads value from an spi
all stack slots of which are set to STACK_{MISC,INVALID},
the destination register is set to unbound SCALAR_VALUE.
Exploit this fact by allowing stacksafe() to use a fake
unbound scalar register to compare 'mmmm mmmm' stack value
in old state vs spilled 64-bit scalar in current state
and vice versa.
Veristat results after this patch show some gains:
./veristat -C -e file,prog,states -f 'states_pct>10' not-opt after
File Program States (DIFF)
----------------------- --------------------- ---------------
bpf_overlay.o tail_rev_nodeport_lb4 -45 (-15.85%)
bpf_xdp.o tail_lb_ipv4 -541 (-19.57%)
pyperf100.bpf.o on_event -680 (-10.42%)
pyperf180.bpf.o on_event -2164 (-19.62%)
pyperf600.bpf.o on_event -9799 (-24.84%)
strobemeta.bpf.o on_event -9157 (-65.28%)
xdp_synproxy_kern.bpf.o syncookie_tc -54 (-19.29%)
xdp_synproxy_kern.bpf.o syncookie_xdp -74 (-24.50%)
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240127175237.526726-6-maxtram95@gmail.com
When the width of a fill is smaller than the width of the preceding
spill, the information about scalar boundaries can still be preserved,
as long as it's coerced to the right width (done by coerce_reg_to_size).
Even further, if the actual value fits into the fill width, the ID can
be preserved as well for further tracking of equal scalars.
Implement the above improvements, which makes narrowing fills behave the
same as narrowing spills and MOVs between registers.
Two tests are adjusted to accommodate for endianness differences and to
take into account that it's now allowed to do a narrowing fill from the
least significant bits.
reg_bounds_sync is added to coerce_reg_to_size to correctly adjust
umin/umax boundaries after the var_off truncation, for example, a 64-bit
value 0xXXXXXXXX00000000, when read as a 32-bit, gets umin = 0, umax =
0xFFFFFFFF, var_off = (0x0; 0xffffffff00000000), which needs to be
synced down to umax = 0, otherwise reg_bounds_sanity_check doesn't pass.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240127175237.526726-4-maxtram95@gmail.com
Support the pattern where an unbounded scalar is spilled to the stack,
then boundary checks are performed on the src register, after which the
stack frame slot is refilled into a register.
Before this commit, the verifier didn't treat the src register and the
stack slot as related if the src register was an unbounded scalar. The
register state wasn't copied, the id wasn't preserved, and the stack
slot was marked as STACK_MISC. Subsequent boundary checks on the src
register wouldn't result in updating the boundaries of the spilled
variable on the stack.
After this commit, the verifier will preserve the bond between src and
dst even if src is unbounded, which permits to do boundary checks on src
and refill dst later, still remembering its boundaries. Such a pattern
is sometimes generated by clang when compiling complex long functions.
One test is adjusted to reflect that now unbounded scalars are tracked.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20240127175237.526726-2-maxtram95@gmail.com
Add support for passing PTR_TO_BTF_ID registers to global subprogs.
Currently only PTR_TRUSTED flavor of PTR_TO_BTF_ID is supported.
Non-NULL semantics is assumed, so caller will be forced to prove
PTR_TO_BTF_ID can't be NULL.
Note, we disallow global subprogs to destroy passed in PTR_TO_BTF_ID
arguments, even the trusted one. We achieve that by not setting
ref_obj_id when validating subprog code. This basically enforces (in
Rust terms) borrowing semantics vs move semantics. Borrowing semantics
seems to be a better fit for isolated global subprog validation
approach.
Implementation-wise, we utilize existing logic for matching
user-provided BTF type to kernel-side BTF type, used by BPF CO-RE logic
and following same matching rules. We enforce a unique match for types.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240130000648.2144827-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In bpf_struct_ops_map_alloc, it needs to check for NULL in the returned
pointer of bpf_get_btf_vmlinux() when CONFIG_DEBUG_INFO_BTF is not set.
ENOTSUPP is used to preserve the same behavior before the
struct_ops kmod support.
In the function check_struct_ops_btf_id(), instead of redoing the
bpf_get_btf_vmlinux() that has already been done in syscall.c, the fix
here is to check for prog->aux->attach_btf_id.
BPF_PROG_TYPE_STRUCT_OPS must require attach_btf_id and syscall.c
guarantees a valid attach_btf as long as attach_btf_id is set.
When attach_btf_id is not set, this patch returns -ENOTSUPP
because it is what the selftest in test_libbpf_probe_prog_types()
and libbpf_probes.c are expecting for feature probing purpose.
Changes from v1:
- Remove an unnecessary NULL check in check_struct_ops_btf_id()
Reported-by: syzbot+88f0aafe5f950d7489d7@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/00000000000040d68a060fc8db8c@google.com/
Reported-by: syzbot+1336f3d4b10bcda75b89@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/00000000000026353b060fc21c07@google.com/
Fixes: fcc2c1fb06 ("bpf: pass attached BTF to the bpf_struct_ops subsystem")
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240126023113.1379504-1-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Remove remaining direct queries to perfmon_capable() and bpf_capable()
in BPF verifier logic and instead use BPF token (if available) to make
decisions about privileges.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-9-andrii@kernel.org
To ensure that a module remains accessible whenever a struct_ops object of
a struct_ops type provided by the module is still in use.
struct bpf_struct_ops_map doesn't hold a refcnt to btf anymore since a
module will hold a refcnt to it's btf already. But, struct_ops programs are
different. They hold their associated btf, not the module since they need
only btf to assure their types (signatures).
However, verifier holds the refcnt of the associated module of a struct_ops
type temporarily when verify a struct_ops prog. Verifier needs the help
from the verifier operators (struct bpf_verifier_ops) provided by the owner
module to verify data access of a prog, provide information, and generate
code.
This patch also add a count of links (links_cnt) to bpf_struct_ops_map. It
avoids bpf_struct_ops_map_put_progs() from accessing btf after calling
module_put() in bpf_struct_ops_map_free().
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-10-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Pass the fd of a btf from the userspace to the bpf() syscall, and then
convert the fd into a btf. The btf is generated from the module that
defines the target BPF struct_ops type.
In order to inform the kernel about the module that defines the target
struct_ops type, the userspace program needs to provide a btf fd for the
respective module's btf. This btf contains essential information on the
types defined within the module, including the target struct_ops type.
A btf fd must be provided to the kernel for struct_ops maps and for the bpf
programs attached to those maps.
In the case of the bpf programs, the attach_btf_obj_fd parameter is passed
as part of the bpf_attr and is converted into a btf. This btf is then
stored in the prog->aux->attach_btf field. Here, it just let the verifier
access attach_btf directly.
In the case of struct_ops maps, a btf fd is passed as value_type_btf_obj_fd
of bpf_attr. The bpf_struct_ops_map_alloc() function converts the fd to a
btf and stores it as st_map->btf. A flag BPF_F_VTYPE_BTF_OBJ_FD is added
for map_flags to indicate that the value of value_type_btf_obj_fd is set.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-9-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
This is a preparation for searching for struct_ops types from a specified
module. BTF is always btf_vmlinux now. This patch passes a pointer of BTF
to bpf_struct_ops_find_value() and bpf_struct_ops_find(). Once the new
registration API of struct_ops types is used, other BTFs besides
btf_vmlinux can also be passed to them.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-8-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Move some of members of bpf_struct_ops to bpf_struct_ops_desc. type_id is
unavailabe in bpf_struct_ops anymore. Modules should get it from the btf
received by kmod's init function.
Cc: netdev@vger.kernel.org
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-4-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Current checking rules are structured to disallow alu on particular ptr
types explicitly, so default cases are allowed implicitly. This may lead
to newly added ptr types being allowed unexpectedly. So restruture it to
allow alu explicitly. The tradeoff is mainly a bit more cases added in
the switch. The following table from Eduard summarizes the rules:
| Pointer type | Arithmetics allowed |
|---------------------+---------------------|
| PTR_TO_CTX | yes |
| CONST_PTR_TO_MAP | conditionally |
| PTR_TO_MAP_VALUE | yes |
| PTR_TO_MAP_KEY | yes |
| PTR_TO_STACK | yes |
| PTR_TO_PACKET_META | yes |
| PTR_TO_PACKET | yes |
| PTR_TO_PACKET_END | no |
| PTR_TO_FLOW_KEYS | conditionally |
| PTR_TO_SOCKET | no |
| PTR_TO_SOCK_COMMON | no |
| PTR_TO_TCP_SOCK | no |
| PTR_TO_TP_BUFFER | yes |
| PTR_TO_XDP_SOCK | no |
| PTR_TO_BTF_ID | yes |
| PTR_TO_MEM | yes |
| PTR_TO_BUF | yes |
| PTR_TO_FUNC | yes |
| CONST_PTR_TO_DYNPTR | yes |
The refactored rules are equivalent to the original one. Note that
PTR_TO_FUNC and CONST_PTR_TO_DYNPTR are not reject here because: (1)
check_mem_access() rejects load/store on those ptrs, and those ptrs
with offset passing to calls are rejected check_func_arg_reg_off();
(2) someone may rely on the verifier not rejecting programs earily.
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240117094012.36798-1-sunhao.th@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
With patch set [1], precision backtracing supports register spill/fill
to/from the stack. The patch [2] allows initial imprecise register spill
with content 0. This is a common case for cpuv3 and lower for
initializing the stack variables with pattern
r1 = 0
*(u64 *)(r10 - 8) = r1
and the [2] has demonstrated good verification improvement.
For cpuv4, the initialization could be
*(u64 *)(r10 - 8) = 0
The current verifier marks the r10-8 contents with STACK_ZERO.
Similar to [2], let us permit the above insn to behave like
imprecise register spill which can reduce number of verified states.
The change is in function check_stack_write_fixed_off().
Before this patch, spilled zero will be marked as STACK_ZERO
which can provide precise values. In check_stack_write_var_off(),
STACK_ZERO will be maintained if writing a const zero
so later it can provide precise values if needed.
The above handling of '*(u64 *)(r10 - 8) = 0' as a spill
will have issues in check_stack_write_var_off() as the spill
will be converted to STACK_MISC and the precise value 0
is lost. To fix this issue, if the spill slots with const
zero and the BPF_ST write also with const zero, the spill slots
are preserved, which can later provide precise values
if needed. Without the change in check_stack_write_var_off(),
the test_verifier subtest 'BPF_ST_MEM stack imm zero, variable offset'
will fail.
I checked cpuv3 and cpuv4 with and without this patch with veristat.
There is no state change for cpuv3 since '*(u64 *)(r10 - 8) = 0'
is only generated with cpuv4.
For cpuv4:
$ ../veristat -C old.cpuv4.csv new.cpuv4.csv -e file,prog,insns,states -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
------------------------------------------ ------------------- --------- --------- --------------- ---------- ---------- -------------
local_storage_bench.bpf.linked3.o get_local 228 168 -60 (-26.32%) 17 14 -3 (-17.65%)
pyperf600_bpf_loop.bpf.linked3.o on_event 6066 4889 -1177 (-19.40%) 403 321 -82 (-20.35%)
test_cls_redirect.bpf.linked3.o cls_redirect 35483 35387 -96 (-0.27%) 2179 2177 -2 (-0.09%)
test_l4lb_noinline.bpf.linked3.o balancer_ingress 4494 4522 +28 (+0.62%) 217 219 +2 (+0.92%)
test_l4lb_noinline_dynptr.bpf.linked3.o balancer_ingress 1432 1455 +23 (+1.61%) 92 94 +2 (+2.17%)
test_xdp_noinline.bpf.linked3.o balancer_ingress_v6 3462 3458 -4 (-0.12%) 216 216 +0 (+0.00%)
verifier_iterating_callbacks.bpf.linked3.o widening 52 41 -11 (-21.15%) 4 3 -1 (-25.00%)
xdp_synproxy_kern.bpf.linked3.o syncookie_tc 12412 11719 -693 (-5.58%) 345 330 -15 (-4.35%)
xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 12478 11794 -684 (-5.48%) 346 331 -15 (-4.34%)
test_l4lb_noinline and test_l4lb_noinline_dynptr has minor regression, but
pyperf600_bpf_loop and local_storage_bench gets pretty good improvement.
[1] https://lore.kernel.org/all/20231205184248.1502704-1-andrii@kernel.org/
[2] https://lore.kernel.org/all/20231205184248.1502704-9-andrii@kernel.org/
Cc: Kuniyuki Iwashima <kuniyu@amazon.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Tested-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240110051348.2737007-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, when a scalar bounded register is spilled to the stack, its
ID is preserved, but only if was already assigned, i.e. if this register
was MOVed before.
Assign an ID on spill if none is set, so that equal scalars could be
tracked if a register is spilled to the stack and filled into another
register.
One test is adjusted to reflect the change in register IDs.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-9-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Put calculation of the register value width into a dedicated function.
This function will also be used in a following commit.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Link: https://lore.kernel.org/r/20240108205209.838365-8-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Extract the common code that generates a register ID for src_reg before
MOV if needed into a new function. This function will also be used in
a following commit.
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-7-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Current infinite loops detection mechanism is speculative:
- first, states_maybe_looping() check is done which simply does memcmp
for R1-R10 in current frame;
- second, states_equal(..., exact=false) is called. With exact=false
states_equal() would compare scalars for equality only if in old
state scalar has precision mark.
Such logic might be problematic if compiler makes some unlucky stack
spill/fill decisions. An artificial example of a false positive looks
as follows:
r0 = ... unknown scalar ...
r0 &= 0xff;
*(u64 *)(r10 - 8) = r0;
r0 = 0;
loop:
r0 = *(u64 *)(r10 - 8);
if r0 > 10 goto exit_;
r0 += 1;
*(u64 *)(r10 - 8) = r0;
r0 = 0;
goto loop;
This commit updates call to states_equal to use exact=true, forcing
all scalar comparisons to be exact.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-3-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add btf_arg_tag flags enum to be able to record multiple tags per
argument. Also streamline pointer argument processing some more.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240105000909.2818934-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The motivation of inlining bpf_kptr_xchg() comes from the performance
profiling of bpf memory allocator benchmark. The benchmark uses
bpf_kptr_xchg() to stash the allocated objects and to pop the stashed
objects for free. After inling bpf_kptr_xchg(), the performance for
object free on 8-CPUs VM increases about 2%~10%. The inline also has
downside: both the kasan and kcsan checks on the pointer will be
unavailable.
bpf_kptr_xchg() can be inlined by converting the calling of
bpf_kptr_xchg() into an atomic_xchg() instruction. But the conversion
depends on two conditions:
1) JIT backend supports atomic_xchg() on pointer-sized word
2) For the specific arch, the implementation of xchg is the same as
atomic_xchg() on pointer-sized words.
It seems most 64-bit JIT backends satisfies these two conditions. But
as a precaution, defining a weak function bpf_jit_supports_ptr_xchg()
to state whether such conversion is safe and only supporting inline for
64-bit host.
For x86-64, it supports BPF_XCHG atomic operation and both xchg() and
atomic_xchg() use arch_xchg() to implement the exchange, so enabling the
inline of bpf_kptr_xchg() on x86-64 first.
Reviewed-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20240105104819.3916743-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, it's not allowed to attach an fentry/fexit prog to another
one fentry/fexit. At the same time it's not uncommon to see a tracing
program with lots of logic in use, and the attachment limitation
prevents usage of fentry/fexit for performance analysis (e.g. with
"bpftool prog profile" command) in this case. An example could be
falcosecurity libs project that uses tp_btf tracing programs.
Following the corresponding discussion [1], the reason for that is to
avoid tracing progs call cycles without introducing more complex
solutions. But currently it seems impossible to load and attach tracing
programs in a way that will form such a cycle. The limitation is coming
from the fact that attach_prog_fd is specified at the prog load (thus
making it impossible to attach to a program loaded after it in this
way), as well as tracing progs not implementing link_detach.
Replace "no same type" requirement with verification that no more than
one level of attachment nesting is allowed. In this way only one
fentry/fexit program could be attached to another fentry/fexit to cover
profiling use case, and still no cycle could be formed. To implement,
add a new field into bpf_prog_aux to track nested attachment for tracing
programs.
[1]: https://lore.kernel.org/bpf/20191108064039.2041889-16-ast@kernel.org/
Acked-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com>
Link: https://lore.kernel.org/r/20240103190559.14750-2-9erthalion6@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For percpu data structure allocation with bpf_global_percpu_ma,
the maximum data size is 4K. But for a system with large
number of cpus, bigger data size (e.g., 2K, 4K) might consume
a lot of memory. For example, the percpu memory consumption
with unit size 2K and 1024 cpus will be 2K * 1K * 1k = 2GB
memory.
We should discourage such usage. Let us limit the maximum data
size to be 512 for bpf_global_percpu_ma allocation.
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231222031801.1290841-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 41a5db8d81 ("Add support for non-fix-size percpu mem allocation")
added support for non-fix-size percpu memory allocation.
Such allocation will allocate percpu memory for all buckets on all
cpus and the memory consumption is in the order to quadratic.
For example, let us say, 4 cpus, unit size 16 bytes, so each
cpu has 16 * 4 = 64 bytes, with 4 cpus, total will be 64 * 4 = 256 bytes.
Then let us say, 8 cpus with the same unit size, each cpu
has 16 * 8 = 128 bytes, with 8 cpus, total will be 128 * 8 = 1024 bytes.
So if the number of cpus doubles, the number of memory consumption
will be 4 times. So for a system with large number of cpus, the
memory consumption goes up quickly with quadratic order.
For example, for 4KB percpu allocation, 128 cpus. The total memory
consumption will 4KB * 128 * 128 = 64MB. Things will become
worse if the number of cpus is bigger (e.g., 512, 1024, etc.)
In Commit 41a5db8d81, the non-fix-size percpu memory allocation is
done in boot time, so for system with large number of cpus, the initial
percpu memory consumption is very visible. For example, for 128 cpu
system, the total percpu memory allocation will be at least
(16 + 32 + 64 + 96 + 128 + 196 + 256 + 512 + 1024 + 2048 + 4096)
* 128 * 128 = ~138MB.
which is pretty big. It will be even bigger for larger number of cpus.
Note that the current prefill also allocates 4 entries if the unit size
is less than 256. So on top of 138MB memory consumption, this will
add more consumption with
3 * (16 + 32 + 64 + 96 + 128 + 196 + 256) * 128 * 128 = ~38MB.
Next patch will try to reduce this memory consumption.
Later on, Commit 1fda5bb66a ("bpf: Do not allocate percpu memory
at init stage") moved the non-fix-size percpu memory allocation
to bpf verificaiton stage. Once a particular bpf_percpu_obj_new()
is called by bpf program, the memory allocator will try to fill in
the cache with all sizes, causing the same amount of percpu memory
consumption as in the boot stage.
To reduce the initial percpu memory consumption for non-fix-size
percpu memory allocation, instead of filling the cache with all
supported allocation sizes, this patch intends to fill the cache
only for the requested size. As typically users will not use large
percpu data structure, this can save memory significantly.
For example, the allocation size is 64 bytes with 128 cpus.
Then total percpu memory amount will be 64 * 128 * 128 = 1MB,
much less than previous 138MB.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231222031745.1289082-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch simplifies the verification of size arguments associated to
pointer arguments to helpers and kfuncs. Many helpers take a pointer
argument followed by the size of the memory access performed to be
performed through that pointer. Before this patch, the handling of the
size argument in check_mem_size_reg() was confusing and wasteful: if the
size register's lower bound was 0, then the verification was done twice:
once considering the size of the access to be the lower-bound of the
respective argument, and once considering the upper bound (even if the
two are the same). The upper bound checking is a super-set of the
lower-bound checking(*), except: the only point of the lower-bound check
is to handle the case where zero-sized-accesses are explicitly not
allowed and the lower-bound is zero. This static condition is now
checked explicitly, replacing a much more complex, expensive and
confusing verification call to check_helper_mem_access().
Error messages change in this patch. Before, messages about illegal
zero-size accesses depended on the type of the pointer and on other
conditions, and sometimes the message was plain wrong: in some tests
that changed you'll see that the old message was something like "R1 min
value is outside of the allowed memory range", where R1 is the pointer
register; the error was wrongly claiming that the pointer was bad
instead of the size being bad. Other times the information that the size
came for a register with a possible range of values was wrong, and the
error presented the size as a fixed zero. Now the errors refer to the
right register. However, the old error messages did contain useful
information about the pointer register which is now lost; recovering
this information was deemed not important enough.
(*) Besides standing to reason that the checks for a bigger size access
are a super-set of the checks for a smaller size access, I have also
mechanically verified this by reading the code for all types of
pointers. I could convince myself that it's true for all but
PTR_TO_BTF_ID (check_ptr_to_btf_access). There, simply looking
line-by-line does not immediately prove what we want. If anyone has any
qualms, let me know.
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231221232225.568730-2-andreimatei1@gmail.com
Although it does not seem to have any untoward side-effects, the use
of ';' to separate to assignments seems more appropriate than ','.
Flagged by clang-17 -Wcomma
No functional change intended. Compile tested only.
Signed-off-by: Simon Horman <horms@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/bpf/20231221-bpf-verifier-comma-v1-1-cde2530912e9@kernel.org
Add ability to pass a pointer to dynptr into global functions.
This allows to have global subprogs that accept and work with generic
dynptrs that are created by caller. Dynptr argument is detected based on
the name of a struct type, if it's "bpf_dynptr", it's assumed to be
a proper dynptr pointer. Both actual struct and forward struct
declaration types are supported.
This is conceptually exactly the same semantics as
bpf_user_ringbuf_drain()'s use of dynptr to pass a variable-sized
pointer to ringbuf record. So we heavily rely on CONST_PTR_TO_DYNPTR
bits of already existing logic in the verifier.
During global subprog validation, we mark such CONST_PTR_TO_DYNPTR as
having LOCAL type, as that's the most unassuming type of dynptr and it
doesn't have any special helpers that can try to free or acquire extra
references (unlike skb, xdp, or ringbuf dynptr). So that seems like a safe
"choice" to make from correctness standpoint. It's still possible to
pass any type of dynptr to such subprog, though, because generic dynptr
helpers, like getting data/slice pointers, read/write memory copying
routines, dynptr adjustment and getter routines all work correctly with
any type of dynptr.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add support for annotating global BPF subprog arguments to provide more
information about expected semantics of the argument. Currently,
verifier relies purely on argument's BTF type information, and supports
three general use cases: scalar, pointer-to-context, and
pointer-to-fixed-size-memory.
Scalar and pointer-to-fixed-mem work well in practice and are quite
natural to use. But pointer-to-context is a bit problematic, as typical
BPF users don't realize that they need to use a special type name to
signal to verifier that argument is not just some pointer, but actually
a PTR_TO_CTX. Further, even if users do know which type to use, it is
limiting in situations where the same BPF program logic is used across
few different program types. Common case is kprobes, tracepoints, and
perf_event programs having a helper to send some data over BPF perf
buffer. bpf_perf_event_output() requires `ctx` argument, and so it's
quite cumbersome to share such global subprog across few BPF programs of
different types, necessitating extra static subprog that is context
type-agnostic.
Long story short, there is a need to go beyond types and allow users to
add hints to global subprog arguments to define expectations.
This patch adds such support for two initial special tags:
- pointer to context;
- non-null qualifier for generic pointer arguments.
All of the above came up in practice already and seem generally useful
additions. Non-null qualifier is an often requested feature, which
currently has to be worked around by having unnecessary NULL checks
inside subprogs even if we know that arguments are never NULL. Pointer
to context was discussed earlier.
As for implementation, we utilize btf_decl_tag attribute and set up an
"arg:xxx" convention to specify argument hint. As such:
- btf_decl_tag("arg:ctx") is a PTR_TO_CTX hint;
- btf_decl_tag("arg:nonnull") marks pointer argument as not allowed to
be NULL, making NULL check inside global subprog unnecessary.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>