IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The acpi_map_pxm_to_online_node() helper is used to find the closest
online node to a given proximity domain. This is used to map devices in
a proximity domain with no online memory or cpus to the closest online
node and populate a device's 'numa_node' property. The numa_node
property allows applications to be migrated "close" to a resource.
In preparation for providing a generic facility to optionally map an
address range to its closest online node, or the node the range would
represent were it to be onlined (target_node), up-level the core of
acpi_map_pxm_to_online_node() to a generic mm/numa helper.
Cc: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/158188324802.894464.13128795207831894206.stgit@dwillia2-desk3.amr.corp.intel.com
Use %u instead of %d to print u32 values to expand the value range,
especially when latency or bandwidth value is bigger than INT_MAX.
Then HMAT latency can support up to 4.29s and bandwidth can support
up to 4PB/s.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jingqi Liu <Jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit cf8741ac57 ("ACPI: NUMA: HMAT: Register "soft reserved"
memory as an "hmem" device") introduced a linker warning,
WARNING: vmlinux.o(.text+0x64ec3c): Section mismatch in reference from
the function hmat_register_target() to the function
.init.text:hmat_register_target_devices()
The function hmat_register_target() references the function __init
hmat_register_target_devices().
Since hmat_register_target() is also called from hmat_callback(), and
then register_hotmemory_notifier(), where it should not be freed when
hmat_init() is done, it indicates that the __init annotation of
hmat_register_target_devices() is incorrect.
Fixes: cf8741ac57 ("ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On systems where PXMs and nids are in different order, memory initiators
exposed in sysfs could be wrong: On dual-socket CLX with SNC enabled
(4 nodes, 1 and 2 swapped between PXMs and nids), node1 would only
get node2 as initiator, and node2 would only get node1.
With this patch, we get node1 as the only initiator of itself,
and node2 as the only initiator of itself, as expected.
This should likely go to stable up to 5.2.
Signed-off-by: Brice Goglin <Brice.Goglin@inria.fr>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Memory that has been tagged EFI_MEMORY_SP, and has performance
properties described by the ACPI HMAT is expected to have an application
specific consumer.
Those consumers may want 100% of the memory capacity to be reserved from
any usage by the kernel. By default, with this enabling, a platform
device is created to represent this differentiated resource.
The device-dax "hmem" driver claims these devices by default and
provides an mmap interface for the target application. If the
administrator prefers, the hmem resource range can be made available to
the core-mm via the device-dax hotplug facility, kmem, to online the
memory with its own numa node.
This was tested with an emulated HMAT produced by qemu (with the pending
HMAT enabling patches), and "efi_fake_mem=8G@9G:0x40000" on the kernel
command line to mark the memory ranges associated with node2 and node3
as EFI_MEMORY_SP.
qemu numa configuration options:
-numa node,mem=4G,cpus=0-19,nodeid=0
-numa node,mem=4G,cpus=20-39,nodeid=1
-numa node,mem=4G,nodeid=2
-numa node,mem=4G,nodeid=3
-numa dist,src=0,dst=0,val=10
-numa dist,src=0,dst=1,val=21
-numa dist,src=0,dst=2,val=21
-numa dist,src=0,dst=3,val=21
-numa dist,src=1,dst=0,val=21
-numa dist,src=1,dst=1,val=10
-numa dist,src=1,dst=2,val=21
-numa dist,src=1,dst=3,val=21
-numa dist,src=2,dst=0,val=21
-numa dist,src=2,dst=1,val=21
-numa dist,src=2,dst=2,val=10
-numa dist,src=2,dst=3,val=21
-numa dist,src=3,dst=0,val=21
-numa dist,src=3,dst=1,val=21
-numa dist,src=3,dst=2,val=21
-numa dist,src=3,dst=3,val=10
-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,base-lat=10,latency=5
-numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=5
-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,base-lat=10,latency=10
-numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=10
-numa hmat-lb,initiator=0,target=2,hierarchy=memory,data-type=access-latency,base-lat=10,latency=15
-numa hmat-lb,initiator=0,target=2,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=15
-numa hmat-lb,initiator=0,target=3,hierarchy=memory,data-type=access-latency,base-lat=10,latency=20
-numa hmat-lb,initiator=0,target=3,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=20
-numa hmat-lb,initiator=1,target=0,hierarchy=memory,data-type=access-latency,base-lat=10,latency=10
-numa hmat-lb,initiator=1,target=0,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=10
-numa hmat-lb,initiator=1,target=1,hierarchy=memory,data-type=access-latency,base-lat=10,latency=5
-numa hmat-lb,initiator=1,target=1,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=5
-numa hmat-lb,initiator=1,target=2,hierarchy=memory,data-type=access-latency,base-lat=10,latency=15
-numa hmat-lb,initiator=1,target=2,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=15
-numa hmat-lb,initiator=1,target=3,hierarchy=memory,data-type=access-latency,base-lat=10,latency=20
-numa hmat-lb,initiator=1,target=3,hierarchy=memory,data-type=access-bandwidth,base-bw=20,bandwidth=20
Result:
[
{
"path":"\/platform\/hmem.1",
"id":1,
"size":"4.00 GiB (4.29 GB)",
"align":2097152,
"devices":[
{
"chardev":"dax1.0",
"size":"4.00 GiB (4.29 GB)"
}
]
},
{
"path":"\/platform\/hmem.0",
"id":0,
"size":"4.00 GiB (4.29 GB)",
"align":2097152,
"devices":[
{
"chardev":"dax0.0",
"size":"4.00 GiB (4.29 GB)"
}
]
}
]
[..]
240000000-43fffffff : Soft Reserved
240000000-33fffffff : hmem.0
240000000-33fffffff : dax0.0
340000000-43fffffff : hmem.1
340000000-43fffffff : dax1.0
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In preparation for registering device-dax instances for accessing EFI
specific-purpose memory, arrange for the HMAT registration to occur
later in the init process. Critically HMAT initialization needs to occur
after e820__reserve_resources_late() which is the point at which the
iomem resource tree is populated with "Application Reserved"
(IORES_DESC_APPLICATION_RESERVED). e820__reserve_resources_late()
happens at subsys_initcall time.
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently hmat.c lives under an "hmat" directory which does not enhance
the description of the file. The initial motivation for giving hmat.c
its own directory was to delineate it as mm functionality in contrast to
ACPI device driver functionality.
As ACPI continues to play an increasing role in conveying
memory location and performance topology information to the OS take the
opportunity to co-locate these NUMA relevant tables in a combined
directory.
numa.c is renamed to srat.c and moved to drivers/acpi/numa/ along with
hmat.c.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>