Commit Graph

12243 Commits

Author SHA1 Message Date
Ard Biesheuvel
3e04040df6 Revert "mm/page_alloc: fix memmap_init_zone pageblock alignment"
This reverts commit 864b75f9d6.

Commit 864b75f9d6 ("mm/page_alloc: fix memmap_init_zone pageblock
alignment") modified the logic in memmap_init_zone() to initialize
struct pages associated with invalid PFNs, to appease a VM_BUG_ON()
in move_freepages(), which is redundant by its own admission, and
dereferences struct page fields to obtain the zone without checking
whether the struct pages in question are valid to begin with.

Commit 864b75f9d6 only makes it worse, since the rounding it does
may cause pfn assume the same value it had in a prior iteration of
the loop, resulting in an infinite loop and a hang very early in the
boot. Also, since it doesn't perform the same rounding on start_pfn
itself but only on intermediate values following an invalid PFN, we
may still hit the same VM_BUG_ON() as before.

So instead, let's fix this at the core, and ensure that the BUG
check doesn't dereference struct page fields of invalid pages.

Fixes: 864b75f9d6 ("mm/page_alloc: fix memmap_init_zone pageblock alignment")
Tested-by: Jan Glauber <jglauber@cavium.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Daniel Vacek <neelx@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-14 16:33:28 -07:00
Daniel Vacek
864b75f9d6 mm/page_alloc: fix memmap_init_zone pageblock alignment
Commit b92df1de5d ("mm: page_alloc: skip over regions of invalid pfns
where possible") introduced a bug where move_freepages() triggers a
VM_BUG_ON() on uninitialized page structure due to pageblock alignment.
To fix this, simply align the skipped pfns in memmap_init_zone() the
same way as in move_freepages_block().

Seen in one of the RHEL reports:

  crash> log | grep -e BUG -e RIP -e Call.Trace -e move_freepages_block -e rmqueue -e freelist -A1
  kernel BUG at mm/page_alloc.c:1389!
  invalid opcode: 0000 [#1] SMP
  --
  RIP: 0010:[<ffffffff8118833e>]  [<ffffffff8118833e>] move_freepages+0x15e/0x160
  RSP: 0018:ffff88054d727688  EFLAGS: 00010087
  --
  Call Trace:
   [<ffffffff811883b3>] move_freepages_block+0x73/0x80
   [<ffffffff81189e63>] __rmqueue+0x263/0x460
   [<ffffffff8118c781>] get_page_from_freelist+0x7e1/0x9e0
   [<ffffffff8118caf6>] __alloc_pages_nodemask+0x176/0x420
  --
  RIP  [<ffffffff8118833e>] move_freepages+0x15e/0x160
   RSP <ffff88054d727688>

  crash> page_init_bug -v | grep RAM
  <struct resource 0xffff88067fffd2f8>          1000 -        9bfff	System RAM (620.00 KiB)
  <struct resource 0xffff88067fffd3a0>        100000 -     430bffff	System RAM (  1.05 GiB = 1071.75 MiB = 1097472.00 KiB)
  <struct resource 0xffff88067fffd410>      4b0c8000 -     4bf9cfff	System RAM ( 14.83 MiB = 15188.00 KiB)
  <struct resource 0xffff88067fffd480>      4bfac000 -     646b1fff	System RAM (391.02 MiB = 400408.00 KiB)
  <struct resource 0xffff88067fffd560>      7b788000 -     7b7fffff	System RAM (480.00 KiB)
  <struct resource 0xffff88067fffd640>     100000000 -    67fffffff	System RAM ( 22.00 GiB)

  crash> page_init_bug | head -6
  <struct resource 0xffff88067fffd560>      7b788000 -     7b7fffff	System RAM (480.00 KiB)
  <struct page 0xffffea0001ede200>   1fffff00000000  0 <struct pglist_data 0xffff88047ffd9000> 1 <struct zone 0xffff88047ffd9800> DMA32          4096    1048575
  <struct page 0xffffea0001ede200> 505736 505344 <struct page 0xffffea0001ed8000> 505855 <struct page 0xffffea0001edffc0>
  <struct page 0xffffea0001ed8000>                0  0 <struct pglist_data 0xffff88047ffd9000> 0 <struct zone 0xffff88047ffd9000> DMA               1       4095
  <struct page 0xffffea0001edffc0>   1fffff00000400  0 <struct pglist_data 0xffff88047ffd9000> 1 <struct zone 0xffff88047ffd9800> DMA32          4096    1048575
  BUG, zones differ!

Note that this range follows two not populated sections
68000000-77ffffff in this zone.  7b788000-7b7fffff is the first one
after a gap.  This makes memmap_init_zone() skip all the pfns up to the
beginning of this range.  But this range is not pageblock (2M) aligned.
In fact no range has to be.

  crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b787000 7b788000
        PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
  ffffea0001e00000  78000000                0        0  0 0
  ffffea0001ed7fc0  7b5ff000                0        0  0 0
  ffffea0001ed8000  7b600000                0        0  0 0	<<<<
  ffffea0001ede1c0  7b787000                0        0  0 0
  ffffea0001ede200  7b788000                0        0  1 1fffff00000000

Top part of page flags should contain nodeid and zonenr, which is not
the case for page ffffea0001ed8000 here (<<<<).

  crash> log | grep -o fffea0001ed[^\ ]* | sort -u
  fffea0001ed8000
  fffea0001eded20
  fffea0001edffc0

  crash> bt -r | grep -o fffea0001ed[^\ ]* | sort -u
  fffea0001ed8000
  fffea0001eded00
  fffea0001eded20
  fffea0001edffc0

Initialization of the whole beginning of the section is skipped up to
the start of the range due to the commit b92df1de5d.  Now any code
calling move_freepages_block() (like reusing the page from a freelist as
in this example) with a page from the beginning of the range will get
the page rounded down to start_page ffffea0001ed8000 and passed to
move_freepages() which crashes on assertion getting wrong zonenr.

  >         VM_BUG_ON(page_zone(start_page) != page_zone(end_page));

Note, page_zone() derives the zone from page flags here.

From similar machine before commit b92df1de5d:

  crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b7fe000 7b7ff000
        PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
  fffff73941e00000  78000000                0        0  1 1fffff00000000
  fffff73941ed7fc0  7b5ff000                0        0  1 1fffff00000000
  fffff73941ed8000  7b600000                0        0  1 1fffff00000000
  fffff73941edff80  7b7fe000                0        0  1 1fffff00000000
  fffff73941edffc0  7b7ff000 ffff8e67e04d3ae0     ad84  1 1fffff00020068 uptodate,lru,active,mappedtodisk

All the pages since the beginning of the section are initialized.
move_freepages()' not gonna blow up.

The same machine with this fix applied:

  crash> kmem -p 77fff000 78000000 7b5ff000 7b600000 7b7fe000 7b7ff000
        PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
  ffffea0001e00000  78000000                0        0  0 0
  ffffea0001e00000  7b5ff000                0        0  0 0
  ffffea0001ed8000  7b600000                0        0  1 1fffff00000000
  ffffea0001edff80  7b7fe000                0        0  1 1fffff00000000
  ffffea0001edffc0  7b7ff000 ffff88017fb13720        8  2 1fffff00020068 uptodate,lru,active,mappedtodisk

At least the bare minimum of pages is initialized preventing the crash
as well.

Customers started to report this as soon as 7.4 (where b92df1de5d was
merged in RHEL) was released.  I remember reports from
September/October-ish times.  It's not easily reproduced and happens on
a handful of machines only.  I guess that's why.  But that does not make
it less serious, I think.

Though there actually is a report here:
  https://bugzilla.kernel.org/show_bug.cgi?id=196443

And there are reports for Fedora from July:
  https://bugzilla.redhat.com/show_bug.cgi?id=1473242
and CentOS:
  https://bugs.centos.org/view.php?id=13964
and we internally track several dozens reports for RHEL bug
  https://bugzilla.redhat.com/show_bug.cgi?id=1525121

Link: http://lkml.kernel.org/r/0485727b2e82da7efbce5f6ba42524b429d0391a.1520011945.git.neelx@redhat.com
Fixes: b92df1de5d ("mm: page_alloc: skip over regions of invalid pfns where possible")
Signed-off-by: Daniel Vacek <neelx@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-09 16:40:01 -08:00
Daniel Vacek
379b03b7fa mm/memblock.c: hardcode the end_pfn being -1
This is just a cleanup.  It aids handling the special end case in the
next commit.

[akpm@linux-foundation.org: make it work against current -linus, not against -mm]
[akpm@linux-foundation.org: make it work against current -linus, not against -mm some more]
Link: http://lkml.kernel.org/r/1ca478d4269125a99bcfb1ca04d7b88ac1aee924.1520011944.git.neelx@redhat.com
Signed-off-by: Daniel Vacek <neelx@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-09 16:40:01 -08:00
Andrea Arcangeli
96312e6128 mm/gup.c: teach get_user_pages_unlocked to handle FOLL_NOWAIT
KVM is hanging during postcopy live migration with userfaultfd because
get_user_pages_unlocked is not capable to handle FOLL_NOWAIT.

Earlier FOLL_NOWAIT was only ever passed to get_user_pages.

Specifically faultin_page (the callee of get_user_pages_unlocked caller)
doesn't know that if FAULT_FLAG_RETRY_NOWAIT was set in the page fault
flags, when VM_FAULT_RETRY is returned, the mmap_sem wasn't actually
released (even if nonblocking is not NULL).  So it sets *nonblocking to
zero and the caller won't release the mmap_sem thinking it was already
released, but it wasn't because of FOLL_NOWAIT.

Link: http://lkml.kernel.org/r/20180302174343.5421-2-aarcange@redhat.com
Fixes: ce53053ce3 ("kvm: switch get_user_page_nowait() to get_user_pages_unlocked()")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Tested-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-09 16:40:01 -08:00
Michal Hocko
4704dea36d hugetlb: fix surplus pages accounting
Dan Rue has noticed that libhugetlbfs test suite fails counter test:

  # mount_point="/mnt/hugetlb/"
  # echo 200 > /proc/sys/vm/nr_hugepages
  # mkdir -p "${mount_point}"
  # mount -t hugetlbfs hugetlbfs "${mount_point}"
  # export LD_LIBRARY_PATH=/root/libhugetlbfs/libhugetlbfs-2.20/obj64
  # /root/libhugetlbfs/libhugetlbfs-2.20/tests/obj64/counters
  Starting testcase "/root/libhugetlbfs/libhugetlbfs-2.20/tests/obj64/counters", pid 3319
  Base pool size: 0
  Clean...
  FAIL    Line 326: Bad HugePages_Total: expected 0, actual 1

The bug was bisected to 0c397daea1 ("mm, hugetlb: further simplify
hugetlb allocation API").

The reason is that alloc_surplus_huge_page() misaccounts per node
surplus pages.  We should increase surplus_huge_pages_node rather than
nr_huge_pages_node which is already handled by alloc_fresh_huge_page.

Link: http://lkml.kernel.org/r/20180221191439.GM2231@dhcp22.suse.cz
Fixes: 0c397daea1 ("mm, hugetlb: further simplify hugetlb allocation API")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dan Rue <dan.rue@linaro.org>
Tested-by: Dan Rue <dan.rue@linaro.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-09 16:40:01 -08:00
Juergen Gross
895f7b8e90 mm: don't defer struct page initialization for Xen pv guests
Commit f7f99100d8 ("mm: stop zeroing memory during allocation in
vmemmap") broke Xen pv domains in some configurations, as the "Pinned"
information in struct page of early page tables could get lost.

This will lead to the kernel trying to write directly into the page
tables instead of asking the hypervisor to do so.  The result is a crash
like the following:

  BUG: unable to handle kernel paging request at ffff8801ead19008
  IP: xen_set_pud+0x4e/0xd0
  PGD 1c0a067 P4D 1c0a067 PUD 23a0067 PMD 1e9de0067 PTE 80100001ead19065
  Oops: 0003 [#1] PREEMPT SMP
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.14.0-default+ #271
  Hardware name: Dell Inc. Latitude E6440/0159N7, BIOS A07 06/26/2014
  task: ffffffff81c10480 task.stack: ffffffff81c00000
  RIP: e030:xen_set_pud+0x4e/0xd0
  Call Trace:
   __pmd_alloc+0x128/0x140
   ioremap_page_range+0x3f4/0x410
   __ioremap_caller+0x1c3/0x2e0
   acpi_os_map_iomem+0x175/0x1b0
   acpi_tb_acquire_table+0x39/0x66
   acpi_tb_validate_table+0x44/0x7c
   acpi_tb_verify_temp_table+0x45/0x304
   acpi_reallocate_root_table+0x12d/0x141
   acpi_early_init+0x4d/0x10a
   start_kernel+0x3eb/0x4a1
   xen_start_kernel+0x528/0x532
  Code: 48 01 e8 48 0f 42 15 a2 fd be 00 48 01 d0 48 ba 00 00 00 00 00 ea ff ff 48 c1 e8 0c 48 c1 e0 06 48 01 d0 48 8b 00 f6 c4 02 75 5d <4c> 89 65 00 5b 5d 41 5c c3 65 8b 05 52 9f fe 7e 89 c0 48 0f a3
  RIP: xen_set_pud+0x4e/0xd0 RSP: ffffffff81c03cd8
  CR2: ffff8801ead19008
  ---[ end trace 38eca2e56f1b642e ]---

Avoid this problem by not deferring struct page initialization when
running as Xen pv guest.

Pavel said:

: This is unique for Xen, so this particular issue won't effect other
: configurations.  I am going to investigate if there is a way to
: re-enable deferred page initialization on xen guests.

[akpm@linux-foundation.org: explicitly include xen.h]
Link: http://lkml.kernel.org/r/20180216154101.22865-1-jgross@suse.com
Fixes: f7f99100d8 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: <stable@vger.kernel.org>	[4.15.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:43 -08:00
Michal Hocko
698d0831ba vmalloc: fix __GFP_HIGHMEM usage for vmalloc_32 on 32b systems
Kai Heng Feng has noticed that BUG_ON(PageHighMem(pg)) triggers in
drivers/media/common/saa7146/saa7146_core.c since 19809c2da2 ("mm,
vmalloc: use __GFP_HIGHMEM implicitly").

saa7146_vmalloc_build_pgtable uses vmalloc_32 and it is reasonable to
expect that the resulting page is not in highmem.  The above commit
aimed to add __GFP_HIGHMEM only for those requests which do not specify
any zone modifier gfp flag.  vmalloc_32 relies on GFP_VMALLOC32 which
should do the right thing.  Except it has been missed that GFP_VMALLOC32
is an alias for GFP_KERNEL on 32b architectures.  Thanks to Matthew to
notice this.

Fix the problem by unconditionally setting GFP_DMA32 in GFP_VMALLOC32
for !64b arches (as a bailout).  This should do the right thing and use
ZONE_NORMAL which should be always below 4G on 32b systems.

Debugged by Matthew Wilcox.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20180212095019.GX21609@dhcp22.suse.cz
Fixes: 19809c2da2 ("mm, vmalloc: use __GFP_HIGHMEM implicitly”)
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Kai Heng Feng <kai.heng.feng@canonical.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:43 -08:00
Mike Rapoport
cb6f0f3480 mm/swap.c: make functions and their kernel-doc agree (again)
There was a conflict between the commit e02a9f048e ("mm/swap.c: make
functions and their kernel-doc agree") and the commit f144c390f9 ("mm:
docs: fix parameter names mismatch") that both tried to fix mismatch
betweeen pagevec_lookup_entries() parameter names and their description.

Since nr_entries is a better name for the parameter, fix the description
again.

Link: http://lkml.kernel.org/r/1518116946-20947-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:43 -08:00
Mike Rapoport
14fec9eba4 mm/zpool.c: zpool_evictable: fix mismatch in parameter name and kernel-doc
[akpm@linux-foundation.org: add colon, per Randy]
Link: http://lkml.kernel.org/r/1518116984-21141-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:43 -08:00
Huang Ying
7ba716698c mm, swap, frontswap: fix THP swap if frontswap enabled
It was reported by Sergey Senozhatsky that if THP (Transparent Huge
Page) and frontswap (via zswap) are both enabled, when memory goes low
so that swap is triggered, segfault and memory corruption will occur in
random user space applications as follow,

kernel: urxvt[338]: segfault at 20 ip 00007fc08889ae0d sp 00007ffc73a7fc40 error 6 in libc-2.26.so[7fc08881a000+1ae000]
 #0  0x00007fc08889ae0d _int_malloc (libc.so.6)
 #1  0x00007fc08889c2f3 malloc (libc.so.6)
 #2  0x0000560e6004bff7 _Z14rxvt_wcstoutf8PKwi (urxvt)
 #3  0x0000560e6005e75c n/a (urxvt)
 #4  0x0000560e6007d9f1 _ZN16rxvt_perl_interp6invokeEP9rxvt_term9hook_typez (urxvt)
 #5  0x0000560e6003d988 _ZN9rxvt_term9cmd_parseEv (urxvt)
 #6  0x0000560e60042804 _ZN9rxvt_term6pty_cbERN2ev2ioEi (urxvt)
 #7  0x0000560e6005c10f _Z17ev_invoke_pendingv (urxvt)
 #8  0x0000560e6005cb55 ev_run (urxvt)
 #9  0x0000560e6003b9b9 main (urxvt)
 #10 0x00007fc08883af4a __libc_start_main (libc.so.6)
 #11 0x0000560e6003f9da _start (urxvt)

After bisection, it was found the first bad commit is bd4c82c22c ("mm,
THP, swap: delay splitting THP after swapped out").

The root cause is as follows:

When the pages are written to swap device during swapping out in
swap_writepage(), zswap (fontswap) is tried to compress the pages to
improve performance.  But zswap (frontswap) will treat THP as a normal
page, so only the head page is saved.  After swapping in, tail pages
will not be restored to their original contents, causing memory
corruption in the applications.

This is fixed by refusing to save page in the frontswap store functions
if the page is a THP.  So that the THP will be swapped out to swap
device.

Another choice is to split THP if frontswap is enabled.  But it is found
that the frontswap enabling isn't flexible.  For example, if
CONFIG_ZSWAP=y (cannot be module), frontswap will be enabled even if
zswap itself isn't enabled.

Frontswap has multiple backends, to make it easy for one backend to
enable THP support, the THP checking is put in backend frontswap store
functions instead of the general interfaces.

Link: http://lkml.kernel.org/r/20180209084947.22749-1-ying.huang@intel.com
Fixes: bd4c82c22c ("mm, THP, swap: delay splitting THP after swapped out")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>	[put THP checking in backend]
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Shaohua Li <shli@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: <stable@vger.kernel.org>	[4.14]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:43 -08:00
Shakeel Butt
9c4e6b1a70 mm, mlock, vmscan: no more skipping pagevecs
When a thread mlocks an address space backed either by file pages which
are currently not present in memory or swapped out anon pages (not in
swapcache), a new page is allocated and added to the local pagevec
(lru_add_pvec), I/O is triggered and the thread then sleeps on the page.
On I/O completion, the thread can wake on a different CPU, the mlock
syscall will then sets the PageMlocked() bit of the page but will not be
able to put that page in unevictable LRU as the page is on the pagevec
of a different CPU.  Even on drain, that page will go to evictable LRU
because the PageMlocked() bit is not checked on pagevec drain.

The page will eventually go to right LRU on reclaim but the LRU stats
will remain skewed for a long time.

This patch puts all the pages, even unevictable, to the pagevecs and on
the drain, the pages will be added on their LRUs correctly by checking
their evictability.  This resolves the mlocked pages on pagevec of other
CPUs issue because when those pagevecs will be drained, the mlocked file
pages will go to unevictable LRU.  Also this makes the race with munlock
easier to resolve because the pagevec drains happen in LRU lock.

However there is still one place which makes a page evictable and does
PageLRU check on that page without LRU lock and needs special attention.
TestClearPageMlocked() and isolate_lru_page() in clear_page_mlock().

	#0: __pagevec_lru_add_fn	#1: clear_page_mlock

	SetPageLRU()			if (!TestClearPageMlocked())
					  return
	smp_mb() // <--required
					// inside does PageLRU
	if (!PageMlocked())		if (isolate_lru_page())
	  move to evictable LRU		  putback_lru_page()
	else
	  move to unevictable LRU

In '#1', TestClearPageMlocked() provides full memory barrier semantics
and thus the PageLRU check (inside isolate_lru_page) can not be
reordered before it.

In '#0', without explicit memory barrier, the PageMlocked() check can be
reordered before SetPageLRU().  If that happens, '#0' can put a page in
unevictable LRU and '#1' might have just cleared the Mlocked bit of that
page but fails to isolate as PageLRU fails as '#0' still hasn't set
PageLRU bit of that page.  That page will be stranded on the unevictable
LRU.

There is one (good) side effect though.  Without this patch, the pages
allocated for System V shared memory segment are added to evictable LRUs
even after shmctl(SHM_LOCK) on that segment.  This patch will correctly
put such pages to unevictable LRU.

Link: http://lkml.kernel.org/r/20171121211241.18877-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:42 -08:00
Arnd Bergmann
af27d9403f mm: hide a #warning for COMPILE_TEST
We get a warning about some slow configurations in randconfig kernels:

  mm/memory.c:83:2: error: #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. [-Werror=cpp]

The warning is reasonable by itself, but gets in the way of randconfig
build testing, so I'm hiding it whenever CONFIG_COMPILE_TEST is set.

The warning was added in 2013 in commit 75980e97da ("mm: fold
page->_last_nid into page->flags where possible").

Cc: stable@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-16 09:41:36 -08:00
Linus Torvalds
e525de3ab0 Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
 "Misc fixes all across the map:

   - /proc/kcore vsyscall related fixes
   - LTO fix
   - build warning fix
   - CPU hotplug fix
   - Kconfig NR_CPUS cleanups
   - cpu_has() cleanups/robustification
   - .gitignore fix
   - memory-failure unmapping fix
   - UV platform fix"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pages
  x86/error_inject: Make just_return_func() globally visible
  x86/platform/UV: Fix GAM Range Table entries less than 1GB
  x86/build: Add arch/x86/tools/insn_decoder_test to .gitignore
  x86/smpboot: Fix uncore_pci_remove() indexing bug when hot-removing a physical CPU
  x86/mm/kcore: Add vsyscall page to /proc/kcore conditionally
  vfs/proc/kcore, x86/mm/kcore: Fix SMAP fault when dumping vsyscall user page
  x86/Kconfig: Further simplify the NR_CPUS config
  x86/Kconfig: Simplify NR_CPUS config
  x86/MCE: Fix build warning introduced by "x86: do not use print_symbol()"
  x86/cpufeature: Update _static_cpu_has() to use all named variables
  x86/cpufeature: Reindent _static_cpu_has()
2018-02-14 17:31:51 -08:00
Tony Luck
fd0e786d9d x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pages
In the following commit:

  ce0fa3e56a ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages")

... we added code to memory_failure() to unmap the page from the
kernel 1:1 virtual address space to avoid speculative access to the
page logging additional errors.

But memory_failure() may not always succeed in taking the page offline,
especially if the page belongs to the kernel.  This can happen if
there are too many corrected errors on a page and either mcelog(8)
or drivers/ras/cec.c asks to take a page offline.

Since we remove the 1:1 mapping early in memory_failure(), we can
end up with the page unmapped, but still in use. On the next access
the kernel crashes :-(

There are also various debug paths that call memory_failure() to simulate
occurrence of an error. Since there is no actual error in memory, we
don't need to map out the page for those cases.

Revert most of the previous attempt and keep the solution local to
arch/x86/kernel/cpu/mcheck/mce.c. Unmap the page only when:

	1) there is a real error
	2) memory_failure() succeeds.

All of this only applies to 64-bit systems. 32-bit kernel doesn't map
all of memory into kernel space. It isn't worth adding the code to unmap
the piece that is mapped because nobody would run a 32-bit kernel on a
machine that has recoverable machine checks.

Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert (Persistent Memory) <elliott@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org #v4.14
Fixes: ce0fa3e56a ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13 16:25:06 +01:00
Linus Torvalds
a9a08845e9 vfs: do bulk POLL* -> EPOLL* replacement
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:

    for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
        L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
        for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
    done

with de-mangling cleanups yet to come.

NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do.  But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.

The next patch from Al will sort out the final differences, and we
should be all done.

Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-11 14:34:03 -08:00
Linus Torvalds
a2e5790d84 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:

 - kasan updates

 - procfs

 - lib/bitmap updates

 - other lib/ updates

 - checkpatch tweaks

 - rapidio

 - ubsan

 - pipe fixes and cleanups

 - lots of other misc bits

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits)
  Documentation/sysctl/user.txt: fix typo
  MAINTAINERS: update ARM/QUALCOMM SUPPORT patterns
  MAINTAINERS: update various PALM patterns
  MAINTAINERS: update "ARM/OXNAS platform support" patterns
  MAINTAINERS: update Cortina/Gemini patterns
  MAINTAINERS: remove ARM/CLKDEV SUPPORT file pattern
  MAINTAINERS: remove ANDROID ION pattern
  mm: docs: add blank lines to silence sphinx "Unexpected indentation" errors
  mm: docs: fix parameter names mismatch
  mm: docs: fixup punctuation
  pipe: read buffer limits atomically
  pipe: simplify round_pipe_size()
  pipe: reject F_SETPIPE_SZ with size over UINT_MAX
  pipe: fix off-by-one error when checking buffer limits
  pipe: actually allow root to exceed the pipe buffer limits
  pipe, sysctl: remove pipe_proc_fn()
  pipe, sysctl: drop 'min' parameter from pipe-max-size converter
  kasan: rework Kconfig settings
  crash_dump: is_kdump_kernel can be boolean
  kernel/mutex: mutex_is_locked can be boolean
  ...
2018-02-06 22:15:42 -08:00
Mike Rapoport
a5d09bed7f mm: docs: add blank lines to silence sphinx "Unexpected indentation" errors
Link: http://lkml.kernel.org/r/1516700871-22279-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:48 -08:00
Mike Rapoport
f144c390f9 mm: docs: fix parameter names mismatch
There are several places where parameter descriptions do no match the
actual code.  Fix it.

Link: http://lkml.kernel.org/r/1516700871-22279-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:48 -08:00
Mike Rapoport
b7701a5f2e mm: docs: fixup punctuation
so that kernel-doc will properly recognize the parameter and function
descriptions.

Link: http://lkml.kernel.org/r/1516700871-22279-2-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:48 -08:00
Yaowei Bai
937f0c2675 mm/memblock: memblock_is_map/region_memory can be boolean
Make memblock_is_map/region_memory return bool due to these two
functions only using either true or false as its return value.

No functional change.

Link: http://lkml.kernel.org/r/1513266622-15860-2-git-send-email-baiyaowei@cmss.chinamobile.com
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Sergey Senozhatsky
e7c98df598 mm: remove unneeded kallsyms include
The file was converted from print_symbol() to %pSR a while ago in commit
071361d347 ("mm: Convert print_symbol to %pSR").  kallsyms does not
seem to be needed anymore.

Link: http://lkml.kernel.org/r/20171208025616.16267-3-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Pravin Shedge
4fd39c23fe mm/userfaultfd.c: remove duplicate include
These duplicate includes have been found with scripts/checkincludes.pl but
they have been removed manually to avoid removing false positives.

Link: http://lkml.kernel.org/r/1512580957-6071-1-git-send-email-pravin.shedge4linux@gmail.com
Signed-off-by: Pravin Shedge <pravin.shedge4linux@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Mike Rapoport
2ee0826085 pids: introduce find_get_task_by_vpid() helper
There are several functions that do find_task_by_vpid() followed by
get_task_struct().  We can use a helper function instead.

Link: http://lkml.kernel.org/r/1509602027-11337-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:46 -08:00
Andrey Konovalov
5f21f3a8f4 kasan: fix prototype author email address
Use the new one.

Link: http://lkml.kernel.org/r/de3b7ffc30a55178913a7d3865216aa7accf6c40.1515775666.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:43 -08:00
Dmitry Vyukov
b1d5728939 kasan: detect invalid frees
Detect frees of pointers into middle of heap objects.

Link: http://lkml.kernel.org/r/cb569193190356beb018a03bb8d6fbae67e7adbc.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:43 -08:00
Dmitry Vyukov
1db0e0f9dd kasan: unify code between kasan_slab_free() and kasan_poison_kfree()
Both of these functions deal with freeing of slab objects.
However, kasan_poison_kfree() mishandles SLAB_TYPESAFE_BY_RCU
(must also not poison such objects) and does not detect double-frees.

Unify code between these functions.

This solves both of the problems and allows to add more common code
(e.g. detection of invalid frees).

Link: http://lkml.kernel.org/r/385493d863acf60408be219a021c3c8e27daa96f.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:43 -08:00
Dmitry Vyukov
6860f6340c kasan: detect invalid frees for large mempool objects
Detect frees of pointers into middle of mempool objects.

I did a one-off test, but it turned out to be very tricky, so I reverted
it.  First, mempool does not call kasan_poison_kfree() unless allocation
function fails.  I stubbed an allocation function to fail on second and
subsequent allocations.  But then mempool stopped to call
kasan_poison_kfree() at all, because it does it only when allocation
function is mempool_kmalloc().  We could support this special failing
test allocation function in mempool, but it also can't live with kasan
tests, because these are in a module.

Link: http://lkml.kernel.org/r/bf7a7d035d7a5ed62d2dd0e3d2e8a4fcdf456aa7.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:43 -08:00
Dmitry Vyukov
ee3ce779b5 kasan: don't use __builtin_return_address(1)
__builtin_return_address(1) is unreliable without frame pointers.
With defconfig on kmalloc_pagealloc_invalid_free test I am getting:

BUG: KASAN: double-free or invalid-free in           (null)

Pass caller PC from callers explicitly.

Link: http://lkml.kernel.org/r/9b01bc2d237a4df74ff8472a3bf6b7635908de01.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:43 -08:00
Dmitry Vyukov
47adccce3e kasan: detect invalid frees for large objects
Patch series "kasan: detect invalid frees".

KASAN detects double-frees, but does not detect invalid-frees (when a
pointer into a middle of heap object is passed to free).  We recently had
a very unpleasant case in crypto code which freed an inner object inside
of a heap allocation.  This left unnoticed during free, but totally
corrupted heap and later lead to a bunch of random crashes all over kernel
code.

Detect invalid frees.

This patch (of 5):

Detect frees of pointers into middle of large heap objects.

I dropped const from kasan_kfree_large() because it starts propagating
through a bunch of functions in kasan_report.c, slab/slub nearest_obj(),
all of their local variables, fixup_red_left(), etc.

Link: http://lkml.kernel.org/r/1b45b4fe1d20fc0de1329aab674c1dd973fee723.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:42 -08:00
Alexander Potapenko
d321599cf6 kasan: add functions for unpoisoning stack variables
As a code-size optimization, LLVM builds since r279383 may bulk-manipulate
the shadow region when (un)poisoning large memory blocks.  This requires
new callbacks that simply do an uninstrumented memset().

This fixes linking the Clang-built kernel when using KASAN.

[arnd@arndb.de: add declarations for internal functions]
  Link: http://lkml.kernel.org/r/20180105094112.2690475-1-arnd@arndb.de
[fengguang.wu@intel.com: __asan_set_shadow_00 can be static]
  Link: http://lkml.kernel.org/r/20171223125943.GA74341@lkp-ib03
[ghackmann@google.com: fix memset() parameters, and tweak commit message to describe new callbacks]
Link: http://lkml.kernel.org/r/20171204191735.132544-6-paullawrence@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Paul Lawrence <paullawrence@google.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:42 -08:00
Paul Lawrence
342061ee4e kasan: support alloca() poisoning
clang's AddressSanitizer implementation adds redzones on either side of
alloca()ed buffers.  These redzones are 32-byte aligned and at least 32
bytes long.

__asan_alloca_poison() is passed the size and address of the allocated
buffer, *excluding* the redzones on either side.  The left redzone will
always be to the immediate left of this buffer; but AddressSanitizer may
need to add padding between the end of the buffer and the right redzone.
If there are any 8-byte chunks inside this padding, we should poison
those too.

__asan_allocas_unpoison() is just passed the top and bottom of the dynamic
stack area, so unpoisoning is simpler.

Link: http://lkml.kernel.org/r/20171204191735.132544-4-paullawrence@google.com
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Paul Lawrence <paullawrence@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:42 -08:00
Linus Torvalds
3ff1b28caa libnvdimm for 4.16
* Require struct page by default for filesystem DAX to remove a number of
   surprising failure cases.  This includes failures with direct I/O, gdb and
   fork(2).
 
 * Add support for the new Platform Capabilities Structure added to the NFIT in
   ACPI 6.2a.  This new table tells us whether the platform supports flushing
   of CPU and memory controller caches on unexpected power loss events.
 
 * Revamp vmem_altmap and dev_pagemap handling to clean up code and better
   support future future PCI P2P uses.
 
 * Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has become
   out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL spec, and
   instead rely on the generic ND_CMD_CALL approach used by the two other IOCTL
   families, NVDIMM_FAMILY_{HPE,MSFT}.
 
 * Enhance nfit_test so we can test some of the new things added in version 1.6
   of the DSM specification.  This includes testing firmware download and
   simulating the Last Shutdown State (LSS) status.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJaeOg0AAoJEJ/BjXdf9fLBAFoQAI/IgcgJ2h9lfEpgjBRTC44t
 2p8dxwT1Ofw3Y1aR/tI8nYRXjRtAGuP4UIeRVnb1CL/N7PagJyoMGU+6hmzg+ptY
 c7cEDvw6nZOhrFwXx/xn7R53sYG8zH+UE6+jTR/PP/G4mQJfFCg4iF9R72Y7z0n7
 aurf82Kz137NPUy6dNr4V9bmPMJWAaOci9WOj5SKddR5ZSNbjoxylTwQRvre5y4r
 7HQTScEkirABOdSf1JoXTSUXCH/RC9UFFXR03ScHstGb1HjCj3KdcicVc50Q++Ub
 qsEudhE6i44PEW1Hh4Qkg6hjHMEa8qHP+ShBuRuVaUmlghYTQn66niJAYLZilwdz
 EVjE7vR+toHA5g3YCalEmYVutUEhIDkh/xfpd7vM6ZorUGJy95a2elEJs2fHBffC
 gEhnCip7FROPcK5RDNUM8hBgnG/q5wwWPQMKY+6rKDZQx3mXssCrKp2Vlx7kBwMG
 rpblkEpYjPonbLEHxsSU8yTg9Uq55ciIWgnOToffcjZvjbihi8WUVlHcwHUMPf/o
 DWElg+4qmG0Sdd4S2NeAGwTl1Ewrf2RrtUGMjHtH4OUFs1wo6ZmfrxFzzMfoZ1Od
 ko/s65v4uwtTzECh2o+XQaNsReR5YETXxmA40N/Jpo7/7twABIoZ/ASvj/3ZBYj+
 sie+u2rTod8/gQWSfHpJ
 =MIMX
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Ross Zwisler:

 - Require struct page by default for filesystem DAX to remove a number
   of surprising failure cases. This includes failures with direct I/O,
   gdb and fork(2).

 - Add support for the new Platform Capabilities Structure added to the
   NFIT in ACPI 6.2a. This new table tells us whether the platform
   supports flushing of CPU and memory controller caches on unexpected
   power loss events.

 - Revamp vmem_altmap and dev_pagemap handling to clean up code and
   better support future future PCI P2P uses.

 - Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has
   become out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL
   spec, and instead rely on the generic ND_CMD_CALL approach used by
   the two other IOCTL families, NVDIMM_FAMILY_{HPE,MSFT}.

 - Enhance nfit_test so we can test some of the new things added in
   version 1.6 of the DSM specification. This includes testing firmware
   download and simulating the Last Shutdown State (LSS) status.

* tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (37 commits)
  libnvdimm, namespace: remove redundant initialization of 'nd_mapping'
  acpi, nfit: fix register dimm error handling
  libnvdimm, namespace: make min namespace size 4K
  tools/testing/nvdimm: force nfit_test to depend on instrumented modules
  libnvdimm/nfit_test: adding support for unit testing enable LSS status
  libnvdimm/nfit_test: add firmware download emulation
  nfit-test: Add platform cap support from ACPI 6.2a to test
  libnvdimm: expose platform persistence attribute for nd_region
  acpi: nfit: add persistent memory control flag for nd_region
  acpi: nfit: Add support for detect platform CPU cache flush on power loss
  device-dax: Fix trailing semicolon
  libnvdimm, btt: fix uninitialized err_lock
  dax: require 'struct page' by default for filesystem dax
  ext2: auto disable dax instead of failing mount
  ext4: auto disable dax instead of failing mount
  mm, dax: introduce pfn_t_special()
  mm: Fix devm_memremap_pages() collision handling
  mm: Fix memory size alignment in devm_memremap_pages_release()
  memremap: merge find_dev_pagemap into get_dev_pagemap
  memremap: change devm_memremap_pages interface to use struct dev_pagemap
  ...
2018-02-06 10:41:33 -08:00
Linus Torvalds
617aebe6a9 Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
 available to be copied to/from userspace in the face of bugs. To further
 restrict what memory is available for copying, this creates a way to
 whitelist specific areas of a given slab cache object for copying to/from
 userspace, allowing much finer granularity of access control. Slab caches
 that are never exposed to userspace can declare no whitelist for their
 objects, thereby keeping them unavailable to userspace via dynamic copy
 operations. (Note, an implicit form of whitelisting is the use of constant
 sizes in usercopy operations and get_user()/put_user(); these bypass all
 hardened usercopy checks since these sizes cannot change at runtime.)
 
 This new check is WARN-by-default, so any mistakes can be found over the
 next several releases without breaking anyone's system.
 
 The series has roughly the following sections:
 - remove %p and improve reporting with offset
 - prepare infrastructure and whitelist kmalloc
 - update VFS subsystem with whitelists
 - update SCSI subsystem with whitelists
 - update network subsystem with whitelists
 - update process memory with whitelists
 - update per-architecture thread_struct with whitelists
 - update KVM with whitelists and fix ioctl bug
 - mark all other allocations as not whitelisted
 - update lkdtm for more sensible test overage
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJabvleAAoJEIly9N/cbcAmO1kQAJnjVPutnLSbnUteZxtsv7W4
 43Cggvokfxr6l08Yh3hUowNxZVKjhF9uwMVgRRg9Nl5WdYCN+vCQbHz+ZdzGJXKq
 cGqdKWgexMKX+aBdNDrK7BphUeD46sH7JWR+a/lDV/BgPxBCm9i5ZZCgXbPP89AZ
 NpLBji7gz49wMsnm/x135xtNlZ3dG0oKETzi7MiR+NtKtUGvoIszSKy5JdPZ4m8q
 9fnXmHqmwM6uQFuzDJPt1o+D1fusTuYnjI7EgyrJRRhQ+BB3qEFZApXnKNDRS9Dm
 uB7jtcwefJCjlZVCf2+PWTOEifH2WFZXLPFlC8f44jK6iRW2Nc+wVRisJ3vSNBG1
 gaRUe/FSge68eyfQj5OFiwM/2099MNkKdZ0fSOjEBeubQpiFChjgWgcOXa5Bhlrr
 C4CIhFV2qg/tOuHDAF+Q5S96oZkaTy5qcEEwhBSW15ySDUaRWFSrtboNt6ZVOhug
 d8JJvDCQWoNu1IQozcbv6xW/Rk7miy8c0INZ4q33YUvIZpH862+vgDWfTJ73Zy9H
 jR/8eG6t3kFHKS1vWdKZzOX1bEcnd02CGElFnFYUEewKoV7ZeeLsYX7zodyUAKyi
 Yp5CImsDbWWTsptBg6h9nt2TseXTxYCt2bbmpJcqzsqSCUwOQNQ4/YpuzLeG0ihc
 JgOmUnQNJWCTwUUw5AS1
 =tzmJ
 -----END PGP SIGNATURE-----

Merge tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull hardened usercopy whitelisting from Kees Cook:
 "Currently, hardened usercopy performs dynamic bounds checking on slab
  cache objects. This is good, but still leaves a lot of kernel memory
  available to be copied to/from userspace in the face of bugs.

  To further restrict what memory is available for copying, this creates
  a way to whitelist specific areas of a given slab cache object for
  copying to/from userspace, allowing much finer granularity of access
  control.

  Slab caches that are never exposed to userspace can declare no
  whitelist for their objects, thereby keeping them unavailable to
  userspace via dynamic copy operations. (Note, an implicit form of
  whitelisting is the use of constant sizes in usercopy operations and
  get_user()/put_user(); these bypass all hardened usercopy checks since
  these sizes cannot change at runtime.)

  This new check is WARN-by-default, so any mistakes can be found over
  the next several releases without breaking anyone's system.

  The series has roughly the following sections:
   - remove %p and improve reporting with offset
   - prepare infrastructure and whitelist kmalloc
   - update VFS subsystem with whitelists
   - update SCSI subsystem with whitelists
   - update network subsystem with whitelists
   - update process memory with whitelists
   - update per-architecture thread_struct with whitelists
   - update KVM with whitelists and fix ioctl bug
   - mark all other allocations as not whitelisted
   - update lkdtm for more sensible test overage"

* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
  lkdtm: Update usercopy tests for whitelisting
  usercopy: Restrict non-usercopy caches to size 0
  kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
  kvm: whitelist struct kvm_vcpu_arch
  arm: Implement thread_struct whitelist for hardened usercopy
  arm64: Implement thread_struct whitelist for hardened usercopy
  x86: Implement thread_struct whitelist for hardened usercopy
  fork: Provide usercopy whitelisting for task_struct
  fork: Define usercopy region in thread_stack slab caches
  fork: Define usercopy region in mm_struct slab caches
  net: Restrict unwhitelisted proto caches to size 0
  sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
  sctp: Define usercopy region in SCTP proto slab cache
  caif: Define usercopy region in caif proto slab cache
  ip: Define usercopy region in IP proto slab cache
  net: Define usercopy region in struct proto slab cache
  scsi: Define usercopy region in scsi_sense_cache slab cache
  cifs: Define usercopy region in cifs_request slab cache
  vxfs: Define usercopy region in vxfs_inode slab cache
  ufs: Define usercopy region in ufs_inode_cache slab cache
  ...
2018-02-03 16:25:42 -08:00
Ross Zwisler
ee95f4059a Merge branch 'for-4.16/nfit' into libnvdimm-for-next 2018-02-03 00:26:26 -07:00
Roman Gushchin
edbe69ef2c Revert "defer call to mem_cgroup_sk_alloc()"
This patch effectively reverts commit 9f1c2674b3 ("net: memcontrol:
defer call to mem_cgroup_sk_alloc()").

Moving mem_cgroup_sk_alloc() to the inet_csk_accept() completely breaks
memcg socket memory accounting, as packets received before memcg
pointer initialization are not accounted and are causing refcounting
underflow on socket release.

Actually the free-after-use problem was fixed by
commit c0576e3975 ("net: call cgroup_sk_alloc() earlier in
sk_clone_lock()") for the cgroup pointer.

So, let's revert it and call mem_cgroup_sk_alloc() just before
cgroup_sk_alloc(). This is safe, as we hold a reference to the socket
we're cloning, and it holds a reference to the memcg.

Also, let's drop BUG_ON(mem_cgroup_is_root()) check from
mem_cgroup_sk_alloc(). I see no reasons why bumping the root
memcg counter is a good reason to panic, and there are no realistic
ways to hit it.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-02 19:49:31 -05:00
Randy Dunlap
e02a9f048e mm/swap.c: make functions and their kernel-doc agree
Fix some basic kernel-doc notation in mm/swap.c:

 - for function lru_cache_add_anon(), make its kernel-doc function name
   match its function name and change colon to hyphen following the
   function name

 - for function pagevec_lookup_entries(), change the function parameter
   name from nr_pages to nr_entries since that is more descriptive of
   what the parameter actually is and then it matches the kernel-doc
   comments also

Fix function kernel-doc to match the change in commit 67fd707f46:

 - drop the kernel-doc notation for @nr_pages from
   pagevec_lookup_range() and correct the function description for that
   change

Link: http://lkml.kernel.org/r/3b42ee3e-04a9-a6ca-6be4-f00752a114fe@infradead.org
Fixes: 67fd707f46 ("mm: remove nr_pages argument from pagevec_lookup_{,range}_tag()")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
9bb5a391f9 mm, memory_hotplug: fix memmap initialization
Bharata has noticed that onlining a newly added memory doesn't increase
the total memory, pointing to commit f7f99100d8 ("mm: stop zeroing
memory during allocation in vmemmap") as a culprit.  This commit has
changed the way how the memory for memmaps is initialized and moves it
from the allocation time to the initialization time.  This works
properly for the early memmap init path.

It doesn't work for the memory hotplug though because we need to mark
page as reserved when the sparsemem section is created and later
initialize it completely during onlining.  memmap_init_zone is called in
the early stage of onlining.  With the current code it calls
__init_single_page and as such it clears up the whole stage and
therefore online_pages_range skips those pages.

Fix this by skipping mm_zero_struct_page in __init_single_page for
memory hotplug path.  This is quite uggly but unifying both early init
and memory hotplug init paths is a large project.  Make sure we plug the
regression at least.

Link: http://lkml.kernel.org/r/20180130101141.GW21609@dhcp22.suse.cz
Fixes: f7f99100d8 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
William Kucharski
da391d640c mm: correct comments regarding do_fault_around()
There are multiple comments surrounding do_fault_around that memtion
fault_around_pages() and fault_around_mask(), two routines that do not
exist.  These comments should be reworded to reference
fault_around_bytes, the value which is used to determine how much
do_fault_around() will attempt to read when processing a fault.

These comments should have been updated when fault_around_pages() and
fault_around_mask() were removed in commit aecd6f4426 ("mm: close race
between do_fault_around() and fault_around_bytes_set()").

Fixes: aecd6f4426 ("mm: close race between do_fault_around() and fault_around_bytes_set()")
Link: http://lkml.kernel.org/r/302D0B14-C7E9-44C6-8BED-033F9ACBD030@oracle.com
Signed-off-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Larry Bassel <larry.bassel@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Henry Willard
859d4adc34 mm: numa: do not trap faults on shared data section pages.
Workloads consisting of a large number of processes running the same
program with a very large shared data segment may experience performance
problems when numa balancing attempts to migrate the shared cow pages.
This manifests itself with many processes or tasks in
TASK_UNINTERRUPTIBLE state waiting for the shared pages to be migrated.

The program listed below simulates the conditions with these results
when run with 288 processes on a 144 core/8 socket machine.

Average throughput 	Average throughput     Average throughput
with numa_balancing=0	with numa_balancing=1  with numa_balancing=1
     			without the patch      with the patch
---------------------	---------------------  ---------------------
2118782			2021534		       2107979

Complex production environments show less variability and fewer poorly
performing outliers accompanied with a smaller number of processes
waiting on NUMA page migration with this patch applied.  In some cases,
%iowait drops from 16%-26% to 0.

  // SPDX-License-Identifier: GPL-2.0
  /*
   * Copyright (c) 2017 Oracle and/or its affiliates. All rights reserved.
   */
  #include <sys/time.h>
  #include <stdio.h>
  #include <wait.h>
  #include <sys/mman.h>

  int a[1000000] = {13};

  int  main(int argc, const char **argv)
  {
	int n = 0;
	int i;
	pid_t pid;
	int stat;
	int *count_array;
	int cpu_count = 288;
	long total = 0;

	struct timeval t1, t2 = {(argc > 1 ? atoi(argv[1]) : 10), 0};

	if (argc > 2)
		cpu_count = atoi(argv[2]);

	count_array = mmap(NULL, cpu_count * sizeof(int),
			   (PROT_READ|PROT_WRITE),
			   (MAP_SHARED|MAP_ANONYMOUS), 0, 0);

	if (count_array == MAP_FAILED) {
		perror("mmap:");
		return 0;
	}

	for (i = 0; i < cpu_count; ++i) {
		pid = fork();
		if (pid <= 0)
			break;
		if ((i & 0xf) == 0)
			usleep(2);
	}

	if (pid != 0) {
		if (i == 0) {
			perror("fork:");
			return 0;
		}

		for (;;) {
			pid = wait(&stat);
			if (pid < 0)
				break;
		}

		for (i = 0; i < cpu_count; ++i)
			total += count_array[i];

		printf("Total %ld\n", total);
		munmap(count_array, cpu_count * sizeof(int));
		return 0;
	}

	gettimeofday(&t1, 0);
	timeradd(&t1, &t2, &t1);
	while (timercmp(&t2, &t1, <)) {
		int b = 0;
		int j;

		for (j = 0; j < 1000000; j++)
			b += a[j];
		gettimeofday(&t2, 0);
		n++;
	}
	count_array[i] = n;
	return 0;
  }

This patch changes change_pte_range() to skip shared copy-on-write pages
when called from change_prot_numa().

NOTE: change_prot_numa() is nominally called from task_numa_work() and
queue_pages_test_walk().  task_numa_work() is the auto NUMA balancing
path, and queue_pages_test_walk() is part of explicit NUMA policy
management.  However, queue_pages_test_walk() only calls
change_prot_numa() when MPOL_MF_LAZY is specified and currently that is
not allowed, so change_prot_numa() is only called from auto NUMA
balancing.

In the case of explicit NUMA policy management, shared pages are not
migrated unless MPOL_MF_MOVE_ALL is specified, and MPOL_MF_MOVE_ALL
depends on CAP_SYS_NICE.  Currently, there is no way to pass information
about MPOL_MF_MOVE_ALL to change_pte_range.  This will have to be fixed
if MPOL_MF_LAZY is enabled and MPOL_MF_MOVE_ALL is to be honored in lazy
migration mode.

task_numa_work() skips the read-only VMAs of programs and shared
libraries.

Link: http://lkml.kernel.org/r/1516751617-7369-1-git-send-email-henry.willard@oracle.com
Signed-off-by: Henry Willard <henry.willard@oracle.com>
Reviewed-by: Håkon Bugge <haakon.bugge@oracle.com>
Reviewed-by: Steve Sistare <steven.sistare@oracle.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
389c8178d0 hugetlb, mbind: fall back to default policy if vma is NULL
Dan Carpenter has noticed that mbind migration callback (new_page) can
get a NULL vma pointer and choke on it inside alloc_huge_page_vma which
relies on the VMA to get the hstate.  We used to BUG_ON this case but
the BUG_+ON has been removed recently by "hugetlb, mempolicy: fix the
mbind hugetlb migration".

The proper way to handle this is to get the hstate from the migrated
page and rely on huge_node (resp.  get_vma_policy) do the right thing
with null VMA.  We are currently falling back to the default mempolicy
in that case which is in line what THP path is doing here.

Link: http://lkml.kernel.org/r/20180110104712.GR1732@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
ebd6372358 hugetlb, mempolicy: fix the mbind hugetlb migration
do_mbind migration code relies on alloc_huge_page_noerr for hugetlb
pages.  alloc_huge_page_noerr uses alloc_huge_page which is a highlevel
allocation function which has to take care of reserves, overcommit or
hugetlb cgroup accounting.  None of that is really required for the page
migration because the new page is only temporal and either will replace
the original page or it will be dropped.  This is essentially as for
other migration call paths and there shouldn't be any reason to handle
mbind in a special way.

The current implementation is even suboptimal because the migration
might fail just because the hugetlb cgroup limit is reached, or the
overcommit is saturated.

Fix this by making mbind like other hugetlb migration paths.  Add a new
migration helper alloc_huge_page_vma as a wrapper around
alloc_huge_page_nodemask with additional mempolicy handling.

alloc_huge_page_noerr has no more users and it can go.

Link: http://lkml.kernel.org/r/20180103093213.26329-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
0c397daea1 mm, hugetlb: further simplify hugetlb allocation API
Hugetlb allocator has several layer of allocation functions depending
and the purpose of the allocation.  There are two allocators depending
on whether the page can be allocated from the page allocator or we need
a contiguous allocator.  This is currently opencoded in
alloc_fresh_huge_page which is the only path that might allocate giga
pages which require the later allocator.  Create alloc_fresh_huge_page
which hides this implementation detail and use it in all callers which
hardcoded the buddy allocator path (__hugetlb_alloc_buddy_huge_page).
This shouldn't introduce any funtional change because both migration and
surplus allocators exlude giga pages explicitly.

While we are at it let's do some renaming.  The current scheme is not
consistent and overly painfull to read and understand.  Get rid of
prefix underscores from most functions.  There is no real reason to make
names longer.

* alloc_fresh_huge_page is the new layer to abstract underlying
  allocator
* __hugetlb_alloc_buddy_huge_page becomes shorter and neater
  alloc_buddy_huge_page.
* Former alloc_fresh_huge_page becomes alloc_pool_huge_page because we put
  the new page directly to the pool
* alloc_surplus_huge_page can drop the opencoded prep_new_huge_page code
  as it uses alloc_fresh_huge_page now
* others lose their excessive prefix underscores to make names shorter

[dan.carpenter@oracle.com: fix double unlock bug in alloc_surplus_huge_page()]
  Link: http://lkml.kernel.org/r/20180109200559.g3iz5kvbdrz7yydp@mwanda
Link: http://lkml.kernel.org/r/20180103093213.26329-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
9980d744a0 mm, hugetlb: get rid of surplus page accounting tricks
alloc_surplus_huge_page increases the pool size and the number of
surplus pages opportunistically to prevent from races with the pool size
change.  See commit d1c3fb1f8f ("hugetlb: introduce
nr_overcommit_hugepages sysctl") for more details.

The resulting code is unnecessarily hairy, cause code duplication and
doesn't allow to share the allocation paths.  Moreover pool size changes
tend to be very seldom so optimizing for them is not really reasonable.
Simplify the code and allow to allocate a fresh surplus page as long as
we are under the overcommit limit and then recheck the condition after
the allocation and drop the new page if the situation has changed.  This
should provide a reasonable guarantee that an abrupt allocation requests
will not go way off the limit.

If we consider races with the pool shrinking and enlarging then we
should be reasonably safe as well.  In the first case we are off by one
in the worst case and the second case should work OK because the page is
not yet visible.  We can waste CPU cycles for the allocation but that
should be acceptable for a relatively rare condition.

Link: http://lkml.kernel.org/r/20180103093213.26329-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
ab5ac90aec mm, hugetlb: do not rely on overcommit limit during migration
hugepage migration relies on __alloc_buddy_huge_page to get a new page.
This has 2 main disadvantages.

1) it doesn't allow to migrate any huge page if the pool is used
   completely which is not an exceptional case as the pool is static and
   unused memory is just wasted.

2) it leads to a weird semantic when migration between two numa nodes
   might increase the pool size of the destination NUMA node while the
   page is in use.  The issue is caused by per NUMA node surplus pages
   tracking (see free_huge_page).

Address both issues by changing the way how we allocate and account
pages allocated for migration.  Those should temporal by definition.  So
we mark them that way (we will abuse page flags in the 3rd page) and
update free_huge_page to free such pages to the page allocator.  Page
migration path then just transfers the temporal status from the new page
to the old one which will be freed on the last reference.  The global
surplus count will never change during this path but we still have to be
careful when migrating a per-node suprlus page.  This is now handled in
move_hugetlb_state which is called from the migration path and it copies
the hugetlb specific page state and fixes up the accounting when needed

Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better
reflect its purpose.  The new allocation routine for the migration path
is __alloc_migrate_huge_page.

The user visible effect of this patch is that migrated pages are really
temporal and they travel between NUMA nodes as per the migration
request:

Before migration
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0

After
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0

with the previous implementation, both nodes would have nr_hugepages:1
until the page is freed.

Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
d9cc948f6f mm, hugetlb: integrate giga hugetlb more naturally to the allocation path
Gigantic hugetlb pages were ingrown to the hugetlb code as an alien
specie with a lot of special casing.  The allocation path is not an
exception.  Unnecessarily so to be honest.  It is true that the
underlying allocator is different but that is an implementation detail.

This patch unifies the hugetlb allocation path that a prepares fresh
pool pages.  alloc_fresh_gigantic_page basically copies
alloc_fresh_huge_page logic so we can move everything there.  This will
simplify set_max_huge_pages which doesn't have to care about what kind
of huge page we allocate.

Link: http://lkml.kernel.org/r/20180103093213.26329-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
af0fb9df78 mm, hugetlb: unify core page allocation accounting and initialization
Patch series "mm, hugetlb: allocation API and migration improvements"

Motivation:

this is a follow up for [3] for the allocation API and [4] for the
hugetlb migration.  It wasn't really easy to split those into two
separate patch series as they share some code.

My primary motivation to touch this code is to make the gigantic pages
migration working.  The giga pages allocation code is just too fragile
and hacked into the hugetlb code now.  This series tries to move giga
pages closer to the first class citizen.  We are not there yet but
having 5 patches is quite a lot already and it will already make the
code much easier to follow.  I will come with other changes on top after
this sees some review.

The first two patches should be trivial to review.  The third patch
changes the way how we migrate huge pages.  Newly allocated pages are a
subject of the overcommit check and they participate surplus accounting
which is quite unfortunate as the changelog explains.  This patch
doesn't change anything wrt.  giga pages.

Patch #4 removes the surplus accounting hack from
__alloc_surplus_huge_page.  I hope I didn't miss anything there and a
deeper review is really due there.

Patch #5 finally unifies allocation paths and giga pages shouldn't be
any special anymore.  There is also some renaming going on as well.

This patch (of 6):

hugetlb allocator has two entry points to the page allocator
 - alloc_fresh_huge_page_node
 - __hugetlb_alloc_buddy_huge_page

The two differ very subtly in two aspects.  The first one doesn't care
about HTLB_BUDDY_* stats and it doesn't initialize the huge page.
prep_new_huge_page is not used because it not only initializes hugetlb
specific stuff but because it also put_page and releases the page to the
hugetlb pool which is not what is required in some contexts.  This makes
things more complicated than necessary.

Simplify things by a) removing the page allocator entry point duplicity
and only keep __hugetlb_alloc_buddy_huge_page and b) make
prep_new_huge_page more reusable by removing the put_page which moves
the page to the allocator pool.  All current callers are updated to call
put_page explicitly.  Later patches will add new callers which won't
need it.

This patch shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20180103093213.26329-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Andrey Ryabinin
1ab5c05695 mm/memcontrol.c: try harder to decrease [memory,memsw].limit_in_bytes
mem_cgroup_resize_[memsw]_limit() tries to free only 32
(SWAP_CLUSTER_MAX) pages on each iteration.  This makes it practically
impossible to decrease limit of memory cgroup.  Tasks could easily
allocate back 32 pages, so we can't reduce memory usage, and once
retry_count reaches zero we return -EBUSY.

Easy to reproduce the problem by running the following commands:

  mkdir /sys/fs/cgroup/memory/test
  echo $$ >> /sys/fs/cgroup/memory/test/tasks
  cat big_file > /dev/null &
  sleep 1 && echo $((100*1024*1024)) > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
  -bash: echo: write error: Device or resource busy

Instead of relying on retry_count, keep retrying the reclaim until the
desired limit is reached or fail if the reclaim doesn't make any
progress or a signal is pending.

Link: http://lkml.kernel.org/r/20180119132544.19569-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Christopher Díaz Riveros
8ad6e404ef mm/memcontrol.c: make local symbol static
Fix the following sparse warning:

  mm/memcontrol.c:1097:14: warning: symbol 'memcg1_stats' was not declared. Should it be static?

Link: http://lkml.kernel.org/r/20180118193327.14200-1-chrisadr@gentoo.org
Signed-off-by: Christopher Díaz Riveros <chrisadr@gentoo.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Ralph Campbell
8d63e4cd62 mm/hmm: fix uninitialized use of 'entry' in hmm_vma_walk_pmd()
The variable 'entry' is used before being initialized in
hmm_vma_walk_pmd().

No bad effect (beside performance hit) so !non_swap_entry(0) evaluate to
true which trigger a fault as if CPU was trying to access migrated
memory and migrate memory back from device memory to regular memory.

This function (hmm_vma_walk_pmd()) is called when a device driver tries
to populate its own page table.  For migrated memory it should not
happen as the device driver should already have populated its page table
correctly during the migration.

Only case I can think of is multi-GPU where a second GPU triggers
migration back to regular memory.  Again this would just result in a
performance hit, nothing bad would happen.

Link: http://lkml.kernel.org/r/20180122185759.26286-1-jglisse@redhat.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Petr Tesarik
def9b71ee6 include/linux/mmzone.h: fix explanation of lower bits in the SPARSEMEM mem_map pointer
The comment is confusing.  On the one hand, it refers to 32-bit
alignment (struct page alignment on 32-bit platforms), but this would
only guarantee that the 2 lowest bits must be zero.  On the other hand,
it claims that at least 3 bits are available, and 3 bits are actually
used.

This is not broken, because there is a stronger alignment guarantee,
just less obvious.  Let's fix the comment to make it clear how many bits
are available and why.

Although memmap arrays are allocated in various places, the resulting
pointer is encoded eventually, so I am adding a BUG_ON() here to enforce
at runtime that all expected bits are indeed available.

I have also added a BUILD_BUG_ON to check that PFN_SECTION_SHIFT is
sufficient, because this part of the calculation can be easily checked
at build time.

[ptesarik@suse.com: v2]
  Link: http://lkml.kernel.org/r/20180125100516.589ea6af@ezekiel.suse.cz
Link: http://lkml.kernel.org/r/20180119080908.3a662e6f@ezekiel.suse.cz
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:39 -08:00