IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We already had the POOL_* constants, so deduplicate the older INPUT_POOL
ones. As well, fold EXTRACT_SIZE into the poolinfo enum, since it's
related.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
We no longer have an output pool. Rather, we have just a wakeup bits
threshold for /dev/random reads, presumably so that processes don't
hang. This value, random_write_wakeup_bits, is configurable anyway. So
all the no longer usefully named OUTPUT_POOL constants were doing was
setting a reasonable default for random_write_wakeup_bits. This commit
gets rid of the constants and just puts it all in the default value of
random_write_wakeup_bits.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Originally, the RNG used several pools, so having things abstracted out
over a generic entropy_store object made sense. These days, there's only
one input pool, and then an uneven mix of usage via the abstraction and
usage via &input_pool. Rather than this uneasy mixture, just get rid of
the abstraction entirely and have things always use the global. This
simplifies the code and makes reading it a bit easier.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This argument is always set to zero, as a result of us not caring about
keeping a certain amount reserved in the pool these days. So just remove
it and cleanup the function signatures.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
There were a few things added under the "if (fips_enabled)" banner,
which never really got completed, and the FIPS people anyway are
choosing a different direction. Rather than keep around this halfbaked
code, get rid of it so that we can focus on a single design of the RNG
rather than two designs.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Rather than using the userspace type, __uXX, switch to using uXX. And
rather than using variously chosen `char *` or `unsigned char *`, use
`u8 *` uniformly for things that aren't strings, in the case where we
are doing byte-by-byte traversal.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Now that we're only using one polynomial, we can cleanup its
representation into constants, instead of passing around pointers
dynamically to select different polynomials. This improves the codegen
and makes the code a bit more straightforward.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
At the moment, urandom_read() (used for /dev/urandom) resets crng_init_cnt
to zero when it is called at crng_init<2. This is inconsistent: We do it
for /dev/urandom reads, but not for the equivalent
getrandom(GRND_INSECURE).
(And worse, as Jason pointed out, we're only doing this as long as
maxwarn>0.)
crng_init_cnt is only read in crng_fast_load(); it is relevant at
crng_init==0 for determining when to switch to crng_init==1 (and where in
the RNG state array to write).
As far as I understand:
- crng_init==0 means "we have nothing, we might just be returning the same
exact numbers on every boot on every machine, we don't even have
non-cryptographic randomness; we should shove every bit of entropy we
can get into the RNG immediately"
- crng_init==1 means "well we have something, it might not be
cryptographic, but at least we're not gonna return the same data every
time or whatever, it's probably good enough for TCP and ASLR and stuff;
we now have time to build up actual cryptographic entropy in the input
pool"
- crng_init==2 means "this is supposed to be cryptographically secure now,
but we'll keep adding more entropy just to be sure".
The current code means that if someone is pulling data from /dev/urandom
fast enough at crng_init==0, we'll keep resetting crng_init_cnt, and we'll
never make forward progress to crng_init==1. It seems to be intended to
prevent an attacker from bruteforcing the contents of small individual RNG
inputs on the way from crng_init==0 to crng_init==1, but that's misguided;
crng_init==1 isn't supposed to provide proper cryptographic security
anyway, RNG users who care about getting secure RNG output have to wait
until crng_init==2.
This code was inconsistent, and it probably made things worse - just get
rid of it.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
RDRAND is not fast. RDRAND is actually quite slow. We've known this for
a while, which is why functions like get_random_u{32,64} were converted
to use batching of our ChaCha-based CRNG instead.
Yet CRNG extraction still includes a call to RDRAND, in the hot path of
every call to get_random_bytes(), /dev/urandom, and getrandom(2).
This call to RDRAND here seems quite superfluous. CRNG is already
extracting things based on a 256-bit key, based on good entropy, which
is then reseeded periodically, updated, backtrack-mutated, and so
forth. The CRNG extraction construction is something that we're already
relying on to be secure and solid. If it's not, that's a serious
problem, and it's unlikely that mixing in a measly 32 bits from RDRAND
is going to alleviate things.
And in the case where the CRNG doesn't have enough entropy yet, we're
already initializing the ChaCha key row with RDRAND in
crng_init_try_arch_early().
Removing the call to RDRAND improves performance on an i7-11850H by
370%. In other words, the vast majority of the work done by
extract_crng() prior to this commit was devoted to fetching 32 bits of
RDRAND.
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Previously, the ChaCha constants for the primary pool were only
initialized in crng_initialize_primary(), called by rand_initialize().
However, some randomness is actually extracted from the primary pool
beforehand, e.g. by kmem_cache_create(). Therefore, statically
initialize the ChaCha constants for the primary pool.
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: <linux-crypto@vger.kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Rather than an awkward combination of ifdefs and __maybe_unused, we can
ensure more source gets parsed, regardless of the configuration, by
using IS_ENABLED for the CONFIG_NUMA conditional code. This makes things
cleaner and easier to follow.
I've confirmed that on !CONFIG_NUMA, we don't wind up with excess code
by accident; the generated object file is the same.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
We print out "crng init done" for !TRUST_CPU, so we should also print
out the same for TRUST_CPU.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
If we're trusting bootloader randomness, crng_fast_load() is called by
add_hwgenerator_randomness(), which sets us to crng_init==1. However,
usually it is only called once for an initial 64-byte push, so bootloader
entropy will not mix any bytes into the input pool. So it's conceivable
that crng_init==1 when crng_initialize_primary() is called later, but
then the input pool is empty. When that happens, the crng state key will
be overwritten with extracted output from the empty input pool. That's
bad.
In contrast, if we're not trusting bootloader randomness, we call
crng_slow_load() *and* we call mix_pool_bytes(), so that later
crng_initialize_primary() isn't drawing on nothing.
In order to prevent crng_initialize_primary() from extracting an empty
pool, have the trusted bootloader case mirror that of the untrusted
bootloader case, mixing the input into the pool.
[linux@dominikbrodowski.net: rewrite commit message]
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
When crng_fast_load() is called by add_hwgenerator_randomness(), we
currently will advance to crng_init==1 once we've acquired 64 bytes, and
then throw away the rest of the buffer. Usually, that is not a problem:
When add_hwgenerator_randomness() gets called via EFI or DT during
setup_arch(), there won't be any IRQ randomness. Therefore, the 64 bytes
passed by EFI exactly matches what is needed to advance to crng_init==1.
Usually, DT seems to pass 64 bytes as well -- with one notable exception
being kexec, which hands over 128 bytes of entropy to the kexec'd kernel.
In that case, we'll advance to crng_init==1 once 64 of those bytes are
consumed by crng_fast_load(), but won't continue onward feeding in bytes
to progress to crng_init==2. This commit fixes the issue by feeding
any leftover bytes into the next phase in add_hwgenerator_randomness().
[linux@dominikbrodowski.net: rewrite commit message]
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
If the bootloader supplies sufficient material and crng_reseed() is called
very early on, but not too early that wqs aren't available yet, then we
might transition to crng_init==2 before rand_initialize()'s call to
crng_initialize_primary() made. Then, when crng_initialize_primary() is
called, if we're trusting the CPU's RDRAND instructions, we'll
needlessly reinitialize the RNG and emit a message about it. This is
mostly harmless, as numa_crng_init() will allocate and then free what it
just allocated, and excessive calls to invalidate_batched_entropy()
aren't so harmful. But it is funky and the extra message is confusing,
so avoid the re-initialization all together by checking for crng_init <
2 in crng_initialize_primary(), just as we already do in crng_reseed().
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Currently, if CONFIG_RANDOM_TRUST_BOOTLOADER is enabled, multiple calls
to add_bootloader_randomness() are broken and can cause a NULL pointer
dereference, as noted by Ivan T. Ivanov. This is not only a hypothetical
problem, as qemu on arm64 may provide bootloader entropy via EFI and via
devicetree.
On the first call to add_hwgenerator_randomness(), crng_fast_load() is
executed, and if the seed is long enough, crng_init will be set to 1.
On subsequent calls to add_bootloader_randomness() and then to
add_hwgenerator_randomness(), crng_fast_load() will be skipped. Instead,
wait_event_interruptible() and then credit_entropy_bits() will be called.
If the entropy count for that second seed is large enough, that proceeds
to crng_reseed().
However, both wait_event_interruptible() and crng_reseed() depends
(at least in numa_crng_init()) on workqueues. Therefore, test whether
system_wq is already initialized, which is a sufficient indicator that
workqueue_init_early() has progressed far enough.
If we wind up hitting the !system_wq case, we later want to do what
would have been done there when wqs are up, so set a flag, and do that
work later from the rand_initialize() call.
Reported-by: Ivan T. Ivanov <iivanov@suse.de>
Fixes: 18b915ac6b0a ("efi/random: Treat EFI_RNG_PROTOCOL output as bootloader randomness")
Cc: stable@vger.kernel.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
[Jason: added crng_need_done state and related logic.]
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
By using `char` instead of `unsigned char`, certain platforms will sign
extend the byte when `w = rol32(*bytes++, input_rotate)` is called,
meaning that bit 7 is overrepresented when mixing. This isn't a real
problem (unless the mixer itself is already broken) since it's still
invertible, but it's not quite correct either. Fix this by using an
explicit unsigned type.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This commit addresses one of the lower hanging fruits of the RNG: its
usage of SHA1.
BLAKE2s is generally faster, and certainly more secure, than SHA1, which
has [1] been [2] really [3] very [4] broken [5]. Additionally, the
current construction in the RNG doesn't use the full SHA1 function, as
specified, and allows overwriting the IV with RDRAND output in an
undocumented way, even in the case when RDRAND isn't set to "trusted",
which means potential malicious IV choices. And its short length means
that keeping only half of it secret when feeding back into the mixer
gives us only 2^80 bits of forward secrecy. In other words, not only is
the choice of hash function dated, but the use of it isn't really great
either.
This commit aims to fix both of these issues while also keeping the
general structure and semantics as close to the original as possible.
Specifically:
a) Rather than overwriting the hash IV with RDRAND, we put it into
BLAKE2's documented "salt" and "personal" fields, which were
specifically created for this type of usage.
b) Since this function feeds the full hash result back into the
entropy collector, we only return from it half the length of the
hash, just as it was done before. This increases the
construction's forward secrecy from 2^80 to a much more
comfortable 2^128.
c) Rather than using the raw "sha1_transform" function alone, we
instead use the full proper BLAKE2s function, with finalization.
This also has the advantage of supplying 16 bytes at a time rather than
SHA1's 10 bytes, which, in addition to having a faster compression
function to begin with, means faster extraction in general. On an Intel
i7-11850H, this commit makes initial seeding around 131% faster.
BLAKE2s itself has the nice property of internally being based on the
ChaCha permutation, which the RNG is already using for expansion, so
there shouldn't be any issue with newness, funkiness, or surprising CPU
behavior, since it's based on something already in use.
[1] https://eprint.iacr.org/2005/010.pdf
[2] https://www.iacr.org/archive/crypto2005/36210017/36210017.pdf
[3] https://eprint.iacr.org/2015/967.pdf
[4] https://shattered.io/static/shattered.pdf
[5] https://www.usenix.org/system/files/sec20-leurent.pdf
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
_extract_crng() does plain loads of crng->init_time and
crng_global_init_time, which causes undefined behavior if
crng_reseed() and RNDRESEEDCRNG modify these corrently.
Use READ_ONCE() and WRITE_ONCE() to make the behavior defined.
Don't fix the race on crng->init_time by protecting it with crng->lock,
since it's not a problem for duplicate reseedings to occur. I.e., the
lockless access with READ_ONCE() is fine.
Fixes: d848e5f8e1eb ("random: add new ioctl RNDRESEEDCRNG")
Fixes: e192be9d9a30 ("random: replace non-blocking pool with a Chacha20-based CRNG")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
extract_crng() and crng_backtrack_protect() load crng_node_pool with a
plain load, which causes undefined behavior if do_numa_crng_init()
modifies it concurrently.
Fix this by using READ_ONCE(). Note: as per the previous discussion
https://lore.kernel.org/lkml/20211219025139.31085-1-ebiggers@kernel.org/T/#u,
READ_ONCE() is believed to be sufficient here, and it was requested that
it be used here instead of smp_load_acquire().
Also change do_numa_crng_init() to set crng_node_pool using
cmpxchg_release() instead of mb() + cmpxchg(), as the former is
sufficient here but is more lightweight.
Fixes: 1e7f583af67b ("random: make /dev/urandom scalable for silly userspace programs")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Since commit
ee3e00e9e7101 ("random: use registers from interrupted code for CPU's w/o a cycle counter")
the irq_flags argument is no longer used.
Remove unused irq_flags.
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: linux-hyperv@vger.kernel.org
Cc: x86@kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
The section at the top of random.c which documents the input functions
available does not document add_hwgenerator_randomness() which might lead
a reader to overlook it. Add a brief note about it.
Signed-off-by: Mark Brown <broonie@kernel.org>
[Jason: reorganize position of function in doc comment and also document
add_bootloader_randomness() while we're at it.]
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Remove some dead code that was left over following commit 90ea1c6436d2
("random: remove the blocking pool").
Cc: linux-crypto@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
On big endian CPUs, the ChaCha20-based CRNG is using the wrong
endianness for the ChaCha20 constants.
This doesn't matter cryptographically, but technically it means it's not
ChaCha20 anymore. Fix it to always use the standard constants.
Cc: linux-crypto@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Here is the large set of char/misc/whatever driver subsystem updates for
5.12-rc1. Over time it seems like this tree is collecting more and more
tiny driver subsystems in one place, making it easier for those
maintainers, which is why this is getting larger.
Included in here are:
- coresight driver updates
- habannalabs driver updates
- virtual acrn driver addition (proper acks from the x86
maintainers)
- broadcom misc driver addition
- speakup driver updates
- soundwire driver updates
- fpga driver updates
- amba driver updates
- mei driver updates
- vfio driver updates
- greybus driver updates
- nvmeem driver updates
- phy driver updates
- mhi driver updates
- interconnect driver udpates
- fsl-mc bus driver updates
- random driver fix
- some small misc driver updates (rtsx, pvpanic, etc.)
All of these have been in linux-next for a while, with the only reported
issue being a merge conflict in include/linux/mod_devicetable.h that you
will hit in your tree due to the dfl_device_id addition from the fpga
subsystem in here. The resolution should be simple.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCYDZf9w8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yk3xgCcCEN+pCJTum+uAzSNH3YKs/onaDgAnRSVwOUw
tNW6n1JhXLYl9f5JdhvS
=MOHs
-----END PGP SIGNATURE-----
Merge tag 'char-misc-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the large set of char/misc/whatever driver subsystem updates
for 5.12-rc1. Over time it seems like this tree is collecting more and
more tiny driver subsystems in one place, making it easier for those
maintainers, which is why this is getting larger.
Included in here are:
- coresight driver updates
- habannalabs driver updates
- virtual acrn driver addition (proper acks from the x86 maintainers)
- broadcom misc driver addition
- speakup driver updates
- soundwire driver updates
- fpga driver updates
- amba driver updates
- mei driver updates
- vfio driver updates
- greybus driver updates
- nvmeem driver updates
- phy driver updates
- mhi driver updates
- interconnect driver udpates
- fsl-mc bus driver updates
- random driver fix
- some small misc driver updates (rtsx, pvpanic, etc.)
All of these have been in linux-next for a while, with the only
reported issue being a merge conflict due to the dfl_device_id
addition from the fpga subsystem in here"
* tag 'char-misc-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (311 commits)
spmi: spmi-pmic-arb: Fix hw_irq overflow
Documentation: coresight: Add PID tracing description
coresight: etm-perf: Support PID tracing for kernel at EL2
coresight: etm-perf: Clarify comment on perf options
ACRN: update MAINTAINERS: mailing list is subscribers-only
regmap: sdw-mbq: use MODULE_LICENSE("GPL")
regmap: sdw: use no_pm routines for SoundWire 1.2 MBQ
regmap: sdw: use _no_pm functions in regmap_read/write
soundwire: intel: fix possible crash when no device is detected
MAINTAINERS: replace my with email with replacements
mhi: Fix double dma free
uapi: map_to_7segment: Update example in documentation
uio: uio_pci_generic: don't fail probe if pdev->irq equals to IRQ_NOTCONNECTED
drivers/misc/vmw_vmci: restrict too big queue size in qp_host_alloc_queue
firewire: replace tricky statement by two simple ones
vme: make remove callback return void
firmware: google: make coreboot driver's remove callback return void
firmware: xilinx: Use explicit values for all enum values
sample/acrn: Introduce a sample of HSM ioctl interface usage
virt: acrn: Introduce an interface for Service VM to control vCPU
...
When reseeding the CRNG periodically, arch_get_random_seed_long() is
called to obtain entropy from an architecture specific source if one
is implemented. In most cases, these are special instructions, but in
some cases, such as on ARM, we may want to back this using firmware
calls, which are considerably more expensive.
Another call to arch_get_random_seed_long() exists in the CRNG driver,
in add_interrupt_randomness(), which collects entropy by capturing
inter-interrupt timing and relying on interrupt jitter to provide
random bits. This is done by keeping a per-CPU state, and mixing in
the IRQ number, the cycle counter and the return address every time an
interrupt is taken, and mixing this per-CPU state into the entropy pool
every 64 invocations, or at least once per second. The entropy that is
gathered this way is credited as 1 bit of entropy. Every time this
happens, arch_get_random_seed_long() is invoked, and the result is
mixed in as well, and also credited with 1 bit of entropy.
This means that arch_get_random_seed_long() is called at least once
per second on every CPU, which seems excessive, and doesn't really
scale, especially in a virtualization scenario where CPUs may be
oversubscribed: in cases where arch_get_random_seed_long() is backed
by an instruction that actually goes back to a shared hardware entropy
source (such as RNDRRS on ARM), we will end up hitting it hundreds of
times per second.
So let's drop the call to arch_get_random_seed_long() from
add_interrupt_randomness(), and instead, rely on crng_reseed() to call
the arch hook to get random seed material from the platform.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20201105152944.16953-1-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2,
and <crypto/sha3.h> contains declarations for SHA-3.
This organization is inconsistent, but more importantly SHA-1 is no
longer considered to be cryptographically secure. So to the extent
possible, SHA-1 shouldn't be grouped together with any of the other SHA
versions, and usage of it should be phased out.
Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and
<crypto/sha2.h>, and make everyone explicitly specify whether they want
the declarations for SHA-1, SHA-2, or both.
This avoids making the SHA-1 declarations visible to files that don't
want anything to do with SHA-1. It also prepares for potentially moving
sha1.h into a new insecure/ or dangerous/ directory.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Non-cryptographic PRNGs may have great statistical properties, but
are usually trivially predictable to someone who knows the algorithm,
given a small sample of their output. An LFSR like prandom_u32() is
particularly simple, even if the sample is widely scattered bits.
It turns out the network stack uses prandom_u32() for some things like
random port numbers which it would prefer are *not* trivially predictable.
Predictability led to a practical DNS spoofing attack. Oops.
This patch replaces the LFSR with a homebrew cryptographic PRNG based
on the SipHash round function, which is in turn seeded with 128 bits
of strong random key. (The authors of SipHash have *not* been consulted
about this abuse of their algorithm.) Speed is prioritized over security;
attacks are rare, while performance is always wanted.
Replacing all callers of prandom_u32() is the quick fix.
Whether to reinstate a weaker PRNG for uses which can tolerate it
is an open question.
Commit f227e3ec3b5c ("random32: update the net random state on interrupt
and activity") was an earlier attempt at a solution. This patch replaces
it.
Reported-by: Amit Klein <aksecurity@gmail.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tytso@mit.edu
Cc: Florian Westphal <fw@strlen.de>
Cc: Marc Plumb <lkml.mplumb@gmail.com>
Fixes: f227e3ec3b5c ("random32: update the net random state on interrupt and activity")
Signed-off-by: George Spelvin <lkml@sdf.org>
Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/
[ willy: partial reversal of f227e3ec3b5c; moved SIPROUND definitions
to prandom.h for later use; merged George's prandom_seed() proposal;
inlined siprand_u32(); replaced the net_rand_state[] array with 4
members to fix a build issue; cosmetic cleanups to make checkpatch
happy; fixed RANDOM32_SELFTEST build ]
Signed-off-by: Willy Tarreau <w@1wt.eu>
This modifies the first 32 bits out of the 128 bits of a random CPU's
net_rand_state on interrupt or CPU activity to complicate remote
observations that could lead to guessing the network RNG's internal
state.
Note that depending on some network devices' interrupt rate moderation
or binding, this re-seeding might happen on every packet or even almost
never.
In addition, with NOHZ some CPUs might not even get timer interrupts,
leaving their local state rarely updated, while they are running
networked processes making use of the random state. For this reason, we
also perform this update in update_process_times() in order to at least
update the state when there is user or system activity, since it's the
only case we care about.
Reported-by: Amit Klein <aksecurity@gmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull sysctl fixes from Al Viro:
"Fixups to regressions in sysctl series"
* 'work.sysctl' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
sysctl: reject gigantic reads/write to sysctl files
cdrom: fix an incorrect __user annotation on cdrom_sysctl_info
trace: fix an incorrect __user annotation on stack_trace_sysctl
random: fix an incorrect __user annotation on proc_do_entropy
net/sysctl: remove leftover __user annotations on neigh_proc_dointvec*
net/sysctl: use cpumask_parse in flow_limit_cpu_sysctl
No user pointers for sysctls anymore.
Fixes: 32927393dc1c ("sysctl: pass kernel pointers to ->proc_handler")
Reported-by: build test robot <lkp@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull networking updates from David Miller:
1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
Augusto von Dentz.
2) Add GSO partial support to igc, from Sasha Neftin.
3) Several cleanups and improvements to r8169 from Heiner Kallweit.
4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
device self-test. From Andrew Lunn.
5) Start moving away from custom driver versions, use the globally
defined kernel version instead, from Leon Romanovsky.
6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.
7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.
8) Add sriov and vf support to hinic, from Luo bin.
9) Support Media Redundancy Protocol (MRP) in the bridging code, from
Horatiu Vultur.
10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.
11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
Dubroca. Also add ipv6 support for espintcp.
12) Lots of ReST conversions of the networking documentation, from Mauro
Carvalho Chehab.
13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
from Doug Berger.
14) Allow to dump cgroup id and filter by it in inet_diag code, from
Dmitry Yakunin.
15) Add infrastructure to export netlink attribute policies to
userspace, from Johannes Berg.
16) Several optimizations to sch_fq scheduler, from Eric Dumazet.
17) Fallback to the default qdisc if qdisc init fails because otherwise
a packet scheduler init failure will make a device inoperative. From
Jesper Dangaard Brouer.
18) Several RISCV bpf jit optimizations, from Luke Nelson.
19) Correct the return type of the ->ndo_start_xmit() method in several
drivers, it's netdev_tx_t but many drivers were using
'int'. From Yunjian Wang.
20) Add an ethtool interface for PHY master/slave config, from Oleksij
Rempel.
21) Add BPF iterators, from Yonghang Song.
22) Add cable test infrastructure, including ethool interfaces, from
Andrew Lunn. Marvell PHY driver is the first to support this
facility.
23) Remove zero-length arrays all over, from Gustavo A. R. Silva.
24) Calculate and maintain an explicit frame size in XDP, from Jesper
Dangaard Brouer.
25) Add CAP_BPF, from Alexei Starovoitov.
26) Support terse dumps in the packet scheduler, from Vlad Buslov.
27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.
28) Add devm_register_netdev(), from Bartosz Golaszewski.
29) Minimize qdisc resets, from Cong Wang.
30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
eliminate set_fs/get_fs calls. From Christoph Hellwig.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
selftests: net: ip_defrag: ignore EPERM
net_failover: fixed rollback in net_failover_open()
Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
vmxnet3: allow rx flow hash ops only when rss is enabled
hinic: add set_channels ethtool_ops support
selftests/bpf: Add a default $(CXX) value
tools/bpf: Don't use $(COMPILE.c)
bpf, selftests: Use bpf_probe_read_kernel
s390/bpf: Use bcr 0,%0 as tail call nop filler
s390/bpf: Maintain 8-byte stack alignment
selftests/bpf: Fix verifier test
selftests/bpf: Fix sample_cnt shared between two threads
bpf, selftests: Adapt cls_redirect to call csum_level helper
bpf: Add csum_level helper for fixing up csum levels
bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
crypto/chtls: IPv6 support for inline TLS
Crypto/chcr: Fixes a coccinile check error
Crypto/chcr: Fixes compilations warnings
...
<linux/cryptohash.h> sounds very generic and important, like it's the
header to include if you're doing cryptographic hashing in the kernel.
But actually it only includes the library implementation of the SHA-1
compression function (not even the full SHA-1). This should basically
never be used anymore; SHA-1 is no longer considered secure, and there
are much better ways to do cryptographic hashing in the kernel.
Remove this header and fold it into <crypto/sha.h> which already
contains constants and functions for SHA-1 (along with SHA-2).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The library implementation of the SHA-1 compression function is
confusingly called just "sha_transform()". Alongside it are some "SHA_"
constants and "sha_init()". Presumably these are left over from a time
when SHA just meant SHA-1. But now there are also SHA-2 and SHA-3, and
moreover SHA-1 is now considered insecure and thus shouldn't be used.
Therefore, rename these functions and constants to make it very clear
that they are for SHA-1. Also add a comment to make it clear that these
shouldn't be used.
For the extra-misleadingly named "SHA_MESSAGE_BYTES", rename it to
SHA1_BLOCK_SIZE and define it to just '64' rather than '(512/8)' so that
it matches the same definition in <crypto/sha.h>. This prepares for
merging <linux/cryptohash.h> into <crypto/sha.h>.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of having all the sysctl handlers deal with user pointers, which
is rather hairy in terms of the BPF interaction, copy the input to and
from userspace in common code. This also means that the strings are
always NUL-terminated by the common code, making the API a little bit
safer.
As most handler just pass through the data to one of the common handlers
a lot of the changes are mechnical.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
As crng_initialize_secondary() is only called by do_numa_crng_init(),
and the latter is under ifdeffery for CONFIG_NUMA, when CONFIG_NUMA is
not selected the compiler will warn that the former is unused:
| drivers/char/random.c:820:13: warning: 'crng_initialize_secondary' defined but not used [-Wunused-function]
| 820 | static void crng_initialize_secondary(struct crng_state *crng)
| | ^~~~~~~~~~~~~~~~~~~~~~~~~
Stephen reports that this happens for x86_64 noallconfig builds.
We could move crng_initialize_secondary() and crng_init_try_arch() under
the CONFIG_NUMA ifdeffery, but this has the unfortunate property of
separating them from crng_initialize_primary() and
crng_init_try_arch_early() respectively. Instead, let's mark
crng_initialize_secondary() as __maybe_unused.
Link: https://lore.kernel.org/r/20200310121747.GA49602@lakrids.cambridge.arm.com
Fixes: 5cbe0f13b51a ("random: split primary/secondary crng init paths")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Fields in "struct timer_rand_state" could be accessed concurrently.
Lockless plain reads and writes result in data races. Fix them by adding
pairs of READ|WRITE_ONCE(). The data races were reported by KCSAN,
BUG: KCSAN: data-race in add_timer_randomness / add_timer_randomness
write to 0xffff9f320a0a01d0 of 8 bytes by interrupt on cpu 22:
add_timer_randomness+0x100/0x190
add_timer_randomness at drivers/char/random.c:1152
add_disk_randomness+0x85/0x280
scsi_end_request+0x43a/0x4a0
scsi_io_completion+0xb7/0x7e0
scsi_finish_command+0x1ed/0x2a0
scsi_softirq_done+0x1c9/0x1d0
blk_done_softirq+0x181/0x1d0
__do_softirq+0xd9/0x57c
irq_exit+0xa2/0xc0
do_IRQ+0x8b/0x190
ret_from_intr+0x0/0x42
cpuidle_enter_state+0x15e/0x980
cpuidle_enter+0x69/0xc0
call_cpuidle+0x23/0x40
do_idle+0x248/0x280
cpu_startup_entry+0x1d/0x1f
start_secondary+0x1b2/0x230
secondary_startup_64+0xb6/0xc0
no locks held by swapper/22/0.
irq event stamp: 32871382
_raw_spin_unlock_irqrestore+0x53/0x60
_raw_spin_lock_irqsave+0x21/0x60
_local_bh_enable+0x21/0x30
irq_exit+0xa2/0xc0
read to 0xffff9f320a0a01d0 of 8 bytes by interrupt on cpu 2:
add_timer_randomness+0xe8/0x190
add_disk_randomness+0x85/0x280
scsi_end_request+0x43a/0x4a0
scsi_io_completion+0xb7/0x7e0
scsi_finish_command+0x1ed/0x2a0
scsi_softirq_done+0x1c9/0x1d0
blk_done_softirq+0x181/0x1d0
__do_softirq+0xd9/0x57c
irq_exit+0xa2/0xc0
do_IRQ+0x8b/0x190
ret_from_intr+0x0/0x42
cpuidle_enter_state+0x15e/0x980
cpuidle_enter+0x69/0xc0
call_cpuidle+0x23/0x40
do_idle+0x248/0x280
cpu_startup_entry+0x1d/0x1f
start_secondary+0x1b2/0x230
secondary_startup_64+0xb6/0xc0
no locks held by swapper/2/0.
irq event stamp: 37846304
_raw_spin_unlock_irqrestore+0x53/0x60
_raw_spin_lock_irqsave+0x21/0x60
_local_bh_enable+0x21/0x30
irq_exit+0xa2/0xc0
Reported by Kernel Concurrency Sanitizer on:
Hardware name: HP ProLiant BL660c Gen9, BIOS I38 10/17/2018
Link: https://lore.kernel.org/r/1582648024-13111-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
It turns out that RDRAND is pretty slow. Comparing these two
constructions:
for (i = 0; i < CHACHA_BLOCK_SIZE; i += sizeof(ret))
arch_get_random_long(&ret);
and
long buf[CHACHA_BLOCK_SIZE / sizeof(long)];
extract_crng((u8 *)buf);
it amortizes out to 352 cycles per long for the top one and 107 cycles
per long for the bottom one, on Coffee Lake Refresh, Intel Core i9-9880H.
And importantly, the top one has the drawback of not benefiting from the
real rng, whereas the bottom one has all the nice benefits of using our
own chacha rng. As get_random_u{32,64} gets used in more places (perhaps
beyond what it was originally intended for when it was introduced as
get_random_{int,long} back in the md5 monstrosity era), it seems like it
might be a good thing to strengthen its posture a tiny bit. Doing this
should only be stronger and not any weaker because that pool is already
initialized with a bunch of rdrand data (when available). This way, we
get the benefits of the hardware rng as well as our own rng.
Another benefit of this is that we no longer hit pitfalls of the recent
stream of AMD bugs in RDRAND. One often used code pattern for various
things is:
do {
val = get_random_u32();
} while (hash_table_contains_key(val));
That recent AMD bug rendered that pattern useless, whereas we're really
very certain that chacha20 output will give pretty distributed numbers,
no matter what.
So, this simplification seems better both from a security perspective
and from a performance perspective.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20200221201037.30231-1-Jason@zx2c4.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Some architectures (e.g. arm64) can have heterogeneous CPUs, and the
boot CPU may be able to provide entropy while secondary CPUs cannot. On
such systems, arch_get_random_long() and arch_get_random_seed_long()
will fail unless support for RNG instructions has been detected on all
CPUs. This prevents the boot CPU from being able to provide
(potentially) trusted entropy when seeding the primary CRNG.
To make it possible to seed the primary CRNG from the boot CPU without
adversely affecting the runtime versions of arch_get_random_long() and
arch_get_random_seed_long(), this patch adds new early versions of the
functions used when initializing the primary CRNG.
Default implementations are provided atop of the existing
arch_get_random_long() and arch_get_random_seed_long() so that only
architectures with such constraints need to provide the new helpers.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20200210130015.17664-3-mark.rutland@arm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently crng_initialize() is used for both the primary CRNG and
secondary CRNGs. While we wish to share common logic, we need to do a
number of additional things for the primary CRNG, and this would be
easier to deal with were these handled in separate functions.
This patch splits crng_initialize() into crng_initialize_primary() and
crng_initialize_secondary(), with common logic factored out into a
crng_init_try_arch() helper.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20200210130015.17664-2-mark.rutland@arm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Prefix all printk/pr_<level> messages with "random: " to make the
logging a bit more consistent.
Miscellanea:
o Convert a printks to pr_notice
o Whitespace to align to open parentheses
o Remove embedded "random: " from pr_* as pr_fmt adds it
Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Link: https://lore.kernel.org/r/20190607182517.28266-3-tiny.windzz@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>