IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Pull x86 SEV-ES support from Borislav Petkov:
"SEV-ES enhances the current guest memory encryption support called SEV
by also encrypting the guest register state, making the registers
inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared
between the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
so in order for that exception mechanism to work, the early x86 init
code needed to be made able to handle exceptions, which, in itself,
brings a bunch of very nice cleanups and improvements to the early
boot code like an early page fault handler, allowing for on-demand
building of the identity mapping. With that, !KASLR configurations do
not use the EFI page table anymore but switch to a kernel-controlled
one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly separate
from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and
behind static keys to minimize the performance impact on !SEV-ES
setups.
Work by Joerg Roedel and Thomas Lendacky and others"
* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
x86/sev-es: Check required CPU features for SEV-ES
x86/efi: Add GHCB mappings when SEV-ES is active
x86/sev-es: Handle NMI State
x86/sev-es: Support CPU offline/online
x86/head/64: Don't call verify_cpu() on starting APs
x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
x86/realmode: Setup AP jump table
x86/realmode: Add SEV-ES specific trampoline entry point
x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
x86/sev-es: Handle #DB Events
x86/sev-es: Handle #AC Events
x86/sev-es: Handle VMMCALL Events
x86/sev-es: Handle MWAIT/MWAITX Events
x86/sev-es: Handle MONITOR/MONITORX Events
x86/sev-es: Handle INVD Events
x86/sev-es: Handle RDPMC Events
x86/sev-es: Handle RDTSC(P) Events
...
Because of system-specific EFI firmware limitations, EFI volatile
variables may not be capable of holding the required contents of
the Machine Owner Key (MOK) certificate store when the certificate
list grows above some size. Therefore, an EFI boot loader may pass
the MOK certs via a EFI configuration table created specifically for
this purpose to avoid this firmware limitation.
An EFI configuration table is a much more primitive mechanism
compared to EFI variables and is well suited for one-way passage
of static information from a pre-OS environment to the kernel.
This patch adds initial kernel support to recognize, parse,
and validate the EFI MOK configuration table, where named
entries contain the same data that would otherwise be provided
in similarly named EFI variables.
Additionally, this patch creates a sysfs binary file for each
EFI MOK configuration table entry found. These files are read-only
to root and are provided for use by user space utilities such as
mokutil.
A subsequent patch will load MOK certs into the trusted platform
key ring using this infrastructure.
Signed-off-by: Lenny Szubowicz <lszubowi@redhat.com>
Link: https://lore.kernel.org/r/20200905013107.10457-2-lszubowi@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Calling down to EFI runtime services can result in the firmware
performing VMGEXIT calls. The firmware is likely to use the GHCB of the
OS (e.g., for setting EFI variables), so each GHCB in the system needs
to be identity-mapped in the EFI page tables, as unencrypted, to avoid
page faults.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: Moved GHCB mapping loop to sev-es.c ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-72-joro@8bytes.org
Now that the old memmap code has been removed, some code that was left
behind in arch/x86/platform/efi/efi.c is only used for 32-bit builds,
which means it can live in efi_32.c as well. So move it over.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Pull EFI updates from Ingo Molnar:
"The EFI changes for this cycle are:
- preliminary changes for RISC-V
- Add support for setting the resolution on the EFI framebuffer
- Simplify kernel image loading for arm64
- Move .bss into .data via the linker script instead of relying on
symbol annotations.
- Get rid of __pure getters to access global variables
- Clean up the config table matching arrays
- Rename pr_efi/pr_efi_err to efi_info/efi_err, and use them
consistently
- Simplify and unify initrd loading
- Parse the builtin command line on x86 (if provided)
- Implement printk() support, including support for wide character
strings
- Simplify GDT handling in early mixed mode thunking code
- Some other minor fixes and cleanups"
* tag 'efi-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
efi/x86: Don't blow away existing initrd
efi/x86: Drop the special GDT for the EFI thunk
efi/libstub: Add missing prototype for PE/COFF entry point
efi/efivars: Add missing kobject_put() in sysfs entry creation error path
efi/libstub: Use pool allocation for the command line
efi/libstub: Don't parse overlong command lines
efi/libstub: Use snprintf with %ls to convert the command line
efi/libstub: Get the exact UTF-8 length
efi/libstub: Use %ls for filename
efi/libstub: Add UTF-8 decoding to efi_puts
efi/printf: Add support for wchar_t (UTF-16)
efi/gop: Add an option to list out the available GOP modes
efi/libstub: Add definitions for console input and events
efi/libstub: Implement printk-style logging
efi/printf: Turn vsprintf into vsnprintf
efi/printf: Abort on invalid format
efi/printf: Refactor code to consolidate padding and output
efi/printf: Handle null string input
efi/printf: Factor out integer argument retrieval
efi/printf: Factor out width/precision parsing
...
Increase legibility by adding whitespace to the efi_config_table_type_t
arrays that describe which EFI config tables we look for when going over
the firmware provided list. While at it, replace the 'name' char pointer
with a char array, which is more space efficient on relocatable 64-bit
kernels, as it avoids a 8 byte pointer and the associated relocation
data (24 bytes when using RELA format)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit
d9e3d2c4f1 ("efi/x86: Don't map the entire kernel text RW for mixed mode")
updated the code that creates the 1:1 memory mapping to use read-only
attributes for the 1:1 alias of the kernel's text and rodata sections, to
protect it from inadvertent modification. However, it failed to take into
account that the unused gap between text and rodata is given to the page
allocator for general use.
If the vmap'ed stack happens to be allocated from this region, any by-ref
output arguments passed to EFI runtime services that are allocated on the
stack (such as the 'datasize' argument taken by GetVariable() when invoked
from efivar_entry_size()) will be referenced via a read-only mapping,
resulting in a page fault if the EFI code tries to write to it:
BUG: unable to handle page fault for address: 00000000386aae88
#PF: supervisor write access in kernel mode
#PF: error_code(0x0003) - permissions violation
PGD fd61063 P4D fd61063 PUD fd62063 PMD 386000e1
Oops: 0003 [#1] SMP PTI
CPU: 2 PID: 255 Comm: systemd-sysv-ge Not tainted 5.6.0-rc4-default+ #22
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0008:0x3eaeed95
Code: ... <89> 03 be 05 00 00 80 a1 74 63 b1 3e 83 c0 48 e8 44 d2 ff ff eb 05
RSP: 0018:000000000fd73fa0 EFLAGS: 00010002
RAX: 0000000000000001 RBX: 00000000386aae88 RCX: 000000003e9f1120
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000001
RBP: 000000000fd73fd8 R08: 00000000386aae88 R09: 0000000000000000
R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000
R13: ffffc0f040220000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f21160ac940(0000) GS:ffff9cf23d500000(0000) knlGS:0000000000000000
CS: 0008 DS: 0018 ES: 0018 CR0: 0000000080050033
CR2: 00000000386aae88 CR3: 000000000fd6c004 CR4: 00000000003606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
Modules linked in:
CR2: 00000000386aae88
---[ end trace a8bfbd202e712834 ]---
Let's fix this by remapping text and rodata individually, and leave the
gaps mapped read-write.
Fixes: d9e3d2c4f1 ("efi/x86: Don't map the entire kernel text RW for mixed mode")
Reported-by: Jiri Slaby <jslaby@suse.cz>
Tested-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200409130434.6736-10-ardb@kernel.org
Pull perf updates from Ingo Molnar:
"The main changes in this cycle were:
Kernel side changes:
- A couple of x86/cpu cleanups and changes were grandfathered in due
to patch dependencies. These clean up the set of CPU model/family
matching macros with a consistent namespace and C99 initializer
style.
- A bunch of updates to various low level PMU drivers:
* AMD Family 19h L3 uncore PMU
* Intel Tiger Lake uncore support
* misc fixes to LBR TOS sampling
- optprobe fixes
- perf/cgroup: optimize cgroup event sched-in processing
- misc cleanups and fixes
Tooling side changes are to:
- perf {annotate,expr,record,report,stat,test}
- perl scripting
- libapi, libperf and libtraceevent
- vendor events on Intel and S390, ARM cs-etm
- Intel PT updates
- Documentation changes and updates to core facilities
- misc cleanups, fixes and other enhancements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (89 commits)
cpufreq/intel_pstate: Fix wrong macro conversion
x86/cpu: Cleanup the now unused CPU match macros
hwrng: via_rng: Convert to new X86 CPU match macros
crypto: Convert to new CPU match macros
ASoC: Intel: Convert to new X86 CPU match macros
powercap/intel_rapl: Convert to new X86 CPU match macros
PCI: intel-mid: Convert to new X86 CPU match macros
mmc: sdhci-acpi: Convert to new X86 CPU match macros
intel_idle: Convert to new X86 CPU match macros
extcon: axp288: Convert to new X86 CPU match macros
thermal: Convert to new X86 CPU match macros
hwmon: Convert to new X86 CPU match macros
platform/x86: Convert to new CPU match macros
EDAC: Convert to new X86 CPU match macros
cpufreq: Convert to new X86 CPU match macros
ACPI: Convert to new X86 CPU match macros
x86/platform: Convert to new CPU match macros
x86/kernel: Convert to new CPU match macros
x86/kvm: Convert to new CPU match macros
x86/perf/events: Convert to new CPU match macros
...
More EFI updates for v5.7
- Incorporate a stable branch with the EFI pieces of Hans's work on
loading device firmware from EFI boot service memory regions
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Just like with PCI options ROMs, which we save in the setup_efi_pci*
functions from arch/x86/boot/compressed/eboot.c, the EFI code / ROM itself
sometimes may contain data which is useful/necessary for peripheral drivers
to have access to.
Specifically the EFI code may contain an embedded copy of firmware which
needs to be (re)loaded into the peripheral. Normally such firmware would be
part of linux-firmware, but in some cases this is not feasible, for 2
reasons:
1) The firmware is customized for a specific use-case of the chipset / use
with a specific hardware model, so we cannot have a single firmware file
for the chipset. E.g. touchscreen controller firmwares are compiled
specifically for the hardware model they are used with, as they are
calibrated for a specific model digitizer.
2) Despite repeated attempts we have failed to get permission to
redistribute the firmware. This is especially a problem with customized
firmwares, these get created by the chip vendor for a specific ODM and the
copyright may partially belong with the ODM, so the chip vendor cannot
give a blanket permission to distribute these.
This commit adds support for finding peripheral firmware embedded in the
EFI code and makes the found firmware available through the new
efi_get_embedded_fw() function.
Support for loading these firmwares through the standard firmware loading
mechanism is added in a follow-up commit in this patch-series.
Note we check the EFI_BOOT_SERVICES_CODE for embedded firmware near the end
of start_kernel(), just before calling rest_init(), this is on purpose
because the typical EFI_BOOT_SERVICES_CODE memory-segment is too large for
early_memremap(), so the check must be done after mm_init(). This relies
on EFI_BOOT_SERVICES_CODE not being free-ed until efi_free_boot_services()
is called, which means that this will only work on x86 for now.
Reported-by: Dave Olsthoorn <dave@bewaar.me>
Suggested-by: Peter Jones <pjones@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-3-hdegoede@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The mixed mode runtime wrappers are fragile when it comes to how the
memory referred to by its pointer arguments are laid out in memory, due
to the fact that it translates these addresses to physical addresses that
the runtime services can dereference when running in 1:1 mode. Since
vmalloc'ed pages (including the vmap'ed stack) are not contiguous in the
physical address space, this scheme only works if the referenced memory
objects do not cross page boundaries.
Currently, the mixed mode runtime service wrappers require that all by-ref
arguments that live in the vmalloc space have a size that is a power of 2,
and are aligned to that same value. While this is a sensible way to
construct an object that is guaranteed not to cross a page boundary, it is
overly strict when it comes to checking whether a given object violates
this requirement, as we can simply take the physical address of the first
and the last byte, and verify that they point into the same physical page.
When this check fails, we emit a WARN(), but then simply proceed with the
call, which could cause data corruption if the next physical page belongs
to a mapping that is entirely unrelated.
Given that with vmap'ed stacks, this condition is much more likely to
trigger, let's relax the condition a bit, but fail the runtime service
call if it does trigger.
Fixes: f6697df36b ("x86/efi: Prevent mixed mode boot corruption with CONFIG_VMAP_STACK=y")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200221084849.26878-4-ardb@kernel.org
Mixed mode calls at runtime are rather tricky with vmap'ed stacks,
as we can no longer assume that data passed in by the callers of the
EFI runtime wrapper routines is contiguous in physical memory.
We need to fix this, but before we do, let's drop the implementations
of routines that we know are never used on x86, i.e., the RTC related
ones. Given that UEFI rev2.8 permits any runtime service to return
EFI_UNSUPPORTED at runtime, let's return that instead.
As get_next_high_mono_count() is never used at all, even on other
architectures, let's make that return EFI_UNSUPPORTED too.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200221084849.26878-3-ardb@kernel.org
Hans reports that his mixed mode systems running v5.6-rc1 kernels hit
the WARN_ON() in virt_to_phys_or_null_size(), caused by the fact that
efi_guid_t objects on the vmap'ed stack happen to be misaligned with
respect to their sizes. As a quick (i.e., backportable) fix, copy GUID
pointer arguments to the local stack into a buffer that is naturally
aligned to its size, so that it is guaranteed to cover only one
physical page.
Note that on x86, we cannot rely on the stack pointer being aligned
the way the compiler expects, so we need to allocate an 8-byte aligned
buffer of sufficient size, and copy the GUID into that buffer at an
offset that is aligned to 16 bytes.
Fixes: f6697df36b ("x86/efi: Prevent mixed mode boot corruption with CONFIG_VMAP_STACK=y")
Reported-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Hans de Goede <hdegoede@redhat.com>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200221084849.26878-2-ardb@kernel.org
The systab member in struct efi has outlived its usefulness, now that
we have better ways to access the only piece of information we are
interested in after init, which is the EFI runtime services table
address. So instead of instantiating a doctored copy at early boot
with lots of mangled values, and switching the pointer when switching
into virtual mode, let's grab the values we need directly, and get
rid of the systab pointer entirely.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Instead of going through the EFI system table each time, just copy the
runtime services table pointer into struct efi directly. This is the
last use of the system table pointer in struct efi, allowing us to
drop it in a future patch, along with a fair amount of quirky handling
of the translated address.
Note that usually, the runtime services pointer changes value during
the call to SetVirtualAddressMap(), so grab the updated value as soon
as that call returns. (Mixed mode uses a 1:1 mapping, and kexec boot
enters with the updated address in the system table, so in those cases,
we don't need to do anything here)
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
efi.runtime_version is always set to the same value on both
existing code paths, so just set it earlier from a shared one.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
There is some code that exposes physical addresses of certain parts of
the EFI firmware implementation via sysfs nodes. These nodes are only
used on x86, and are of dubious value to begin with, so let's move
their handling into the x86 arch code.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Since commit 33b85447fa ("efi/x86: Drop two near identical versions
of efi_runtime_init()"), we no longer map the EFI runtime services table
before calling SetVirtualAddressMap(), which means we don't need the 1:1
mapped physical address of this table, and so there is no point in passing
the address via EFI setup data on kexec boot.
Note that the kexec tools will still look for this address in sysfs, so
we still need to provide it.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
config_parse_tables() is a jumble of pointer arithmetic, due to the
fact that on x86, we may be dealing with firmware whose native word
size differs from the kernel's.
This is not a concern on other architectures, and doesn't quite
justify the state of the code, so let's clean it up by adding a
non-x86 code path, constifying statically allocated tables and
replacing preprocessor conditionals with IS_ENABLED() checks.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The efi_config_init() routine is no longer shared with ia64 so let's
move it into the x86 arch code before making further x86 specific
changes to it.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We have three different versions of the code that checks the EFI system
table revision and copies the firmware vendor string, and they are
mostly equivalent, with the exception of the use of early_memremap_ro
vs. __va() and the lowest major revision to warn about. Let's move this
into common code and factor out the commonalities.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The memory attributes table is only used at init time by the core EFI
code, so there is no need to carry its address in struct efi that is
shared with the world. So move it out, and make it __ro_after_init as
well, considering that the value is set during early boot.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The UGA table is x86 specific (its handling was introduced when the
EFI support code was modified to accommodate IA32), so there is no
need to handle it in generic code.
The EFI properties table is not strictly x86 specific, but it was
deprecated almost immediately after having been introduced, due to
implementation difficulties. Only x86 takes it into account today,
and this is not going to change, so make this table x86 only as well.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The HCDP and MPS tables are Itanium specific EFI config tables, so
move their handling to ia64 arch code.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Some plumbing exists to handle a UEFI configuration table of type
BOOT_INFO but since we never match it to a GUID anywhere, we never
actually register such a table, or access it, for that matter. So
simply drop all mentions of it.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
When possible, IS_ENABLED() conditionals are preferred over #ifdefs,
given that the latter hide the code from the compiler entirely, which
reduces build test coverage when the option is not enabled.
So replace an instance in the x86 efi startup code.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reindent the efi_memory_map_data initializer so that all the = signs
are aligned vertically, making the resulting code much easier to read.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Pull EFI fix from Thomas Gleixner:
"A single fix for a EFI boot regression on X86 which was caused by the
recent rework of the EFI memory map parsing. On systems with invalid
memmap entries the cleanup function uses an value which cannot be
relied on in this stage. Use the actual EFI memmap entry instead"
* tag 'efi-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/x86: Fix boot regression on systems with invalid memmap entries
In efi_clean_memmap(), we do a pass over the EFI memory map to remove
bogus entries that may be returned on certain systems.
This recent commit:
1db91035d0 ("efi: Add tracking for dynamically allocated memmaps")
refactored this code to pass the input to efi_memmap_install() via a
temporary struct on the stack, which is populated using an initializer
which inadvertently defines the value of its size field in terms of its
desc_size field, which value cannot be relied upon yet in the initializer
itself.
Fix this by using efi.memmap.desc_size instead, which is where we get
the value for desc_size from in the first place.
Reported-by: Jörg Otte <jrg.otte@gmail.com>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: jrg.otte@gmail.com
Cc: torvalds@linux-foundation.org
Cc: mingo@kernel.org
Link: https://lore.kernel.org/r/20200201233304.18322-1-ardb@kernel.org
Pull EFI updates from Ingo Molnar:
"The main changes in this cycle were:
- Cleanup of the GOP [graphics output] handling code in the EFI stub
- Complete refactoring of the mixed mode handling in the x86 EFI stub
- Overhaul of the x86 EFI boot/runtime code
- Increase robustness for mixed mode code
- Add the ability to disable DMA at the root port level in the EFI
stub
- Get rid of RWX mappings in the EFI memory map and page tables,
where possible
- Move the support code for the old EFI memory mapping style into its
only user, the SGI UV1+ support code.
- plus misc fixes, updates, smaller cleanups.
... and due to interactions with the RWX changes, another round of PAT
cleanups make a guest appearance via the EFI tree - with no side
effects intended"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
efi/x86: Disable instrumentation in the EFI runtime handling code
efi/libstub/x86: Fix EFI server boot failure
efi/x86: Disallow efi=old_map in mixed mode
x86/boot/compressed: Relax sed symbol type regex for LLVM ld.lld
efi/x86: avoid KASAN false positives when accessing the 1: 1 mapping
efi: Fix handling of multiple efi_fake_mem= entries
efi: Fix efi_memmap_alloc() leaks
efi: Add tracking for dynamically allocated memmaps
efi: Add a flags parameter to efi_memory_map
efi: Fix comment for efi_mem_type() wrt absent physical addresses
efi/arm: Defer probe of PCIe backed efifb on DT systems
efi/x86: Limit EFI old memory map to SGI UV machines
efi/x86: Avoid RWX mappings for all of DRAM
efi/x86: Don't map the entire kernel text RW for mixed mode
x86/mm: Fix NX bit clearing issue in kernel_map_pages_in_pgd
efi/libstub/x86: Fix unused-variable warning
efi/libstub/x86: Use mandatory 16-byte stack alignment in mixed mode
efi/libstub/x86: Use const attribute for efi_is_64bit()
efi: Allow disabling PCI busmastering on bridges during boot
efi/x86: Allow translating 64-bit arguments for mixed mode calls
...
Pull header cleanup from Ingo Molnar:
"This is a treewide cleanup, mostly (but not exclusively) with x86
impact, which breaks implicit dependencies on the asm/realtime.h
header and finally removes it from asm/acpi.h"
* 'core-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ACPI/sleep: Move acpi_get_wakeup_address() into sleep.c, remove <asm/realmode.h> from <asm/acpi.h>
ACPI/sleep: Convert acpi_wakeup_address into a function
x86/ACPI/sleep: Remove an unnecessary include of asm/realmode.h
ASoC: Intel: Skylake: Explicitly include linux/io.h for virt_to_phys()
vmw_balloon: Explicitly include linux/io.h for virt_to_phys()
virt: vbox: Explicitly include linux/io.h to pick up various defs
efi/capsule-loader: Explicitly include linux/io.h for page_to_phys()
perf/x86/intel: Explicitly include asm/io.h to use virt_to_phys()
x86/kprobes: Explicitly include vmalloc.h for set_vm_flush_reset_perms()
x86/ftrace: Explicitly include vmalloc.h for set_vm_flush_reset_perms()
x86/boot: Explicitly include realmode.h to handle RM reservations
x86/efi: Explicitly include realmode.h to handle RM trampoline quirk
x86/platform/intel/quark: Explicitly include linux/io.h for virt_to_phys()
x86/setup: Enhance the comments
x86/setup: Clean up the header portion of setup.c
We already disable KASAN instrumentation specifically for the
EFI routines that are known to dereference memory addresses that
KASAN does not know about, avoiding false positive KASAN splats.
However, as it turns out, having GCOV or KASAN instrumentation enabled
interferes with the compiler's ability to optimize away function calls
that are guarded by IS_ENABLED() checks that should have resulted in
those references to have been const-propagated out of existence. But
with instrumenation enabled, we may get build errors like:
ld: arch/x86/platform/efi/efi_64.o: in function `efi_thunk_set_virtual_address_map':
ld: arch/x86/platform/efi/efi_64.o: in function `efi_set_virtual_address_map':
in builds where CONFIG_EFI=y but CONFIG_EFI_MIXED or CONFIG_X86_UV are not
defined, even though the invocations are conditional on IS_ENABLED() checks
against the respective Kconfig symbols.
So let's disable instrumentation entirely for this subdirectory, which
isn't that useful here to begin with.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org