15 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Peter Zijlstra
|
c2b3496bb3 |
x86/ldt: Rework locking
The LDT is duplicated on fork() and on exec(), which is wrong as exec() should start from a clean state, i.e. without LDT. To fix this the LDT duplication code will be moved into arch_dup_mmap() which is only called for fork(). This introduces a locking problem. arch_dup_mmap() holds mmap_sem of the parent process, but the LDT duplication code needs to acquire mm->context.lock to access the LDT data safely, which is the reverse lock order of write_ldt() where mmap_sem nests into context.lock. Solve this by introducing a new rw semaphore which serializes the read/write_ldt() syscall operations and use context.lock to protect the actual installment of the LDT descriptor. So context.lock stabilizes mm->context.ldt and can nest inside of the new semaphore or mmap_sem. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: dan.j.williams@intel.com Cc: hughd@google.com Cc: keescook@google.com Cc: kirill.shutemov@linux.intel.com Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Andy Lutomirski
|
f39681ed0f |
x86/mm: Give each mm TLB flush generation a unique ID
This adds two new variables to mmu_context_t: ctx_id and tlb_gen. ctx_id uniquely identifies the mm_struct and will never be reused. For a given mm_struct (and hence ctx_id), tlb_gen is a monotonic count of the number of times that a TLB flush has been requested. The pair (ctx_id, tlb_gen) can be used as an identifier for TLB flush actions and will be used in subsequent patches to reliably determine whether all needed TLB flushes have occurred on a given CPU. This patch is split out for ease of review. By itself, it has no real effect other than creating and updating the new variables. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Nadav Amit <nadav.amit@gmail.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/413a91c24dab3ed0caa5f4e4d017d87b0857f920.1498751203.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
ce4a4e565f |
x86/mm: Remove the UP asm/tlbflush.h code, always use the (formerly) SMP code
The UP asm/tlbflush.h generates somewhat nicer code than the SMP version. Aside from that, it's fallen quite a bit behind the SMP code: - flush_tlb_mm_range() didn't flush individual pages if the range was small. - The lazy TLB code was much weaker. This usually wouldn't matter, but, if a kernel thread flushed its lazy "active_mm" more than once (due to reclaim or similar), it wouldn't be unlazied and would instead pointlessly flush repeatedly. - Tracepoints were missing. Aside from that, simply having the UP code around was a maintanence burden, since it means that any change to the TLB flush code had to make sure not to break it. Simplify everything by deleting the UP code. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Nadav Amit <namit@vmware.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mark Rutland
|
cb02de96ec |
x86/mpx: Move bd_addr to mm_context_t
Currently bd_addr lives in mm_struct, which is otherwise architecture independent. Architecture-specific data is supposed to live within mm_context_t (itself contained in mm_struct). Other x86-specific context like the pkey accounting data lives in mm_context_t, and there's no readon the MPX data can't also live there. So as to keep the arch-specific data togather, and to set a good example for others, this patch moves bd_addr into x86's mm_context_t. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1481892055-24596-1-git-send-email-mark.rutland@arm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Dave Hansen
|
e8c24d3a23 |
x86/pkeys: Allocation/free syscalls
This patch adds two new system calls: int pkey_alloc(unsigned long flags, unsigned long init_access_rights) int pkey_free(int pkey); These implement an "allocator" for the protection keys themselves, which can be thought of as analogous to the allocator that the kernel has for file descriptors. The kernel tracks which numbers are in use, and only allows operations on keys that are valid. A key which was not obtained by pkey_alloc() may not, for instance, be passed to pkey_mprotect(). These system calls are also very important given the kernel's use of pkeys to implement execute-only support. These help ensure that userspace can never assume that it has control of a key unless it first asks the kernel. The kernel does not promise to preserve PKRU (right register) contents except for allocated pkeys. The 'init_access_rights' argument to pkey_alloc() specifies the rights that will be established for the returned pkey. For instance: pkey = pkey_alloc(flags, PKEY_DENY_WRITE); will allocate 'pkey', but also sets the bits in PKRU[1] such that writing to 'pkey' is already denied. The kernel does not prevent pkey_free() from successfully freeing in-use pkeys (those still assigned to a memory range by pkey_mprotect()). It would be expensive to implement the checks for this, so we instead say, "Just don't do it" since sane software will never do it anyway. Any piece of userspace calling pkey_alloc() needs to be prepared for it to fail. Why? pkey_alloc() returns the same error code (ENOSPC) when there are no pkeys and when pkeys are unsupported. They can be unsupported for a whole host of reasons, so apps must be prepared for this. Also, libraries or LD_PRELOADs might steal keys before an application gets access to them. This allocation mechanism could be implemented in userspace. Even if we did it in userspace, we would still need additional user/kernel interfaces to tell userspace which keys are being used by the kernel internally (such as for execute-only mappings). Having the kernel provide this facility completely removes the need for these additional interfaces, or having an implementation of this in userspace at all. Note that we have to make changes to all of the architectures that do not use mman-common.h because we use the new PKEY_DENY_ACCESS/WRITE macros in arch-independent code. 1. PKRU is the Protection Key Rights User register. It is a usermode-accessible register that controls whether writes and/or access to each individual pkey is allowed or denied. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: linux-arch@vger.kernel.org Cc: Dave Hansen <dave@sr71.net> Cc: arnd@arndb.de Cc: linux-api@vger.kernel.org Cc: linux-mm@kvack.org Cc: luto@kernel.org Cc: akpm@linux-foundation.org Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/20160729163015.444FE75F@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Andy Lutomirski
|
352b78c62f |
x86/vdso: Track each mm's loaded vDSO image as well as its base
As we start to do more intelligent things with the vDSO at runtime (as opposed to just at mm initialization time), we'll need to know which vDSO is in use. In principle, we could guess based on the mm type, but that's over-complicated and error-prone. Instead, just track it in the mmu context. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/c99ac48681bad709ca7ad5ee899d9042a3af6b00.1451446564.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
a5b9e5a2f1 |
x86/ldt: Make modify_ldt() optional
The modify_ldt syscall exposes a large attack surface and is unnecessary for modern userspace. Make it optional. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: security@kernel.org <security@kernel.org> Cc: xen-devel <xen-devel@lists.xen.org> Link: http://lkml.kernel.org/r/a605166a771c343fd64802dece77a903507333bd.1438291540.git.luto@kernel.org [ Made MATH_EMULATION dependent on MODIFY_LDT_SYSCALL. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
37868fe113 |
x86/ldt: Make modify_ldt synchronous
modify_ldt() has questionable locking and does not synchronize threads. Improve it: redesign the locking and synchronize all threads' LDTs using an IPI on all modifications. This will dramatically slow down modify_ldt in multithreaded programs, but there shouldn't be any multithreaded programs that care about modify_ldt's performance in the first place. This fixes some fallout from the CVE-2015-5157 fixes. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: security@kernel.org <security@kernel.org> Cc: <stable@vger.kernel.org> Cc: xen-devel <xen-devel@lists.xen.org> Link: http://lkml.kernel.org/r/4c6978476782160600471bd865b318db34c7b628.1438291540.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
7911d3f7af |
perf/x86: Only allow rdpmc if a perf_event is mapped
We currently allow any process to use rdpmc. This significantly weakens the protection offered by PR_TSC_DISABLED, and it could be helpful to users attempting to exploit timing attacks. Since we can't enable access to individual counters, use a very coarse heuristic to limit access to rdpmc: allow access only when a perf_event is mmapped. This protects seccomp sandboxes. There is plenty of room to further tighen these restrictions. For example, this allows rdpmc for any x86_pmu event, but it's only useful for self-monitoring tasks. As a side effect, cap_user_rdpmc will now be false for AMD uncore events. This isn't a real regression, since .event_idx is disabled for these events anyway for the time being. Whenever that gets re-added, the cap_user_rdpmc code can be adjusted or refactored accordingly. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Vince Weaver <vince@deater.net> Cc: "hillf.zj" <hillf.zj@alibaba-inc.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/a2bdb3cf3a1d70c26980d7c6dddfbaa69f3182bf.1414190806.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andy Lutomirski
|
6f121e548f |
x86, vdso: Reimplement vdso.so preparation in build-time C
Currently, vdso.so files are prepared and analyzed by a combination of objcopy, nm, some linker script tricks, and some simple ELF parsers in the kernel. Replace all of that with plain C code that runs at build time. All five vdso images now generate .c files that are compiled and linked in to the kernel image. This should cause only one userspace-visible change: the loaded vDSO images are stripped more heavily than they used to be. Everything outside the loadable segment is dropped. In particular, this causes the section table and section name strings to be missing. This should be fine: real dynamic loaders don't load or inspect these tables anyway. The result is roughly equivalent to eu-strip's --strip-sections option. The purpose of this change is to enable the vvar and hpet mappings to be moved to the page following the vDSO load segment. Currently, it is possible for the section table to extend into the page after the load segment, so, if we map it, it risks overlapping the vvar or hpet page. This happens whenever the load segment is just under a multiple of PAGE_SIZE. The only real subtlety here is that the old code had a C file with inline assembler that did 'call VDSO32_vsyscall' and a linker script that defined 'VDSO32_vsyscall = __kernel_vsyscall'. This most likely worked by accident: the linker script entry defines a symbol associated with an address as opposed to an alias for the real dynamic symbol __kernel_vsyscall. That caused ld to relocate the reference at link time instead of leaving an interposable dynamic relocation. Since the VDSO32_vsyscall hack is no longer needed, I now use 'call __kernel_vsyscall', and I added -Bsymbolic to make it work. vdso2c will generate an error and abort the build if the resulting image contains any dynamic relocations, so we won't silently generate bad vdso images. (Dynamic relocations are a problem because nothing will even attempt to relocate the vdso.) Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/2c4fcf45524162a34d87fdda1eb046b2a5cecee7.1399317206.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> |
||
Richard Kennedy
|
af6a25f0e1 |
x86: Reorder mm_context_t to remove x86_64 alignment padding and thus shrink mm_struct
Reorder mm_context_t to remove alignment padding on 64 bit builds shrinking its size from 64 to 56 bytes. This allows mm_struct to shrink from 840 to 832 bytes, so using one fewer cache lines, and getting more objects per slab when using slub. slabinfo mm_struct reports before :- Sizes (bytes) Slabs ----------------------------------- Object : 840 Total : 7 SlabObj: 896 Full : 1 SlabSiz: 16384 Partial: 4 Loss : 56 CpuSlab: 2 Align : 64 Objects: 18 after :- Sizes (bytes) Slabs ---------------------------------- Object : 832 Total : 7 SlabObj: 832 Full : 1 SlabSiz: 16384 Partial: 4 Loss : 0 CpuSlab: 2 Align : 64 Objects: 19 Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk> Cc: wilsons@start.ca Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Link: http://lkml.kernel.org/r/1306244999.1999.5.camel@castor.rsk Signed-off-by: Ingo Molnar <mingo@elte.hu> |
||
Stephen Wilson
|
c2ef45df3b |
x86: add context tag to mark mm when running a task in 32-bit compatibility mode
This tag is intended to mirror the thread info TIF_IA32 flag. Will be used to identify mm's which support 32 bit tasks running in compatibility mode without requiring a reference to the task itself. Signed-off-by: Stephen Wilson <wilsons@start.ca> Reviewed-by: Michel Lespinasse <walken@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
H. Peter Anvin
|
1965aae3c9 |
x86: Fix ASM_X86__ header guards
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since: a. the double underscore is ugly and pointless. b. no leading underscore violates namespace constraints. Signed-off-by: H. Peter Anvin <hpa@zytor.com> |
||
Al Viro
|
bb8985586b |
x86, um: ... and asm-x86 move
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: H. Peter Anvin <hpa@zytor.com> |