IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
slab_node() could access current->mempolicy from interrupt context.
However there's a race condition during exit where the mempolicy
is first freed and then the pointer zeroed.
Using this from interrupts seems bogus anyways. The interrupt
will interrupt a random process and therefore get a random
mempolicy. Many times, this will be idle's, which noone can change.
Just disable this here and always use local for slab
from interrupts. I also cleaned up the callers of slab_node a bit
which always passed the same argument.
I believe the original mempolicy code did that in fact,
so it's likely a regression.
v2: send version with correct logic
v3: simplify. fix typo.
Reported-by: Arun Sharma <asharma@fb.com>
Cc: penberg@kernel.org
Cc: cl@linux.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
[tdmackey@twitter.com: Rework control flow based on feedback from
cl@linux.com, fix logic, and cleanup current task_struct reference]
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Mackey <tdmackey@twitter.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The size of the slab object is frequently needed. Since we now
have a size field directly in the kmem_cache structure there is no
need anymore of the obj_size macro/function.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Define a struct that describes common fields used in all slab allocators.
A slab allocator either uses the common definition (like SLOB) or is
required to provide members of kmem_cache with the definition given.
After that it will be possible to share code that
only operates on those fields of kmem_cache.
The patch basically takes the slob definition of kmem cache and
uses the field namees for the other allocators.
It also standardizes the names used for basic object lengths in
allocators:
object_size Struct size specified at kmem_cache_create. Basically
the payload expected to be used by the subsystem.
size The size of memory allocator for each object. This size
is larger than object_size and includes padding, alignment
and extra metadata for each object (f.e. for debugging
and rcu).
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Those are rather trivial now and its better to see inline what is
really going on.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Add fields to the page struct so that it is properly documented that
slab overlays the lru fields.
This cleans up some casts in slab.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Pull SLAB changes from Pekka Enberg:
"There's the new kmalloc_array() API, minor fixes and performance
improvements, but quite honestly, nothing terribly exciting."
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
mm: SLAB Out-of-memory diagnostics
slab: introduce kmalloc_array()
slub: per cpu partial statistics change
slub: include include for prefetch
slub: Do not hold slub_lock when calling sysfs_slab_add()
slub: prefetch next freelist pointer in slab_alloc()
slab, cleanup: remove unneeded return
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Following the example at mm/slub.c, add out-of-memory diagnostics to the
SLAB allocator to help on debugging certain OOM conditions.
An example print out looks like this:
<snip page allocator out-of-memory message>
SLAB: Unable to allocate memory on node 0 (gfp=0x11200)
cache: bio-0, object size: 192, order: 0
node 0: slabs: 3/3, objs: 60/60, free: 0
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The procedure ends right after the if-statement, so remove ``return''.
Also move the last common statement outside.
Signed-off-by: Zhao Jin <cronozhj@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
slub: disallow changing cpu_partial from userspace for debug caches
slub: add missed accounting
slub: Extract get_freelist from __slab_alloc
slub: Switch per cpu partial page support off for debugging
slub: fix a possible memleak in __slab_alloc()
slub: fix slub_max_order Documentation
slub: add missed accounting
slab: add taint flag outputting to debug paths.
slub: add taint flag outputting to debug paths
slab: introduce slab_max_order kernel parameter
slab: rename slab_break_gfp_order to slab_max_order
Including trace/events/*.h TRACE_EVENT() macro headers in other headers
can cause strange side effects if another trace/event/*.h header
includes that header. Having trace/events/kmem.h inside slab_def.h
caused a compile error in sparc64 when changes were done to some header
files. Moving the kmem.h trace header out of slab.h and into slab.c
fixes the problem.
Note, both slub.c and slob.c already include the trace/events/kmem.h
file. Only slab.c had it missing.
Link: http://lkml.kernel.org/r/20120105190405.1e3191fb5a43b2a0f1655e1f@canb.auug.org.au
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 30765b92 ("slab, lockdep: Annotate the locks before using
them") moves the init_lock_keys() call from after g_cpucache_up =
FULL, to before it. And overlooks the fact that init_node_lock_keys()
tests for it and ignores everything !FULL.
Introduce a LATE stage and change the lockdep test to be <LATE.
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When we get corruption reports, it's useful to see if the kernel was
tainted, to rule out problems we can't do anything about.
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Introduce new slab_max_order kernel parameter which is the equivalent of
slub_max_order.
For immediate purposes, allows users to override the heuristic that sets
the max order to 1 by default if they have more than 32MB of RAM. This
may result in page allocation failures if there is substantial
fragmentation.
Another usecase would be to increase the max order for better
performance.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
slab_break_gfp_order is more appropriately named slab_max_order since it
enforces the maximum order size of slabs as long as a single object will
still fit.
Also rename BREAK_GFP_ORDER_{LO,HI} accordingly.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Historically /proc/slabinfo and files under /sys/kernel/slab/* have
world read permissions and are accessible to the world. slabinfo
contains rather private information related both to the kernel and
userspace tasks. Depending on the situation, it might reveal either
private information per se or information useful to make another
targeted attack. Some examples of what can be learned by
reading/watching for /proc/slabinfo entries:
1) dentry (and different *inode*) number might reveal other processes fs
activity. The number of dentry "active objects" doesn't strictly show
file count opened/touched by a process, however, there is a good
correlation between them. The patch "proc: force dcache drop on
unauthorized access" relies on the privacy of dentry count.
2) different inode entries might reveal the same information as (1), but
these are more fine granted counters. If a filesystem is mounted in a
private mount point (or even a private namespace) and fs type differs from
other mounted fs types, fs activity in this mount point/namespace is
revealed. If there is a single ecryptfs mount point, the whole fs
activity of a single user is revealed. Number of files in ecryptfs
mount point is a private information per se.
3) fuse_* reveals number of files / fs activity of a user in a user
private mount point. It is approx. the same severity as ecryptfs
infoleak in (2).
4) sysfs_dir_cache similar to (2) reveals devices' addition/removal,
which can be otherwise hidden by "chmod 0700 /sys/". With 0444 slabinfo
the precise number of sysfs files is known to the world.
5) buffer_head might reveal some kernel activity. With other
information leaks an attacker might identify what specific kernel
routines generate buffer_head activity.
6) *kmalloc* infoleaks are very situational. Attacker should watch for
the specific kmalloc size entry and filter the noise related to the unrelated
kernel activity. If an attacker has relatively silent victim system, he
might get rather precise counters.
Additional information sources might significantly increase the slabinfo
infoleak benefits. E.g. if an attacker knows that the processes
activity on the system is very low (only core daemons like syslog and
cron), he may run setxid binaries / trigger local daemon activity /
trigger network services activity / await sporadic cron jobs activity
/ etc. and get rather precise counters for fs and network activity of
these privileged tasks, which is unknown otherwise.
Also hiding slabinfo and /sys/kernel/slab/* is a one step to complicate
exploitation of kernel heap overflows (and possibly, other bugs). The
related discussion:
http://thread.gmane.org/gmane.linux.kernel/1108378
To keep compatibility with old permission model where non-root
monitoring daemon could watch for kernel memleaks though slabinfo one
should do:
groupadd slabinfo
usermod -a -G slabinfo $MONITOR_USER
And add the following commands to init scripts (to mountall.conf in
Ubuntu's upstart case):
chmod g+r /proc/slabinfo /sys/kernel/slab/*/*
chgrp slabinfo /proc/slabinfo /sys/kernel/slab/*/*
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Reviewed-by: Kees Cook <kees@ubuntu.com>
Reviewed-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@gentwo.org>
Acked-by: David Rientjes <rientjes@google.com>
CC: Valdis.Kletnieks@vt.edu
CC: Linus Torvalds <torvalds@linux-foundation.org>
CC: Alan Cox <alan@linux.intel.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Lockdep thinks there's lock recursion through:
kmem_cache_free()
cache_flusharray()
spin_lock(&l3->list_lock) <----------------.
free_block() |
slab_destroy() |
call_rcu() |
debug_object_activate() |
debug_object_init() |
__debug_object_init() |
kmem_cache_alloc() |
cache_alloc_refill() |
spin_lock(&l3->list_lock) --'
Now debug objects doesn't use SLAB_DESTROY_BY_RCU and hence there is no
actual possibility of recursing. Luckily debug objects marks it slab
with SLAB_DEBUG_OBJECTS so we can identify the thing.
Mark all SLAB_DEBUG_OBJECTS (all one!) slab caches with a special
lockdep key so that lockdep sees its a different cachep.
Also add a WARN on trying to create a SLAB_DESTROY_BY_RCU |
SLAB_DEBUG_OBJECTS cache, to avoid possible future trouble.
Reported-and-tested-by: Sebastian Siewior <sebastian@breakpoint.cc>
[ fixes to the initial patch ]
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311341165.27400.58.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the nice enumerated constant.
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Reduce high order allocations in do_tune_cpucache() for some setups.
(NR_CPUS=4096 -> we need 64KB)
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
In commit c225150b "slab: fix DEBUG_SLAB build",
"if ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))" is always true if
ARCH_SLAB_MINALIGN == 0. Do not print warning if ARCH_SLAB_MINALIGN == 0.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Reduce high order allocations for some setups.
(NR_CPUS=4096 -> we need 64KB per kmem_cache struct)
We now allocate exact needed size (using nr_cpu_ids and nr_node_ids)
This also makes code a bit smaller on x86_64, since some field offsets
are less than the 127 limit :
Before patch :
# size mm/slab.o
text data bss dec hex filename
22605 361665 32 384302 5dd2e mm/slab.o
After patch :
# size mm/slab.o
text data bss dec hex filename
22349 353473 8224 384046 5dc2e mm/slab.o
CC: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Fix CONFIG_SLAB=y CONFIG_DEBUG_SLAB=y build error and warnings.
Now that ARCH_SLAB_MINALIGN defaults to __alignof__(unsigned long long),
it is always defined (when slab.h included), but cannot be used in #if:
mm/slab.c: In function `cache_alloc_debugcheck_after':
mm/slab.c:3156:5: warning: "__alignof__" is not defined
mm/slab.c:3156:5: error: missing binary operator before token "("
make[1]: *** [mm/slab.o] Error 1
So just remove the #if and #endif lines, but then 64-bit build warns:
mm/slab.c: In function `cache_alloc_debugcheck_after':
mm/slab.c:3156:6: warning: cast from pointer to integer of different size
mm/slab.c:3158:10: warning: format `%d' expects type `int', but argument
3 has type `long unsigned int'
Fix those with casts, whatever the actual type of ARCH_SLAB_MINALIGN.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Currently, when using CONFIG_DEBUG_SLAB, we put in kfree() or
kmem_cache_free() as the last user of free objects, which is not
very useful, so change it to the caller of those functions instead.
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Commit e66eed651fd1 ("list: remove prefetching from regular list
iterators") removed the include of prefetch.h from list.h, which
uncovered several cases that had apparently relied on that rather
obscure header file dependency.
So this fixes things up a bit, using
grep -L linux/prefetch.h $(git grep -l '[^a-z_]prefetchw*(' -- '*.[ch]')
grep -L 'prefetchw*(' $(git grep -l 'linux/prefetch.h' -- '*.[ch]')
to guide us in finding files that either need <linux/prefetch.h>
inclusion, or have it despite not needing it.
There are more of them around (mostly network drivers), but this gets
many core ones.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While looking at some other notifier callbacks I noticed this code could
use a simple cleanup.
notifier_from_errno() no longer needs the if (ret)/else conditional. That
same conditional is now done in notifier_from_errno().
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The size of struct rcu_head may be changed. When it becomes larger,
it may pollute the data after struct slab.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The last user was ext4 and Eric Sandeen removed the call in a recent patch. See
the following URL for the discussion:
http://marc.info/?l=linux-ext4&m=129546975702198&w=2
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Local symbols should be static.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: Fix a crash during slabinfo -v
tracing/slab: Move kmalloc tracepoint out of inline code
slub: Fix slub_lock down/up imbalance
slub: Fix build breakage in Documentation/vm
slub tracing: move trace calls out of always inlined functions to reduce kernel code size
slub: move slabinfo.c to tools/slub/slabinfo.c
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (33 commits)
usb: don't use flush_scheduled_work()
speedtch: don't abuse struct delayed_work
media/video: don't use flush_scheduled_work()
media/video: explicitly flush request_module work
ioc4: use static work_struct for ioc4_load_modules()
init: don't call flush_scheduled_work() from do_initcalls()
s390: don't use flush_scheduled_work()
rtc: don't use flush_scheduled_work()
mmc: update workqueue usages
mfd: update workqueue usages
dvb: don't use flush_scheduled_work()
leds-wm8350: don't use flush_scheduled_work()
mISDN: don't use flush_scheduled_work()
macintosh/ams: don't use flush_scheduled_work()
vmwgfx: don't use flush_scheduled_work()
tpm: don't use flush_scheduled_work()
sonypi: don't use flush_scheduled_work()
hvsi: don't use flush_scheduled_work()
xen: don't use flush_scheduled_work()
gdrom: don't use flush_scheduled_work()
...
Fixed up trivial conflict in drivers/media/video/bt8xx/bttv-input.c
as per Tejun.
__get_cpu_var() can be replaced with this_cpu_read and will then use a
single read instruction with implied address calculation to access the
correct per cpu instance.
However, the address of a per cpu variable passed to __this_cpu_read()
cannot be determined (since it's an implied address conversion through
segment prefixes). Therefore apply this only to uses of __get_cpu_var
where the address of the variable is not used.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hughd@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
cancel_rearming_delayed_work[queue]() has been superceded by
cancel_delayed_work_sync() quite some time ago. Convert all the
in-kernel users. The conversions are completely equivalent and
trivial.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Evgeniy Polyakov <zbr@ioremap.net>
Cc: Jeff Garzik <jgarzik@pobox.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Cc: netdev@vger.kernel.org
Cc: Anton Vorontsov <cbou@mail.ru>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: xfs-masters@oss.sgi.com
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: netfilter-devel@vger.kernel.org
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: linux-nfs@vger.kernel.org
The tracepoint for kmalloc is in the slab inlined code which causes
every instance of kmalloc to have the tracepoint.
This patch moves the tracepoint out of the inline code to the
slab C file, which removes a large number of inlined trace
points.
objdump -dr vmlinux.slab| grep 'jmpq.*<trace_kmalloc' |wc -l
213
objdump -dr vmlinux.slab.patched| grep 'jmpq.*<trace_kmalloc' |wc -l
1
This also has a nice impact on size.
text data bss dec hex filename
7023060 2121564 2482432 11627056 b16a30 vmlinux.slab
6970579 2109772 2482432 11562783 b06f1f vmlinux.slab.patched
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Use the new {max,min}3 macros to save some cycles and bytes on the stack.
This patch substitutes trivial nested macros with their counterpart.
Signed-off-by: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: Joe Perches <joe@perches.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Roland Dreier <rolandd@cisco.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No real bugs, just some dead code and some fixups.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes alignment of slab objects in case CONFIG_DEBUG_PAGEALLOC is
active.
Before this spot in kmem_cache_create, we have this situation:
- align contains the required alignment of the object
- cachep->obj_offset is 0 or equals align in case of CONFIG_DEBUG_SLAB
- size equals the size of the object, or object plus trailing redzone in case
of CONFIG_DEBUG_SLAB
This spot tries to fill one page per object if the object is in certain size
limits, however setting obj_offset to PAGE_SIZE - size does break the object
alignment since size may not be aligned with the required alignment.
This patch simply adds an ALIGN(size, align) to the equation and fixes the
object size detection accordingly.
This code in drivers/s390/cio/qdio_setup_init has lead to incorrectly aligned
slab objects (sizeof(struct qdio_q) equals 1792):
qdio_q_cache = kmem_cache_create("qdio_q", sizeof(struct qdio_q),
256, 0, NULL);
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: Allow removal of slab caches during boot
Revert "slub: Allow removal of slab caches during boot"
slub numa: Fix rare allocation from unexpected node
slab: use deferable timers for its periodic housekeeping
slub: Use kmem_cache flags to detect if slab is in debugging mode.
slub: Allow removal of slab caches during boot
slub: Check kasprintf results in kmem_cache_init()
SLUB: Constants need UL
slub: Use a constant for a unspecified node.
SLOB: Free objects to their own list
slab: fix caller tracking on !CONFIG_DEBUG_SLAB && CONFIG_TRACING
slab has a "once every 2 second" timer for its housekeeping.
As the number of logical processors is growing, its more and more
common that this 2 second timer becomes the primary wakeup source.
This patch turns this housekeeping timer into a deferable timer,
which means that the timer does not interrupt idle, but just runs
at the next event that wakes the cpu up.
The impact is that the timer likely runs a bit later, but during the
delay no code is running so there's not all that much reason for
a difference in housekeeping to occur because of this delay.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>