IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Outer-privilege level return is not implemented in emulator,
move the unhandled logic into __load_segment_descriptor to
make it easier to understand why the checks for RET are
incomplete.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Message-Id: <5b7188e6388ac9f4567d14eab32db9adf3e00119.1644292363.git.houwenlong.hwl@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Code segment descriptor can be loaded by jmp/call/ret, iret
and int. The privilege checks are different between those
instructions above realmode. Although, the emulator has
use x86_transfer_type enumerate to differentiate them, but
it is not really used in __load_segment_descriptor(). Note,
far jump/call to call gate, task gate or task state segment
are not implemented in emulator.
As for far jump/call to code segment, if DPL > CPL for conforming
code or (RPL > CPL or DPL != CPL) for non-conforming code, it
should trigger #GP. The current checks are ok.
As for far return, if RPL < CPL or DPL > RPL for conforming
code or DPL != RPL for non-conforming code, it should trigger #GP.
Outer level return is not implemented above virtual-8086 mode in
emulator. So it implies that RPL <= CPL, but the current checks
wouldn't trigger #GP if RPL < CPL.
As for code segment loading in task switch, if DPL > RPL for conforming
code or DPL != RPL for non-conforming code, it should trigger #TS. Since
segment selector is loaded before segment descriptor when load state from
tss, it implies that RPL = CPL, so the current checks are ok.
The only problem in current implementation is missing RPL < CPL check for
far return. However, change code to follow the manual is better.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Message-Id: <e01f5ea70fc1f18f23da1182acdbc5c97c0e5886.1644292363.git.houwenlong.hwl@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per Intel's SDM on the "Instruction Set Reference", when
loading segment descriptor, not-present segment check should
be after all type and privilege checks. But the emulator checks
it first, then #NP is triggered instead of #GP if privilege fails
and segment is not present. Put not-present segment check after
type and privilege checks in __load_segment_descriptor().
Fixes: 38ba30ba51 (KVM: x86 emulator: Emulate task switch in emulator.c)
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Message-Id: <52573c01d369f506cadcf7233812427cf7db81a7.1644292363.git.houwenlong.hwl@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The main thing that the selftest verifies is that KVM copies x2APIC's
ICR[63:32] to/from ICR2 when userspace accesses the vAPIC page via
KVM_{G,S}ET_LAPIC. KVM previously split x2APIC ICR to ICR+ICR2 at the
time of write (from the guest), and so KVM must preserve that behavior
for backwards compatibility between different versions of KVM.
It will also test other invariants, e.g. that KVM clears the BUSY
flag on ICR writes, that the reserved bits in ICR2 are dropped on writes
from the guest, etc...
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hide the lapic's "raw" write helper inside lapic.c to force non-APIC code
to go through proper helpers when modification the vAPIC state. Keep the
read helper visible to outsiders for now, refactoring KVM to hide it too
is possible, it will just take more work to do so.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulate the x2APIC ICR as a single 64-bit register, as opposed to forking
it across ICR and ICR2 as two 32-bit registers. This mirrors hardware
behavior for Intel's upcoming IPI virtualization support, which does not
split the access.
Previous versions of Intel's SDM and AMD's APM don't explicitly state
exactly how ICR is reflected in the vAPIC page for x2APIC, KVM just
happened to speculate incorrectly.
Handling the upcoming behavior is necessary in order to maintain
backwards compatibility with KVM_{G,S}ET_LAPIC, e.g. failure to shuffle
the 64-bit ICR to ICR+ICR2 and vice versa would break live migration if
IPI virtualization support isn't symmetrical across the source and dest.
Cc: Zeng Guang <guang.zeng@intel.com>
Cc: Chao Gao <chao.gao@intel.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add helpers to handle 64-bit APIC read/writes via MSRs to deduplicate the
x2APIC and Hyper-V code needed to service reads/writes to ICR. Future
support for IPI virtualization will add yet another path where KVM must
handle 64-bit APIC MSR reads/write (to ICR).
Opportunistically fix the comment in the write path; ICR2 holds the
destination (if there's no shorthand), not the vector.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the low level read/write lapic helpers static, any accesses to the
local APIC from vendor code or non-APIC code should be routed through
proper helpers.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if KVM emulates an IPI without clearing the BUSY flag, failure to do
so could hang the guest if it waits for the IPI be sent.
Opportunistically use APIC_ICR_BUSY macro instead of open coding the
magic number, and add a comment to clarify why kvm_recalculate_apic_map()
is unconditionally invoked (it's really, really confusing for IPIs due to
the existence of fast paths that don't trigger a potential recalc).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't bother rewriting the ICR value into the vAPIC page on an AVIC IPI
virtualization failure, the access is a trap, i.e. the value has already
been written to the vAPIC page. The one caveat is if hardware left the
BUSY flag set (which appears to happen somewhat arbitrarily), in which
case go through the "nodecode" APIC-write path in order to clear the BUSY
flag.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the common kvm_apic_write_nodecode() to handle AVIC/APIC-write traps
instead of open coding the same exact code. This will allow making the
low level lapic helpers inaccessible outside of lapic.c code.
Opportunistically clean up the params to eliminate a bunch of svm=>vcpu
reflection.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the "raw" helper to read the vAPIC register after an APIC-write trap
VM-Exit. Hardware is responsible for vetting the write, and the caller
is responsible for sanitizing the offset. This is a functional change,
as it means KVM will consume whatever happens to be in the vAPIC page if
the write was dropped by hardware. But, unless userspace deliberately
wrote garbage into the vAPIC page via KVM_SET_LAPIC, the value should be
zero since it's not writable by the guest.
This aligns common x86 with SVM's AVIC logic, i.e. paves the way for
using the nodecode path to handle APIC-write traps when AVIC is enabled.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the vAPIC offset adjustments done in the APIC-write trap path from
common x86 to VMX in anticipation of using the nodecode path for SVM's
AVIC. The adjustment reflects hardware behavior, i.e. it's technically a
property of VMX, no common x86. SVM's AVIC behavior is identical, so
it's a bit of a moot point, the goal is purely to make it easier to
understand why the adjustment is ok.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulating writes to SELF_IPI with a write to ICR has an unwanted side effect:
the value of ICR in vAPIC page gets changed. The lists SELF_IPI as write-only,
with no associated MMIO offset, so any write should have no visible side
effect in the vAPIC page.
Reported-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In emulation of writing to cr8, one of the lowest four bits in TPR[3:0]
is kept.
According to Intel SDM 10.8.6.1(baremetal scenario):
"APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0";
and SDM 28.3(use TPR shadow):
"MOV to CR8. The instruction stores bits 3:0 of its source operand into
bits 7:4 of VTPR; the remainder of VTPR (bits 3:0 and bits 31:8) are
cleared.";
and AMD's APM 16.6.4:
"Task Priority Sub-class (TPS)-Bits 3 : 0. The TPS field indicates the
current sub-priority to be used when arbitrating lowest-priority messages.
This field is written with zero when TPR is written using the architectural
CR8 register.";
so in KVM emulated scenario, clear TPR[3:0] to make a consistent behavior
as in other scenarios.
This doesn't impact evaluation and delivery of pending virtual interrupts
because processor does not use the processor-priority sub-class to
determine which interrupts to delivery and which to inhibit.
Sub-class is used by hardware to arbitrate lowest priority interrupts,
but KVM just does a round-robin style delivery.
Fixes: b93463aa59 ("KVM: Accelerated apic support")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220210094506.20181-1-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For both CR0 and CR4, disassociate the TLB flush logic from the
MMU role logic. Instead of relying on kvm_mmu_reset_context() being
a superset of various TLB flushes (which is not necessarily going to
be the case in the future), always call it if the role changes
but also set the various TLB flush requests according to what is
in the manual.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When sending a call-function IPI-many to vCPUs, yield to the
IPI target vCPU which is marked as preempted.
but when emulating HLT, an idling vCPU will be voluntarily
scheduled out and mark as preempted from the guest kernel
perspective. yielding to idle vCPU is pointless and increase
unnecessary vmexit, maybe miss the true preempted vCPU
so yield to IPI target vCPU only if vCPU is busy and preempted
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Message-Id: <1644380201-29423-1-git-send-email-lirongqing@baidu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When Linux runs as an Isolated VM on Hyper-V, it supports AMD SEV-SNP
but it's partially enlightened, i.e. cc_platform_has(
CC_ATTR_GUEST_MEM_ENCRYPT) is true but sev_active() is false.
Commit 4d96f91091 per se is good, but with it now
kvm_setup_vsyscall_timeinfo() -> kvmclock_init_mem() calls
set_memory_decrypted(), and later gets stuck when trying to zere out
the pages pointed by 'hvclock_mem', if Linux runs as an Isolated VM on
Hyper-V. The cause is that here now the Linux VM should no longer access
the original guest physical addrss (GPA); instead the VM should do
memremap() and access the original GPA + ms_hyperv.shared_gpa_boundary:
see the example code in drivers/hv/connection.c: vmbus_connect() or
drivers/hv/ring_buffer.c: hv_ringbuffer_init(). If the VM tries to
access the original GPA, it keepts getting injected a fault by Hyper-V
and gets stuck there.
Here the issue happens only when the VM has >=65 vCPUs, because the
global static array hv_clock_boot[] can hold 64 "struct
pvclock_vsyscall_time_info" (the sizeof of the struct is 64 bytes), so
kvmclock_init_mem() only allocates memory in the case of vCPUs > 64.
Since the 'hvclock_mem' pages are only useful when the kvm clock is
supported by the underlying hypervisor, fix the issue by returning
early when Linux VM runs on Hyper-V, which doesn't support kvm clock.
Fixes: 4d96f91091 ("x86/sev: Replace occurrences of sev_active() with cc_platform_has()")
Tested-by: Andrea Parri (Microsoft) <parri.andrea@gmail.com>
Signed-off-by: Andrea Parri (Microsoft) <parri.andrea@gmail.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Message-Id: <20220225084600.17817-1-decui@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even if "no-kvmclock" is passed in cmdline parameter, the guest kernel
still allocates hvclock_mem which is scaled by the number of vCPUs,
let's check kvmclock enable in advance to avoid this memory waste.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1645520523-30814-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MWAIT is advertised in host is not overcommitted scenario, however, PV
TLB/sched yield should be enabled in host overcommitted scenario. Let's
add the MWAIT checking when enabling PV TLB/sched yield.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1645777780-2581-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Correctly synchronise PMR and co on PSCI CPU_SUSPEND
- Skip tests that depend on GICv3 when the HW isn't available
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmIY1HMPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD4LEP/R2R5nvZwaiJIcVopzJd4ayN16bBL6qCxXWm
XsuMqdE8g/Rju3sxR/qtomDgB3GJoYpCyY28rrmVli0WBZRt9icFE1cnqUMbv5g0
Iyd+RS79LcKU6OMakAyjYX0NNwhGHr1mdD+gP8NSMny+2XWQSVcUtTVZOjSprI9L
zFNtJxPs1wfCp3WOWF668dgrBi8TsPHte2y0110+BcrY1rzJF0HXZm8YimlLakOG
Pk98dbpGMV1aKog5p9YgE3tP0oMjUcf7h+EZxuQmKF7WeFCfVg1M1xlovxRq/oEg
6KDUwUnNcDOtjUQ0pmCIPwm+rHJjlkEd+1MjZPf9L6fU0lPXmFN/DEawTh3iAsB+
xAaijEb5ImtgQgyhnDYwr5g307iXmrgSwGZKue0WOA2CTtryIXqdE02TqwZZHprm
MmAaUBUKbLGVMxd0sImsnrHUM1nNOHnD0IDEUwRLbAHOjm0u8rRK6ewV/A2O66Zz
A+AVpBZ3wd4jKkrN509d4TqomegXZQDL7hDHSgWPJDWQvOe0dFdWPJtjtamOg9Bq
+DVdXfwhQR7pHQIQbufIL+80Pgv7oBdEVSbtOJL+O+xkiSiDwHwkPdJwkB/01QMm
/f6oytJ/Kkhs+G+W6rn/bo/W1thgCBSnXntUz4qs+Cfpl4QDOIFvqMmwDdOHOzcN
9WrR6DZg
=Nyln
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.17-4' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.17, take #4
- Correctly synchronise PMR and co on PSCI CPU_SUSPEND
- Skip tests that depend on GICv3 when the HW isn't available
* kvm-arm64/psci-1.1:
: .
: Limited PSCI-1.1 support from Will Deacon:
:
: This small series exposes the PSCI SYSTEM_RESET2 call to guests, which
: allows the propagation of a "reset_type" and a "cookie" back to the VMM.
: Although Linux guests only ever pass 0 for the type ("SYSTEM_WARM_RESET"),
: the vendor-defined range can be used by a bootloader to provide additional
: information about the reset, such as an error code.
: .
KVM: arm64: Remove unneeded semicolons
KVM: arm64: Indicate SYSTEM_RESET2 in kvm_run::system_event flags field
KVM: arm64: Expose PSCI SYSTEM_RESET2 call to the guest
KVM: arm64: Bump guest PSCI version to 1.1
Signed-off-by: Marc Zyngier <maz@kernel.org>
This patch enables the ultravisor adapter interruption vitualization
support indicated by UV feature BIT_UV_FEAT_AIV. This allows ISC
interruption injection directly into the GISA IPM for PV kvm guests.
Hardware that does not support this feature will continue to use the
UV interruption interception method to deliver ISC interruptions to
PV kvm guests. For this purpose, the ECA_AIV bit for all guest cpus
will be cleared and the GISA will be disabled during PV CPU setup.
In addition a check in __inject_io() has been removed. That reduces the
required instructions for interruption handling for PV and traditional
kvm guests.
Signed-off-by: Michael Mueller <mimu@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20220209152217.1793281-2-mimu@linux.ibm.com
Reviewed-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@linux.ibm.com>
For cleanliness, do not leave a stale GVA in the cache after all the roots are
cleared. In practice, kvm_mmu_load will go through kvm_mmu_sync_roots if
paging is on, and will not use vcpu_match_mmio_gva at all if paging is off.
However, leaving data in the cache might cause bugs in the future.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since the guest PGD is now loaded after the MMU has been set up
completely, the desired role for a cache hit is simply the current
mmu_role. There is no need to compute it again, so __kvm_mmu_new_pgd
can be folded in kvm_mmu_new_pgd.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that __kvm_mmu_new_pgd does not look at the MMU's root_level and
shadow_root_level anymore, pull the PGD load after the initialization of
the shadow MMUs.
Besides being more intuitive, this enables future simplifications
and optimizations because it's not necessary anymore to compute the
role outside kvm_init_mmu. In particular, kvm_mmu_reset_context was not
attempting to use a cached PGD to avoid having to figure out the new role.
With this change, it could follow what nested_{vmx,svm}_load_cr3 are doing,
and avoid unloading all the cached roots.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Right now, PGD caching avoids placing a PAE root in the cache by using the
old value of mmu->root_level and mmu->shadow_root_level; it does not look
for a cached PGD if the old root is a PAE one, and then frees it using
kvm_mmu_free_roots.
Change the logic instead to free the uncacheable root early.
This way, __kvm_new_mmu_pgd is able to look up the cache when going from
32-bit to 64-bit (if there is a hit, the invalid root becomes the least
recently used). An example of this is nested virtualization with shadow
paging, when a 64-bit L1 runs a 32-bit L2.
As a side effect (which is actually the reason why this patch was
written), PGD caching does not use the old value of mmu->root_level
and mmu->shadow_root_level anymore.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These functions only operate on a given MMU, of which there is more
than one in a vCPU (we care about two, because the third does not have
any roots and is only used to walk guest page tables). They do need a
struct kvm in order to lock the mmu_lock, but they do not needed anything
else in the struct kvm_vcpu. So, pass the vcpu->kvm directly to them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Right now, PGD caching requires a complicated dance of first computing
the MMU role and passing it to __kvm_mmu_new_pgd(), and then separately calling
kvm_init_mmu().
Part of this is due to kvm_mmu_free_roots using mmu->root_level and
mmu->shadow_root_level to distinguish whether the page table uses a single
root or 4 PAE roots. Because kvm_init_mmu() can overwrite mmu->root_level,
kvm_mmu_free_roots() must be called before kvm_init_mmu().
However, even after kvm_init_mmu() there is a way to detect whether the
page table may hold PAE roots, as root.hpa isn't backed by a shadow when
it points at PAE roots. Using this method results in simpler code, and
is one less obstacle in moving all calls to __kvm_mmu_new_pgd() after the
MMU has been initialized.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.
The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN and bail if KVM attempts to free a root that isn't backed by a shadow
page. KVM allocates a bare page for "special" roots, e.g. when using PAE
paging or shadowing 2/3/4-level page tables with 4/5-level, and so root_hpa
will be valid but won't be backed by a shadow page. It's all too easy to
blindly call mmu_free_root_page() on root_hpa, be nice and WARN instead of
crashing KVM and possibly the kernel.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enabling async page faults is nonsensical if paging is disabled, but
it is allowed because CR0.PG=0 does not clear the async page fault
MSR. Just ignore them and only use the artificial halt state,
similar to what happens in guest mode if async #PF vmexits are disabled.
Given the increasingly complex logic, and the nicer code if the new
"if" is placed last, opportunistically change the "||" into a chain
of "if (...) return false" statements.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While the guest runs, EFER.LME cannot change unless CR0.PG is clear, and
therefore EFER.NX is the only bit that can affect the MMU role. However,
set_efer accepts a host-initiated change to EFER.LME even with CR0.PG=1.
In that case, the MMU has to be reset.
Fixes: 11988499e6 ("KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes")
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On a VM with PMU disabled via KVM_CAP_PMU_CONFIG, the PMU should not be
usable by the guest.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-4-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Carve out portion of vm_create_default so that selftests can modify
a "default" VM prior to creating vcpus.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-3-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new capability, KVM_CAP_PMU_CAPABILITY, that takes a bitmask of
settings/features to allow userspace to configure PMU virtualization on
a per-VM basis. For now, support a single flag, KVM_PMU_CAP_DISABLE,
to allow disabling PMU virtualization for a VM even when KVM is configured
with enable_pmu=true a module level.
To keep KVM simple, disallow changing VM's PMU configuration after vCPUs
have been created.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-2-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cast kvm_x86_ops.func to 'void *' when updating KVM static calls that are
conditionally patched to __static_call_return0(). clang complains about
using mismatching pointers in the ternary operator, which breaks the
build when compiling with CONFIG_KVM_WERROR=y.
>> arch/x86/include/asm/kvm-x86-ops.h:82:1: warning: pointer type mismatch
('bool (*)(struct kvm_vcpu *)' and 'void *') [-Wpointer-type-mismatch]
Fixes: 5be2226f41 ("KVM: x86: allow defining return-0 static calls")
Reported-by: Like Xu <like.xu.linux@gmail.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: David Dunn <daviddunn@google.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Message-Id: <20220223162355.3174907-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VM worker kthreads can linger in the VM process's cgroup for sometime
after KVM terminates the VM process.
KVM terminates the worker kthreads by calling kthread_stop() which waits
on the 'exited' completion, triggered by exit_mm(), via mm_release(), in
do_exit() during the kthread's exit. However, these kthreads are
removed from the cgroup using the cgroup_exit() which happens after the
exit_mm(). Therefore, A VM process can terminate in between the
exit_mm() and cgroup_exit() calls, leaving only worker kthreads in the
cgroup.
Moving worker kthreads back to the original cgroup (kthreadd_task's
cgroup) makes sure that the cgroup is empty as soon as the main VM
process is terminated.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220222054848.563321-1-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
From: Peng Hao <flyingpeng@tencent.com>
Remove a redundant 'cpu' declaration from inside an if-statement that
that shadows an identical declaration at function scope. Both variables
are used as scratch variables in for_each_*_cpu() loops, thus there's no
harm in sharing a variable.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220222103954.70062-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix a comment documenting the memory barrier related to clearing a
loaded_vmcs; loaded_vmcs tracks the host CPU the VMCS is loaded on via
the field 'cpu', it doesn't have a 'vcpu' field.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220222104029.70129-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make sure nested_vmx_hardware_setup/unsetup() are called in pairs under
the same conditions. Calling nested_vmx_hardware_unsetup() when nested
is false "works" right now because it only calls free_page() on zero-
initialized pointers, but it's possible that more code will be added to
nested_vmx_hardware_unsetup() in the future.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220222104054.70286-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The arch_timer and vgic_irq kselftests assume that they can create a
vgic-v3, using the library function vgic_v3_setup() which aborts with a
test failure if it is not possible to do so. Since vgic-v3 can only be
instantiated on systems where the host has GICv3 this leads to false
positives on older systems where that is not the case.
Fix this by changing vgic_v3_setup() to return an error if the vgic can't
be instantiated and have the callers skip if this happens. We could also
exit flagging a skip in vgic_v3_setup() but this would prevent future test
cases conditionally deciding which GIC to use or generally doing more
complex output.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Tested-by: Ricardo Koller <ricarkol@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220223131624.1830351-1-broonie@kernel.org
It has been proven on practice that at least Windows Server 2019 tries
using HVCALL_SEND_IPI_EX in 'XMM fast' mode when it has more than 64 vCPUs
and it needs to send an IPI to a vCPU > 63. Similarly to other XMM Fast
hypercalls (HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}{,_EX}), this
information is missing in TLFS as of 6.0b. Currently, KVM returns an error
(HV_STATUS_INVALID_HYPERCALL_INPUT) and Windows crashes.
Note, HVCALL_SEND_IPI is a 'standard' fast hypercall (not 'XMM fast') as
all its parameters fit into RDX:R8 and this is handled by KVM correctly.
Cc: stable@vger.kernel.org # 5.14.x: 3244867af8: KVM: x86: Ignore sparse banks size for an "all CPUs", non-sparse IPI req
Cc: stable@vger.kernel.org # 5.14.x
Fixes: d8f5537a88 ("KVM: hyper-v: Advertise support for fast XMM hypercalls")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220222154642.684285-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When TLB flush hypercalls (HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX are
issued in 'XMM fast' mode, the maximum number of allowed sparse_banks is
not 'HV_HYPERCALL_MAX_XMM_REGISTERS - 1' (5) but twice as many (10) as each
XMM register is 128 bit long and can hold two 64 bit long banks.
Cc: stable@vger.kernel.org # 5.14.x
Fixes: 5974565bc2 ("KVM: x86: kvm_hv_flush_tlb use inputs from XMM registers")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220222154642.684285-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'struct kvm_hv_hcall' has all the required information already,
there's no need to pass 'ex' additionally.
No functional change intended.
Cc: stable@vger.kernel.org # 5.14.x
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220222154642.684285-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'struct kvm_hv_hcall' has all the required information already,
there's no need to pass 'ex' additionally.
No functional change intended.
Cc: stable@vger.kernel.org # 5.14.x
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220222154642.684285-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert back to refreshing vmcs.HOST_CR3 immediately prior to VM-Enter.
The PCID (ASID) part of CR3 can be bumped without KVM being scheduled
out, as the kernel will switch CR3 during __text_poke(), e.g. in response
to a static key toggling. If switch_mm_irqs_off() chooses a new ASID for
the mm associate with KVM, KVM will do VM-Enter => VM-Exit with a stale
vmcs.HOST_CR3.
Add a comment to explain why KVM must wait until VM-Enter is imminent to
refresh vmcs.HOST_CR3.
The following splat was captured by stashing vmcs.HOST_CR3 in kvm_vcpu
and adding a WARN in load_new_mm_cr3() to fire if a new ASID is being
loaded for the KVM-associated mm while KVM has a "running" vCPU:
static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
{
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
...
WARN(vcpu && (vcpu->cr3 & GENMASK(11, 0)) != (new_mm_cr3 & GENMASK(11, 0)) &&
(vcpu->cr3 & PHYSICAL_PAGE_MASK) == (new_mm_cr3 & PHYSICAL_PAGE_MASK),
"KVM is hosed, loading CR3 = %lx, vmcs.HOST_CR3 = %lx", new_mm_cr3, vcpu->cr3);
}
------------[ cut here ]------------
KVM is hosed, loading CR3 = 8000000105393004, vmcs.HOST_CR3 = 105393003
WARNING: CPU: 4 PID: 20717 at arch/x86/mm/tlb.c:291 load_new_mm_cr3+0x82/0xe0
Modules linked in: vhost_net vhost vhost_iotlb tap kvm_intel
CPU: 4 PID: 20717 Comm: stable Tainted: G W 5.17.0-rc3+ #747
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:load_new_mm_cr3+0x82/0xe0
RSP: 0018:ffffc9000489fa98 EFLAGS: 00010082
RAX: 0000000000000000 RBX: 8000000105393004 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff888277d1b788
RBP: 0000000000000004 R08: ffff888277d1b780 R09: ffffc9000489f8b8
R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
R13: ffff88810678a800 R14: 0000000000000004 R15: 0000000000000c33
FS: 00007fa9f0e72700(0000) GS:ffff888277d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000001001b5003 CR4: 0000000000172ea0
Call Trace:
<TASK>
switch_mm_irqs_off+0x1cb/0x460
__text_poke+0x308/0x3e0
text_poke_bp_batch+0x168/0x220
text_poke_finish+0x1b/0x30
arch_jump_label_transform_apply+0x18/0x30
static_key_slow_inc_cpuslocked+0x7c/0x90
static_key_slow_inc+0x16/0x20
kvm_lapic_set_base+0x116/0x190
kvm_set_apic_base+0xa5/0xe0
kvm_set_msr_common+0x2f4/0xf60
vmx_set_msr+0x355/0xe70 [kvm_intel]
kvm_set_msr_ignored_check+0x91/0x230
kvm_emulate_wrmsr+0x36/0x120
vmx_handle_exit+0x609/0x6c0 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0x146f/0x1b80
kvm_vcpu_ioctl+0x279/0x690
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
---[ end trace 0000000000000000 ]---
This reverts commit 15ad9762d6.
Fixes: 15ad9762d6 ("KVM: VMX: Save HOST_CR3 in vmx_prepare_switch_to_guest()")
Reported-by: Wanpeng Li <kernellwp@gmail.com>
Cc: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Lai Jiangshan <jiangshanlai@gmail.com>
Message-Id: <20220224191917.3508476-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Undo a nested VMX fix as a step toward reverting the commit it fixed,
15ad9762d6 ("KVM: VMX: Save HOST_CR3 in vmx_prepare_switch_to_guest()"),
as the underlying premise that "host CR3 in the vcpu thread can only be
changed when scheduling" is wrong.
This reverts commit a9f2705ec8.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220224191917.3508476-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>