IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
While btrfs doesn't use large folios yet, this should have been changed
as part of the conversion from invalidatepage to invalidate_folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
All filesystems have now been converted to use ->readahead, so
remove the ->readpages operation and fix all the comments that
used to refer to it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmI1AHwQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgplPjEACVJzKg5NkxpdkDThvq5tejws9KxB/4mHJg
NoDMcv1TF+Orsd/HNW6XrgYnbU0ObHom3568/xb8BNegRVFe7V4ME/4IYNRyGOmV
qbfciu04L1UkJhI52CIidkOioFABL3r1zgLCIz5vk0Cv9X7Le9x0UabHxJf7u9S+
Z3lNdyxezN0SGx8VT86l/7lSoHtG3VHO9IsQCuNGF02SB+6uGpXBlptbEoQ4nTxd
T7/H9FNOe2Wf7eKvcOOds8UlvZYAfYcY0GcRrIOXdHIy25mKFWwn5cDgFTMOH5ID
xXpm+JFkDkrfSW1o4FFPxbN9Z6RbVXbGCsrXlIragLO2MJQdXiIUxS1OPT5oAado
H9MlX6QtkwziLW9zUWa/N/jmRjc2vzHAxD6JFg/wXxNdtY0kd8TQpaxwTB8mVDPN
VCGutt7lJS1CQInQ+ppzbdqzzuLHC1RHAyWSmfUE9rb8cbjxtJBnSIorYRLUesMT
GRwqVTXW0osxSgCb1iDiBCJANrX1yPZcemv4Wh1gzbT6IE9sWxWXsE5sy9KvswNc
M+E4nu/TYYTfkynItJjLgmDLOoi+V0FBY6ba0mRPBjkriSP4AVlwsZLGVsAHQzuA
o5paW1GjRCCwhIQ6+AzZIoOz6wqvprBlUgUkUneyYAQ2ZKC3pZi8zPnpoVdFucVa
VaTzP71C1Q==
=efaq
-----END PGP SIGNATURE-----
Merge tag 'for-5.18/write-streams-2022-03-18' of git://git.kernel.dk/linux-block
Pull NVMe write streams removal from Jens Axboe:
"This removes the write streams support in NVMe. No vendor ever really
shipped working support for this, and they are not interested in
supporting it.
With the NVMe support gone, we have nothing in the tree that supports
this. Remove passing around of the hints.
The only discussion point in this patchset imho is the fact that the
file specific write hint setting/getting fcntl helpers will now return
-1/EINVAL like they did before we supported write hints. No known
applications use these functions, I only know of one prototype that I
help do for RocksDB, and that's not used. That said, with a change
like this, it's always a bit controversial. Alternatively, we could
just make them return 0 and pretend it worked. It's placement based
hints after all"
* tag 'for-5.18/write-streams-2022-03-18' of git://git.kernel.dk/linux-block:
fs: remove fs.f_write_hint
fs: remove kiocb.ki_hint
block: remove the per-bio/request write hint
nvme: remove support or stream based temperature hint
Linus pointed out the benefits of C99 some years ago, especially variable
declarations in loops [1]. At that time, we were not ready for the
migration due to old compilers.
Recently, Jakob Koschel reported a bug in list_for_each_entry(), which
leaks the invalid pointer out of the loop [2]. In the discussion, we
agreed that the time had come. Now that GCC 5.1 is the minimum compiler
version, there is nothing to prevent us from going to -std=gnu99, or even
straight to -std=gnu11.
Discussions for a better list iterator implementation are ongoing, but
this patch set must land first.
[1] https://lore.kernel.org/all/CAHk-=wgr12JkKmRd21qh-se-_Gs69kbPgR9x4C+Es-yJV2GLkA@mail.gmail.com/
[2] https://lore.kernel.org/lkml/86C4CE7D-6D93-456B-AA82-F8ADEACA40B7@gmail.com/
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmI9JqMVHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsG3dkP/Ar7r8m4hc60kJE8JfXaxDpGOGka
2yVm0EPfwV1lFGq440p4mqKc1iRTVLNMPsyaG/ZhriIp8PlSUjXLW290Sty6Z8Pd
zcxwDg09ZXkMoDX+lc2Wr9F0wpswWJjqU/TzGLP5/qkVMe46KheXIQSPJAp8tVUt
u2of/MTgTVMa4r7Iex/+NFWCPr4lTkWkSfzVN/Jd1r91UOyzy4E1VFRNlXIk/Fc9
BFa67k0SHx/3FFElfwzFaejYUZjHjNzK3E1Zq8Q1vkWUxrzeEnzqTEiP7QaAi4Sa
7MbqyqQvNoPw3uvKu5kwjDE+LHMEPTsmuaKVFpAc+qCpMtZCI6g9Q48pzQsWBMO2
hZlEmYR9Zk0TpJp1flpOnNzoy7xPzNs0rcB3PaSOZyv+dTqtJ981IP+r4RNVlwje
y3N9vq4RSAj/kAE/wi6FiPc/8vfbY71PbEXmg8556+kn3ne6aXl13ZrXIxz8w5jK
bIgIFmrEPH7941KvFjoXhaFp/qv9hvLpWhQZu7CFRaj5V28qqUQ5TQFJREPePRtJ
RFPEuOJqEGMxW/xbhcfrA1AO/y9Grxbe65e8Mph4YCfWpWaUww6vN01LC+k6UgDm
Yq2u+wSFjWpRxOEPLWNsjnrZZgfdjk22O+TNOMs92X8/gXinmu3kZG5IUavahg7+
J0SsIjIXhmLGKdDm
=KMDk
-----END PGP SIGNATURE-----
Merge tag 'kbuild-gnu11-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild update for C11 language base from Masahiro Yamada:
"Kbuild -std=gnu11 updates for v5.18
Linus pointed out the benefits of C99 some years ago, especially
variable declarations in loops [1]. At that time, we were not ready
for the migration due to old compilers.
Recently, Jakob Koschel reported a bug in list_for_each_entry(), which
leaks the invalid pointer out of the loop [2]. In the discussion, we
agreed that the time had come. Now that GCC 5.1 is the minimum
compiler version, there is nothing to prevent us from going to
-std=gnu99, or even straight to -std=gnu11.
Discussions for a better list iterator implementation are ongoing, but
this patch set must land first"
[1] https://lore.kernel.org/all/CAHk-=wgr12JkKmRd21qh-se-_Gs69kbPgR9x4C+Es-yJV2GLkA@mail.gmail.com/
[2] https://lore.kernel.org/lkml/86C4CE7D-6D93-456B-AA82-F8ADEACA40B7@gmail.com/
* tag 'kbuild-gnu11-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
Kbuild: use -std=gnu11 for KBUILD_USERCFLAGS
Kbuild: move to -std=gnu11
Kbuild: use -Wdeclaration-after-statement
Kbuild: add -Wno-shift-negative-value where -Wextra is used
Primarily this series converts some of the address_space operations
to take a folio instead of a page.
->is_partially_uptodate() takes a folio instead of a page and changes the
type of the 'from' and 'count' arguments to make it obvious they're bytes.
->invalidatepage() becomes ->invalidate_folio() and has a similar type change.
->launder_page() becomes ->launder_folio()
->set_page_dirty() becomes ->dirty_folio() and adds the address_space as
an argument.
There are a couple of other misc changes up front that weren't worth
separating into their own pull request.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4hqMACgkQDpNsjXcp
gj7r7Af/fVJ7m8kKqjP/IayX3HiJRuIDQw+vM++BlRNXdjz+IyED6whdmFGxJeOY
BMyT+8ApOAz7ErS4G+7fAv4ScJK/aEgFUsnSeAiCp0PliiEJ5NNJzElp6sVmQ7H5
SX7+Ek444FZUGsQuy0qL7/ELpR3ditnD7x+5U2g0p5TeaHGUQn84crRyfR4xuhNG
EBD9D71BOb7OxUcOHe93pTkK51QsQ0aCrcIsB1tkK5KR0BAthn1HqF7ehL90Rvrr
omx5M7aDWGY4oj7IKrhlAs+55Ah2WaOzrZBp0FXNbr4UENDBKWKyUxErwa4xPkf6
Gm1iQG/CspOHnxN3YWsd5WjtlL3A+A==
=cOiq
-----END PGP SIGNATURE-----
Merge tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache
Pull filesystem folio updates from Matthew Wilcox:
"Primarily this series converts some of the address_space operations to
take a folio instead of a page.
Notably:
- a_ops->is_partially_uptodate() takes a folio instead of a page and
changes the type of the 'from' and 'count' arguments to make it
obvious they're bytes.
- a_ops->invalidatepage() becomes ->invalidate_folio() and has a
similar type change.
- a_ops->launder_page() becomes ->launder_folio()
- a_ops->set_page_dirty() becomes ->dirty_folio() and adds the
address_space as an argument.
There are a couple of other misc changes up front that weren't worth
separating into their own pull request"
* tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache: (53 commits)
fs: Remove aops ->set_page_dirty
fb_defio: Use noop_dirty_folio()
fs: Convert __set_page_dirty_no_writeback to noop_dirty_folio
fs: Convert __set_page_dirty_buffers to block_dirty_folio
nilfs: Convert nilfs_set_page_dirty() to nilfs_dirty_folio()
mm: Convert swap_set_page_dirty() to swap_dirty_folio()
ubifs: Convert ubifs_set_page_dirty to ubifs_dirty_folio
f2fs: Convert f2fs_set_node_page_dirty to f2fs_dirty_node_folio
f2fs: Convert f2fs_set_data_page_dirty to f2fs_dirty_data_folio
f2fs: Convert f2fs_set_meta_page_dirty to f2fs_dirty_meta_folio
afs: Convert afs_dir_set_page_dirty() to afs_dir_dirty_folio()
btrfs: Convert extent_range_redirty_for_io() to use folios
fs: Convert trivial uses of __set_page_dirty_nobuffers to filemap_dirty_folio
btrfs: Convert from set_page_dirty to dirty_folio
fscache: Convert fscache_set_page_dirty() to fscache_dirty_folio()
fs: Add aops->dirty_folio
fs: Remove aops->launder_page
orangefs: Convert launder_page to launder_folio
nfs: Convert from launder_page to launder_folio
fuse: Convert from launder_page to launder_folio
...
The inode allocation is supposed to use alloc_inode_sb(), so convert
kmem_cache_alloc() of all filesystems to alloc_inode_sb().
Link: https://lkml.kernel.org/r/20220228122126.37293-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Theodore Ts'o <tytso@mit.edu> [ext4]
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmI44SgACgkQxWXV+ddt
WDtzyg//YgMKr05jRsU3I/pIQ9znuKZmmllThwF63ZRG4PvKz2QfzvKdrMuzNjru
5kHbG59iJqtLmU/aVsdp8mL6mmg5U3Ym2bIRsrW5m4HTtTowKdirvL/lQ3/tWm8j
CSDJhUdCL2SwFjpru+4cxOeHLXNSfsk4BoCu8nsLitL+oXv/EPo/dkmu6nPjiMY3
RjsIDBeDEf7J20KOuP/qJuN2YOAT7TeISPD3Ow4aDsmndWQ8n6KehEmAZb7QuqZQ
SYubZ2wTb9HuPH/qpiTIA7innBIr+JkYtUYlz2xxixM2BUWNfqD6oKHw9RgOY5Sg
CULFssw0i7cgGKsvuPJw1zdM002uG4wwXKigGiyljTVWvxneyr4mNDWiGad+LyFJ
XWhnABPidkLs/1zbUkJ23DVub5VlfZsypkFDJAUXI0nGu3VrhjDfTYMa8eCe2L/F
YuGG6CrAC+5K/arKAWTVj7hOb+52UzBTEBJz60LJJ6dS9eQoBy857V6pfo7w7ukZ
t/tqA6q75O4tk/G3Ix3V1CjuAH3kJE6qXrvBxhpu8aZNjofopneLyGqS5oahpcE8
8edtT+ZZhNuU9sLSEJCJATVxXRDdNzpQ8CHgOR5HOUbmM/vwKNzHPfRQzDnImznw
UaUlFaaHwK17M6Y/6CnMecz26U2nVSJ7pyh39mb784XYe2a1efE=
=YARd
-----END PGP SIGNATURE-----
Merge tag 'for-5.18-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"This contains feature updates, performance improvements, preparatory
and core work and some related VFS updates:
Features:
- encoded read/write ioctls, allows user space to read or write raw
data directly to extents (now compressed, encrypted in the future),
will be used by send/receive v2 where it saves processing time
- zoned mode now works with metadata DUP (the mkfs.btrfs default)
- error message header updates:
- print error state: transaction abort, other error, log tree
errors
- print transient filesystem state: remount, device replace,
ignored checksum verifications
- tree-checker: verify the transaction id of the to-be-written dirty
extent buffer
Performance improvements for fsync:
- directory logging speedups (up to -90% run time)
- avoid logging all directory changes during renames (up to -60% run
time)
- avoid inode logging during rename and link when possible (up to
-60% run time)
- prepare extents to be logged before locking a log tree path
(throughput +7%)
- stop copying old file extents when doing a full fsync()
- improved logging of old extents after truncate
Core, fixes:
- improved stale device identification by dev_t and not just path
(for devices that are behind other layers like device mapper)
- continued extent tree v2 preparatory work
- disable features that won't work yet
- add wrappers and abstractions for new tree roots
- improved error handling
- add super block write annotations around background block group
reclaim
- fix device scanning messages potentially accessing stale pointer
- cleanups and refactoring
VFS:
- allow reflinks/deduplication from two different mounts of the same
filesystem
- export and add helpers for read/write range verification, for the
encoded ioctls"
* tag 'for-5.18-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (98 commits)
btrfs: zoned: put block group after final usage
btrfs: don't access possibly stale fs_info data in device_list_add
btrfs: add lockdep_assert_held to need_preemptive_reclaim
btrfs: verify the tranisd of the to-be-written dirty extent buffer
btrfs: unify the error handling of btrfs_read_buffer()
btrfs: unify the error handling pattern for read_tree_block()
btrfs: factor out do_free_extent_accounting helper
btrfs: remove last_ref from the extent freeing code
btrfs: add a alloc_reserved_extent helper
btrfs: remove BUG_ON(ret) in alloc_reserved_tree_block
btrfs: add and use helper for unlinking inode during log replay
btrfs: extend locking to all space_info members accesses
btrfs: zoned: mark relocation as writing
fs: allow cross-vfsmount reflink/dedupe
btrfs: remove the cross file system checks from remap
btrfs: pass btrfs_fs_info to btrfs_recover_relocation
btrfs: pass btrfs_fs_info for deleting snapshots and cleaner
btrfs: add filesystems state details to error messages
btrfs: deal with unexpected extent type during reflinking
btrfs: fix unexpected error path when reflinking an inline extent
...
This removes a call to __set_page_dirty_nobuffers().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
These filesystems use __set_page_dirty_nobuffers() either directly or
with a very thin wrapper; convert them en masse.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
Optimise the non-DEBUG case to just call filemap_dirty_folio
directly. The DEBUG case doesn't actually compile, but convert
it to dirty_folio anyway.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
A lot of the underlying infrastructure in btrfs needs to be switched
over to folios, but this at least documents that invalidatepage can't
be passed a tail page.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
Instead of calling ->invalidatepage directly, use folio_invalidate().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
It's counter-intuitive (and wrong) to put the block group _before_ the
final usage in submit_eb_page. Fix it by re-ordering the call to
btrfs_put_block_group after its final reference. Also fix a minor typo
in 'implies'
Fixes: be1a1d7a5d ("btrfs: zoned: finish fully written block group")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Syzbot reported a possible use-after-free in printing information
in device_list_add.
Very similar with the bug fixed by commit 0697d9a610 ("btrfs: don't
access possibly stale fs_info data for printing duplicate device"),
but this time the use occurs in btrfs_info_in_rcu.
Call Trace:
kasan_report.cold+0x83/0xdf mm/kasan/report.c:459
btrfs_printk+0x395/0x425 fs/btrfs/super.c:244
device_list_add.cold+0xd7/0x2ed fs/btrfs/volumes.c:957
btrfs_scan_one_device+0x4c7/0x5c0 fs/btrfs/volumes.c:1387
btrfs_control_ioctl+0x12a/0x2d0 fs/btrfs/super.c:2409
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix this by modifying device->fs_info to NULL too.
Reported-and-tested-by: syzbot+82650a4e0ed38f218363@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In a previous patch ("btrfs: extend locking to all space_info members
accesses") the locking for the space_info members was extended in
btrfs_preempt_reclaim_metadata_space because not all the member
accesses that needed locks were actually locked (bytes_pinned et al).
It was then suggested to also add a call to lockdep_assert_held to
need_preemptive_reclaim. This function also works with space_info
members. As of now, it has only two call sites which both hold the lock.
Suggested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Niels Dossche <dossche.niels@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a bug report that a bitflip in the transid part of an extent
buffer makes btrfs to reject certain tree blocks:
BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22
[CAUSE]
Note the failed transid check, hex(262166) = 0x40016, while
hex(22) = 0x16.
It's an obvious bitflip.
Furthermore, the reporter also confirmed the bitflip is from the
hardware, so it's a real hardware caused bitflip, and such problem can
not be detected by the existing tree-checker framework.
As tree-checker can only verify the content inside one tree block, while
generation of a tree block can only be verified against its parent.
So such problem remain undetected.
[FIX]
Although tree-checker can not verify it at write-time, we still have a
quick (but not the most accurate) way to catch such obvious corruption.
Function csum_one_extent_buffer() is called before we submit metadata
write.
Thus it means, all the extent buffer passed in should be dirty tree
blocks, and should be newer than last committed transaction.
Using that we can catch the above bitflip.
Although it's not a perfect solution, as if the corrupted generation is
higher than the correct value, we have no way to catch it at all.
Reported-by: Christoph Anton Mitterer <calestyo@scientia.org>
Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Qu Wenruo <wqu@sus,ree.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is one oddball error handling of btrfs_read_buffer():
ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
if (!ret) {
*eb_ret = tmp;
return 0;
}
free_extent_buffer(tmp);
btrfs_release_path(p);
return -EIO;
While all other call sites check the error first. Unify the behavior.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We had an error handling pattern for read_tree_block() like this:
eb = read_tree_block();
if (IS_ERR(eb)) {
/*
* Handling error here
* Normally ended up with return or goto out.
*/
} else if (!extent_buffer_uptodate(eb)) {
/*
* Different error handling here
* Normally also ended up with return or goto out;
*/
}
This is fine, but if we want to add extra check for each
read_tree_block(), the existing if-else-if is not that expandable and
will take reader some seconds to figure out there is no extra branch.
Here we change it to a more common way, without the extra else:
eb = read_tree_block();
if (IS_ERR(eb)) {
/*
* Handling error here
*/
return eb or goto out;
}
if (!extent_buffer_uptodate(eb)) {
/*
* Different error handling here
*/
return eb or goto out;
}
This also removes some oddball call sites which uses some creative way
to check error.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__btrfs_free_extent() does all of the hard work of updating the extent
ref items, and then at the end if we dropped the extent completely it
does the cleanup accounting work. We're going to only want to do that
work for metadata with extent tree v2, so extract this bit into its own
helper.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a remnant of the work I did for qgroups a long time ago to only
run for a block when we had dropped the last ref. We haven't done that
for years, but the code remains. Drop this remnant.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We duplicate this logic for both data and metadata, at this point we've
already done our type specific extent root operations, this is just
doing the accounting and removing the space from the free space tree.
Extract this common logic out into a helper.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Switch this to an ASSERT() and return the error in the normal case.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During log replay there is this pattern of running delayed items after
every inode unlink. To avoid repeating this several times, move the
logic into an helper function and use it instead of calling
btrfs_unlink_inode() followed by btrfs_run_delayed_items().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
bytes_pinned is always accessed under space_info->lock, except in
btrfs_preempt_reclaim_metadata_space, however the other members are
accessed under that lock. The reserved member of the rsv's are also
partially accessed under a lock and partially not. Move all these
accesses into the same lock to ensure consistency.
This could potentially race and lead to a flush instead of a commit but
it's not a big problem as it's only for preemptive flush.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Niels Dossche <niels.dossche@ugent.be>
Signed-off-by: Niels Dossche <dossche.niels@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a hung_task issue with running generic/068 on an SMR
device. The hang occurs while a process is trying to thaw the
filesystem. The process is trying to take sb->s_umount to thaw the
FS. The lock is held by fsstress, which calls btrfs_sync_fs() and is
waiting for an ordered extent to finish. However, as the FS is frozen,
the ordered extents never finish.
Having an ordered extent while the FS is frozen is the root cause of
the hang. The ordered extent is initiated from btrfs_relocate_chunk()
which is called from btrfs_reclaim_bgs_work().
This commit adds sb_*_write() around btrfs_relocate_chunk() call
site. For the usual "btrfs balance" command, we already call it with
mnt_want_file() in btrfs_ioctl_balance().
Fixes: 18bb8bbf13 ("btrfs: zoned: automatically reclaim zones")
CC: stable@vger.kernel.org # 5.13+
Link: https://github.com/naota/linux/issues/56
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The sb check is already done in do_clone_file_range, and the mnt check
(which will hopefully go away in a subsequent patch) is done in
ioctl_file_clone(). Remove the check in our code and put an ASSERT() to
make sure it doesn't change underneath us.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need a root here, we just need the btrfs_fs_info, we can just
get the specific roots we need from fs_info.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're passing a root around here, but we only really need the fs_info,
so fix up btrfs_clean_one_deleted_snapshot() to take an fs_info instead,
and then fix up all the callers appropriately.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a filesystem goes read-only due to an error, multiple errors tend
to be reported, some of which are knock-on failures. Logging fs_states,
in btrfs_handle_fs_error() and btrfs_printk() helps distinguish the
first error from subsequent messages which may only exist due to an
error state.
Under the new format, most initial errors will look like:
`BTRFS: error (device loop0) in ...`
while subsequent errors will begin with:
`error (device loop0: state E) in ...`
An initial transaction abort error will look like
`error (device loop0: state A) in ...`
and subsequent messages will contain
`(device loop0: state EA) in ...`
In addition to the error states we can also print other states that are
temporary, like remounting, device replace, or indicate a global state
that may affect functionality.
Now implemented:
E - filesystem error detected
A - transaction aborted
L - log tree errors
M - remounting in progress
R - device replace in progress
C - data checksums not verified (mounted with ignoredatacsums)
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Smatch complains about a possible dereference of a pointer that was not
initialized:
CC [M] fs/btrfs/reflink.o
CHECK fs/btrfs/reflink.c
fs/btrfs/reflink.c:533 btrfs_clone() error: potentially dereferencing uninitialized 'trans'.
This is because we are not dealing with the case where the type of a file
extent has an unexpected value (not regular, not prealloc and not inline),
in which case the transaction handle pointer is not initialized.
Such unexpected type should be impossible, except in case of some memory
corruption caused either by bad hardware or some software bug causing
something like a buffer overrun.
So ASSERT that if the extent type is neither regular nor prealloc, then
it must be inline. Bail out with -EUCLEAN and a warning in case it is
not. This silences smatch.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When reflinking an inline extent, we assert that its file offset is 0 and
that its uncompressed length is not greater than the sector size. We then
return an error if one of those conditions is not satisfied. However we
use a return statement, which results in returning from btrfs_clone()
without freeing the path and buffer that were allocated before, as well as
not clearing the flag BTRFS_INODE_NO_DELALLOC_FLUSH for the destination
inode.
Fix that by jumping to the 'out' label instead, and also add a WARN_ON()
for each condition so that in case assertions are disabled, we get to
known which of the unexpected conditions triggered the error.
Fixes: a61e1e0df9 ("Btrfs: simplify inline extent handling when doing reflinks")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When an inode has a last_reflink_trans matching the current transaction,
we have to take special care when logging its checksums in order to
avoid getting checksum items with overlapping ranges in a log tree,
which could result in missing checksums after log replay (more on that
in the changelogs of commit 40e046acbd ("Btrfs: fix missing data
checksums after replaying a log tree") and commit e289f03ea7 ("btrfs:
fix corrupt log due to concurrent fsync of inodes with shared extents")).
We also need to make sure a full fsync will copy all old file extent
items it finds in modified leaves, because they might have been copied
from some other inode.
However once we fsync an inode, we don't need to keep paying the price of
that extra special care in future fsyncs done in the same transaction,
unless the inode is used for another reflink operation or the full sync
flag is set on it (truncate, failure to allocate extent maps for holes,
and other exceptional and infrequent cases).
So after we fsync an inode reset its last_unlink_trans to zero. In case
another reflink happens, we continue to update the last_reflink_trans of
the inode, just as before. Also set last_reflink_trans to the generation
of the last transaction that modified the inode whenever we need to set
the full sync flag on the inode, just like when we need to load an inode
from disk after eviction.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Doing a full fsync may require processing many leaves of metadata, which
can take some time and result in a task monopolizing a cpu for too long.
So add a cond_resched() after processing a leaf when doing a full fsync,
while not holding any locks on any tree (a subvolume or a log tree).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a full fsync, at copy_items(), we iterate over all extents and
then collect their checksums into a list. After copying all the extents to
the log tree, we then log all the previously collected checksums.
Before the previous patch in the series (subject "btrfs: stop copying old
file extents when doing a full fsync"), we had to do it this way, because
while we were iterating over the items in the leaf of the subvolume tree,
we were holding a write lock on a leaf of the log tree, so logging the
checksums for an extent right after we collected them could result in a
deadlock, in case the checksum items ended up in the same leaf.
However after the previous patch in the series we now do a first iteration
over all the items in the leaf of the subvolume tree before locking a path
in the log tree, so we can now log the checksums right after we have
obtained them. This avoids holding in memory all checksums for all extents
in the leaf while copying items from the source leaf to the log tree. The
amount of memory used to hold all checksums of the extents in a leaf can
be significant. For example if a leaf has 200 file extent items referring
to 1M extents, using the default crc32c checksums, would result in using
over 200K of memory (not accounting for the extra overhead of struct
btrfs_ordered_sum), with smaller or less extents it would be less, but
it could be much more with more extents per leaf and/or much larger
extents.
So change copy_items() to log the checksums for an extent after looking
them up, and then free their memory, as they are no longer necessary.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging an inode in full sync mode, we go over every leaf that was
modified in the current transaction and has items associated to our inode,
and then copy all those items into the log tree. This includes copying
file extent items that were created and added to the inode in past
transactions, which is useless and only makes use more leaf space in the
log tree.
It's common to have a file with many file extent items spanning many
leaves where only a few file extent items are new and need to be logged,
and in such case we log all the file extent items we find in the modified
leaves.
So change the full sync behaviour to skip over file extent items that are
not needed. Those are the ones that match the following criteria:
1) Have a generation older than the current transaction and the inode
was not a target of a reflink operation, as that can copy file extent
items from a past generation from some other inode into our inode, so
we have to log them;
2) Start at an offset within i_size - we must log anything at or beyond
i_size, otherwise we would lose prealloc extents after log replay.
The following script exercises a scenario where this happens, and it's
somehow close enough to what happened often on a SQL Server workload which
I had to debug sometime ago to fix an issue where a pattern of writes to
prealloc extents and fsync resulted in fsync failing with -EIO (that was
commit ea7036de0d ("btrfs: fix fsync failure and transaction abort
after writes to prealloc extents")). In that particular case, we had large
files that had random writes and were often truncated, which made the
next fsync be a full sync.
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
MKFS_OPTIONS="-O no-holes -R free-space-tree"
MOUNT_OPTIONS="-o ssd"
FILE_SIZE=$((1 * 1024 * 1024 * 1024)) # 1G
# FILE_SIZE=$((2 * 1024 * 1024 * 1024)) # 2G
# FILE_SIZE=$((512 * 1024 * 1024)) # 512M
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
# Create a file with many extents. Use direct IO to make it faster
# to create the file - using buffered IO we would have to fsync
# after each write (terribly slow).
echo "Creating file with $((FILE_SIZE / 4096)) extents of 4K each..."
xfs_io -f -d -c "pwrite -b 4K 0 $FILE_SIZE" $MNT/foobar
# Commit the transaction, so every extent after this is from an
# old generation.
sync
# Now rewrite only a few extents, which are all far spread apart from
# each other (e.g. 1G / 32M = 32 extents).
# After this only a few extents have a new generation, while all other
# ones have an old generation.
echo "Rewriting $((FILE_SIZE / (32 * 1024 * 1024))) extents..."
for ((i = 0; i < $FILE_SIZE; i += $((32 * 1024 * 1024)))); do
xfs_io -c "pwrite $i 4K" $MNT/foobar >/dev/null
done
# Fsync, the inode logged in full sync mode since it was never fsynced
# before.
echo "Fsyncing file..."
xfs_io -c "fsync" $MNT/foobar
umount $MNT
And the following bpftrace program was running when executing the test
script:
$ cat bpf-script.sh
#!/usr/bin/bpftrace
k:btrfs_log_inode
{
@start_log_inode[tid] = nsecs;
}
kr:btrfs_log_inode
/@start_log_inode[tid]/
{
@log_inode_dur[tid] = (nsecs - @start_log_inode[tid]) / 1000;
delete(@start_log_inode[tid]);
}
k:btrfs_sync_log
{
@start_sync_log[tid] = nsecs;
}
kr:btrfs_sync_log
/@start_sync_log[tid]/
{
$sync_log_dur = (nsecs - @start_sync_log[tid]) / 1000;
printf("btrfs_log_inode() took %llu us\n", @log_inode_dur[tid]);
printf("btrfs_sync_log() took %llu us\n", $sync_log_dur);
delete(@start_sync_log[tid]);
delete(@log_inode_dur[tid]);
exit();
}
With 512M test file, before this patch:
btrfs_log_inode() took 15218 us
btrfs_sync_log() took 1328 us
Log tree has 17 leaves and 1 node, its total size is 294912 bytes.
With 512M test file, after this patch:
btrfs_log_inode() took 14760 us
btrfs_sync_log() took 588 us
Log tree has a single leaf, its total size is 16K.
With 1G test file, before this patch:
btrfs_log_inode() took 27301 us
btrfs_sync_log() took 1767 us
Log tree has 33 leaves and 1 node, its total size is 557056 bytes.
With 1G test file, after this patch:
btrfs_log_inode() took 26166 us
btrfs_sync_log() took 593 us
Log tree has a single leaf, its total size is 16K
With 2G test file, before this patch:
btrfs_log_inode() took 50892 us
btrfs_sync_log() took 3127 us
Log tree has 65 leaves and 1 node, its total size is 1081344 bytes.
With 2G test file, after this patch:
btrfs_log_inode() took 50126 us
btrfs_sync_log() took 586 us
Log tree has a single leaf, its total size is 16K.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The submit helper will always run bio_endio() on the bio if it fails to
submit, so cleaning up the bio just leads to a variety of use-after-free
and NULL pointer dereference bugs because we race with the endio
function that is cleaning up the bio. Instead just return BLK_STS_OK as
the repair function has to continue to process the rest of the pages,
and the endio for the repair bio will do the appropriate cleanup for the
page that it was given.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to submit a bio for whatever reason, we may not have setup a
mirror_num for that bio. This means we shouldn't try to do the repair
workflow, if we do we'll hit an BUG_ON(!failrec->this_mirror) in
clean_io_failure. Instead simply skip the repair workflow if we have no
mirror set, and add an assert to btrfs_check_repairable() to make it
easier to catch what is happening in the future.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I hit some weird panics while fixing up the error handling from
btrfs_lookup_bio_sums(). Turns out the compression path will complete
the bio we use if we set up any of the compression bios and then return
an error, and then btrfs_submit_data_bio() will also call bio_endio() on
the bio.
Fix this by making btrfs_submit_compressed_read() responsible for
calling bio_endio() on the bio if there are any errors. Currently it
was only doing it if we created the compression bios, otherwise it was
depending on btrfs_submit_data_bio() to do the right thing. This
creates the above problem, so fix up btrfs_submit_compressed_read() to
always call bio_endio() in case of an error, and then simply return from
btrfs_submit_data_bio() if we had to call
btrfs_submit_compressed_read().
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Right now we just have a binary "errors" flag, so any error we get on
the compressed bio's gets translated to EIO. This isn't necessarily a
bad thing, but if we get an ENOMEM it may be nice to know that's what
happened instead of an EIO. Track our errors as a blk_status_t, and do
the appropriate setting of the errors accordingly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This bio is usually one of the compressed bio's, and we don't actually
need it in this function, so remove the argument and stop passing it
around.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit c09abff87f ("btrfs: cloned bios must not be iterated by
bio_for_each_segment_all") added ASSERT()'s to make sure we weren't
calling bio_for_each_segment_all() on a RAID5/6 bio. However it was
checking the bio that the compression code passed in, not the
cb->orig_bio that we actually iterate over, so adjust this ASSERT() to
check the correct bio.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently any error we get while trying to lookup csums during reads
shows up as a missing csum, and then on the read completion side we
print an error saying there was a csum mismatch and we increase the
device corruption count.
However we could have gotten an EIO from the lookup. We could also be
inside of a memory constrained container and gotten a ENOMEM while
trying to do the read. In either case we don't want to make this look
like a file system corruption problem, we want to make it look like the
actual error it is. Capture any negative value, convert it to the
appropriate blk_status_t, free the csum array if we have one and bail.
Note: a possible improvement would be to make the relocation code look
up the owning inode and see if it's marked as NODATASUM and set
EXTENT_NODATASUM there, that way if there's corruption and there isn't a
checksum when we want it we can fail here rather than later.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can either fail to find a csum entry at all and return -ENOENT, or we
can find a range that is close, but return -EFBIG. In essence these
both mean the same thing when we are doing a lookup for a csum in an
existing range, we didn't find a csum. We want to treat both of these
errors the same way, complain loudly that there wasn't a csum. This
currently happens anyway because we do
count = search_csum_tree();
if (count <= 0) {
// reloc and error handling
}
However it forces us to incorrectly treat EIO or ENOMEM errors as on
disk corruption. Fix this by returning 0 if we get either -ENOENT or
-EFBIG from btrfs_lookup_csum() so we can do proper error handling.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The implementation resembles direct I/O: we have to flush any ordered
extents, invalidate the page cache, and do the io tree/delalloc/extent
map/ordered extent dance. From there, we can reuse the compression code
with a minor modification to distinguish the write from writeback. This
also creates inline extents when possible.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are 4 main cases:
1. Inline extents: we copy the data straight out of the extent buffer.
2. Hole/preallocated extents: we fill in zeroes.
3. Regular, uncompressed extents: we read the sectors we need directly
from disk.
4. Regular, compressed extents: we read the entire compressed extent
from disk and indicate what subset of the decompressed extent is in
the file.
This initial implementation simplifies a few things that can be improved
in the future:
- Cases 1, 3, and 4 allocate temporary memory to read into before
copying out to userspace.
- We don't do read repair, because it turns out that read repair is
currently broken for compressed data.
- We hold the inode lock during the operation.
Note that we don't need to hold the mmap lock. We may race with
btrfs_page_mkwrite() and read the old data from before the page was
dirtied:
btrfs_page_mkwrite btrfs_encoded_read
---------------------------------------------------
(enter) (enter)
btrfs_wait_ordered_range
lock_extent_bits
btrfs_page_set_dirty
unlock_extent_cached
(exit)
lock_extent_bits
read extent (dirty page hasn't been flushed,
so this is the old data)
unlock_extent_cached
(exit)
we read the old data from before the page was dirtied. But, that's true
even if we were to hold the mmap lock:
btrfs_page_mkwrite btrfs_encoded_read
-------------------------------------------------------------------
(enter) (enter)
btrfs_inode_lock(BTRFS_ILOCK_MMAP)
down_read(i_mmap_lock) (blocked)
btrfs_wait_ordered_range
lock_extent_bits
read extent (page hasn't been dirtied,
so this is the old data)
unlock_extent_cached
btrfs_inode_unlock(BTRFS_ILOCK_MMAP)
down_read(i_mmap_lock) returns
lock_extent_bits
btrfs_page_set_dirty
unlock_extent_cached
In other words, this is inherently racy, so it's fine that we return the
old data in this tiny window.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, an inline extent is always created after i_size is extended
from btrfs_dirty_pages(). However, for encoded writes, we only want to
update i_size after we successfully created the inline extent. Add an
update_i_size parameter to cow_file_range_inline() and
insert_inline_extent() and pass in the size of the extent rather than
determining it from i_size.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
The start parameter to cow_file_range_inline() (and
insert_inline_extent()) is always 0, so get rid of it and simplify the
logic in those two functions. Pass btrfs_inode to insert_inline_extent()
and remove the redundant root parameter. Also document the requirements
for creating an inline extent. No functional change.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we always reserve the same extent size in the file and extent
size on disk for delalloc because the former is the worst case for the
latter. For BTRFS_IOC_ENCODED_WRITE writes, we know the exact size of
the extent on disk, which may be less than or greater than (for
bookends) the size in the file. Add a disk_num_bytes parameter to
btrfs_delalloc_reserve_metadata() so that we can reserve the correct
amount of csum bytes. No functional change.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>