Commit Graph

46080 Commits

Author SHA1 Message Date
Eric Biggers
ed265f7fd9 crypto: x86/aes-gcm - simplify GCM hash subkey derivation
Remove a redundant expansion of the AES key, and use rodata for zeroes.
Also rename rfc4106_set_hash_subkey() to aes_gcm_derive_hash_subkey()
because it's used for both versions of AES-GCM, not just RFC4106.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-26 17:26:10 +08:00
Eric Biggers
a0bbb1c187 crypto: x86/aes-gcm - delete unused GCM assembly code
Delete aesni_gcm_enc() and aesni_gcm_dec() because they are unused.
Only the incremental AES-GCM functions (aesni_gcm_init(),
aesni_gcm_enc_update(), aesni_gcm_finalize()) are actually used.

This saves 17 KB of object code.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-26 17:26:10 +08:00
Eric Biggers
6a80586474 crypto: x86/aes-xts - simplify loop in xts_crypt_slowpath()
Since the total length processed by the loop in xts_crypt_slowpath() is
a multiple of AES_BLOCK_SIZE, just round the length down to
AES_BLOCK_SIZE even on the last step.  This doesn't change behavior, as
the last step will process a multiple of AES_BLOCK_SIZE regardless.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-26 17:26:10 +08:00
Eric Biggers
543ea178fb crypto: x86/aes-xts - optimize size of instructions operating on lengths
x86_64 has the "interesting" property that the instruction size is
generally a bit shorter for instructions that operate on the 32-bit (or
less) part of registers, or registers that are in the original set of 8.

This patch adjusts the AES-XTS code to take advantage of that property
by changing the LEN parameter from size_t to unsigned int (which is all
that's needed and is what the non-AVX implementation uses) and using the
%eax register for KEYLEN.

This decreases the size of aes-xts-avx-x86_64.o by 1.2%.

Note that changing the kmovq to kmovd was going to be needed anyway to
make the AVX10/256 code really work on CPUs that don't support 512-bit
vectors (since the AVX10 spec says that 64-bit opmask instructions will
only be supported on processors that support 512-bit vectors).

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:19 +08:00
Eric Biggers
e619723a85 crypto: x86/aes-xts - eliminate a few more instructions
- For conditionally subtracting 16 from LEN when decrypting a message
  whose length isn't a multiple of 16, use the cmovnz instruction.

- Fold the addition of 4*VL to LEN into the sub of VL or 16 from LEN.

- Remove an unnecessary test instruction.

This results in slightly shorter code, both source and binary.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:19 +08:00
Eric Biggers
2717e01fc3 crypto: x86/aes-xts - handle AES-128 and AES-192 more efficiently
Decrease the amount of code specific to the different AES variants by
"right-aligning" the sequence of round keys, and for AES-128 and AES-192
just skipping irrelevant rounds at the beginning.

This shrinks the size of aes-xts-avx-x86_64.o by 13.3%, and it improves
the efficiency of AES-128 and AES-192.  The tradeoff is that for AES-256
some additional not-taken conditional jumps are now executed.  But these
are predicted well and are cheap on x86.

Note that the ARMv8 CE based AES-XTS implementation uses a similar
strategy to handle the different AES variants.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:19 +08:00
Eric Biggers
ea9459ef36 crypto: x86/aesni-xts - deduplicate aesni_xts_enc() and aesni_xts_dec()
Since aesni_xts_enc() and aesni_xts_dec() are very similar, generate
them from a macro that's passed an argument enc=1 or enc=0.  This
reduces the length of aesni-intel_asm.S by 112 lines while still
producing the exact same object file in both 32-bit and 64-bit mode.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:19 +08:00
Eric Biggers
1d27e1f5c8 crypto: x86/aes-xts - handle CTS encryption more efficiently
When encrypting a message whose length isn't a multiple of 16 bytes,
encrypt the last full block in the main loop.  This works because only
decryption uses the last two tweaks in reverse order, not encryption.

This improves the performance of decrypting messages whose length isn't
a multiple of the AES block length, shrinks the size of
aes-xts-avx-x86_64.o by 5.0%, and eliminates two instructions (a test
and a not-taken conditional jump) when encrypting a message whose length
*is* a multiple of the AES block length.

While it's not super useful to optimize for ciphertext stealing given
that it's rarely needed in practice, the other two benefits mentioned
above make this optimization worthwhile.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:19 +08:00
Eric Biggers
7daba20cc7 crypto: x86/sha256-ni - simplify do_4rounds
Instead of loading the message words into both MSG and \m0 and then
adding the round constants to MSG, load the message words into \m0 and
the round constants into MSG and then add \m0 to MSG.  This shortens the
source code slightly.  It changes the instructions slightly, but it
doesn't affect binary code size and doesn't seem to affect performance.

Suggested-by: Stefan Kanthak <stefan.kanthak@nexgo.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:18 +08:00
Eric Biggers
59e62b20ac crypto: x86/sha256-ni - optimize code size
- Load the SHA-256 round constants relative to a pointer that points
  into the middle of the constants rather than to the beginning.  Since
  x86 instructions use signed offsets, this decreases the instruction
  length required to access some of the later round constants.

- Use punpcklqdq or punpckhqdq instead of longer instructions such as
  pshufd, pblendw, and palignr.  This doesn't harm performance.

The end result is that sha256_ni_transform shrinks from 839 bytes to 791
bytes, with no loss in performance.

Suggested-by: Stefan Kanthak <stefan.kanthak@nexgo.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:18 +08:00
Eric Biggers
1b5ddb067d crypto: x86/sha256-ni - rename some register aliases
MSGTMP[0-3] are used to hold the message schedule and are not temporary
registers per se.  MSGTMP4 is used as a temporary register for several
different purposes and isn't really related to MSGTMP[0-3].  Rename them
to MSG[0-3] and TMP accordingly.

Also add a comment that clarifies what MSG is.

Suggested-by: Stefan Kanthak <stefan.kanthak@nexgo.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:18 +08:00
Eric Biggers
ffaec34b0f crypto: x86/sha256-ni - convert to use rounds macros
To avoid source code duplication, do the SHA-256 rounds using macros.
This reduces the length of sha256_ni_asm.S by 153 lines while still
producing the exact same object file.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:18 +08:00
Eric Biggers
b924ecd305 crypto: x86/aes-xts - access round keys using single-byte offsets
Access the AES round keys using offsets -7*16 through 7*16, instead of
0*16 through 14*16.  This allows VEX-encoded instructions to address all
round keys using 1-byte offsets, whereas before some needed 4-byte
offsets.  This decreases the code size of aes-xts-avx-x86_64.o by 4.2%.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:18 +08:00
Eric Biggers
751fb2528c crypto: x86/aes-xts - make non-AVX implementation use new glue code
Make the non-AVX implementation of AES-XTS (xts-aes-aesni) use the new
glue code that was introduced for the AVX implementations of AES-XTS.
This reduces code size, and it improves the performance of xts-aes-aesni
due to the optimization for messages that don't span page boundaries.

This required moving the new glue functions higher up in the file and
allowing the IV encryption function to be specified by the caller.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:53 +08:00
Eric Biggers
6a24fdfe1e crypto: x86/sha512-avx2 - add missing vzeroupper
Since sha512_transform_rorx() uses ymm registers, execute vzeroupper
before returning from it.  This is necessary to avoid reducing the
performance of SSE code.

Fixes: e01d69cb01 ("crypto: sha512 - Optimized SHA512 x86_64 assembly routine using AVX instructions.")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:52 +08:00
Eric Biggers
57ce8a4e16 crypto: x86/sha256-avx2 - add missing vzeroupper
Since sha256_transform_rorx() uses ymm registers, execute vzeroupper
before returning from it.  This is necessary to avoid reducing the
performance of SSE code.

Fixes: d34a460092 ("crypto: sha256 - Optimized sha256 x86_64 routine using AVX2's RORX instructions")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:52 +08:00
Eric Biggers
4ad096cca9 crypto: x86/nh-avx2 - add missing vzeroupper
Since nh_avx2() uses ymm registers, execute vzeroupper before returning
from it.  This is necessary to avoid reducing the performance of SSE
code.

Fixes: 0f961f9f67 ("crypto: x86/nhpoly1305 - add AVX2 accelerated NHPoly1305")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:52 +08:00
Eric Biggers
aa2197f566 crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation
Add an AES-XTS implementation "xts-aes-vaes-avx10_512" for x86_64 CPUs
with the VAES, VPCLMULQDQ, and either AVX10/512 or AVX512BW + AVX512VL
extensions.  This implementation uses zmm registers to operate on four
AES blocks at a time.  The assembly code is instantiated using a macro
so that most of the source code is shared with other implementations.

To avoid downclocking on older Intel CPU models, an exclusion list is
used to prevent this 512-bit implementation from being used by default
on some CPU models.  They will use xts-aes-vaes-avx10_256 instead.  For
now, this exclusion list is simply coded into aesni-intel_glue.c.  It
may make sense to eventually move it into a more central location.

xts-aes-vaes-avx10_512 is slightly faster than xts-aes-vaes-avx10_256 on
some current CPUs.  E.g., on AMD Zen 4, AES-256-XTS decryption
throughput increases by 13% with 4096-byte inputs, or 14% with 512-byte
inputs.  On Intel Sapphire Rapids, AES-256-XTS decryption throughput
increases by 2% with 4096-byte inputs, or 3% with 512-byte inputs.

Future CPUs may provide stronger 512-bit support, in which case a larger
benefit should be seen.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-05 15:46:33 +08:00
Eric Biggers
ee63fea005 crypto: x86/aes-xts - wire up VAES + AVX10/256 implementation
Add an AES-XTS implementation "xts-aes-vaes-avx10_256" for x86_64 CPUs
with the VAES, VPCLMULQDQ, and either AVX10/256 or AVX512BW + AVX512VL
extensions.  This implementation avoids using zmm registers, instead
using ymm registers to operate on two AES blocks at a time.  The
assembly code is instantiated using a macro so that most of the source
code is shared with other implementations.

This is the optimal implementation on CPUs that support VAES and AVX512
but where the zmm registers should not be used due to downclocking
effects, for example Intel's Ice Lake.  It should also be the optimal
implementation on future CPUs that support AVX10/256 but not AVX10/512.

The performance is slightly better than that of xts-aes-vaes-avx2, which
uses the same 256-bit vector length, due to factors such as being able
to use ymm16-ymm31 to cache the AES round keys, and being able to use
the vpternlogd instruction to do XORs more efficiently.  For example, on
Ice Lake, the throughput of decrypting 4096-byte messages with
AES-256-XTS is 6.6% higher with xts-aes-vaes-avx10_256 than with
xts-aes-vaes-avx2.  While this is a small improvement, it is
straightforward to provide this implementation (xts-aes-vaes-avx10_256)
as long as we are providing xts-aes-vaes-avx2 and xts-aes-vaes-avx10_512
anyway, due to the way the _aes_xts_crypt macro is structured.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-05 15:46:33 +08:00
Eric Biggers
e787060bdf crypto: x86/aes-xts - wire up VAES + AVX2 implementation
Add an AES-XTS implementation "xts-aes-vaes-avx2" for x86_64 CPUs with
the VAES, VPCLMULQDQ, and AVX2 extensions, but not AVX512 or AVX10.
This implementation uses ymm registers to operate on two AES blocks at a
time.  The assembly code is instantiated using a macro so that most of
the source code is shared with other implementations.

This is the optimal implementation on AMD Zen 3.  It should also be the
optimal implementation on Intel Alder Lake, which similarly supports
VAES but not AVX512.  Comparing to xts-aes-aesni-avx on Zen 3,
xts-aes-vaes-avx2 provides 70% higher AES-256-XTS decryption throughput
with 4096-byte messages, or 23% higher with 512-byte messages.

A large improvement is also seen with CPUs that do support AVX512 (e.g.,
98% higher AES-256-XTS decryption throughput on Ice Lake with 4096-byte
messages), though the following patches add AVX512 optimized
implementations to get a bit more performance on those CPUs.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-05 15:46:33 +08:00
Eric Biggers
996f4dcbd2 crypto: x86/aes-xts - wire up AESNI + AVX implementation
Add an AES-XTS implementation "xts-aes-aesni-avx" for x86_64 CPUs that
have the AES-NI and AVX extensions but not VAES.  It's similar to the
existing xts-aes-aesni in that uses xmm registers to operate on one AES
block at a time.  It differs from xts-aes-aesni in the following ways:

- It uses the VEX-coded (non-destructive) instructions from AVX.
  This improves performance slightly.
- It incorporates some additional optimizations such as interleaving the
  tweak computation with AES en/decryption, handling single-page
  messages more efficiently, and caching the first round key.
- It supports only 64-bit (x86_64).
- It's generated by an assembly macro that will also be used to generate
  VAES-based implementations.

The performance improvement over xts-aes-aesni varies from small to
large, depending on the CPU and other factors such as the size of the
messages en/decrypted.  For example, the following increases in
AES-256-XTS decryption throughput are seen on the following CPUs:

                          | 4096-byte messages | 512-byte messages |
    ----------------------+--------------------+-------------------+
    Intel Skylake         |        6%          |       31%         |
    Intel Cascade Lake    |        4%          |       26%         |
    AMD Zen 1             |        61%         |       73%         |
    AMD Zen 2             |        36%         |       59%         |

(The above CPUs don't support VAES, so they can't use VAES instead.)

While this isn't as large an improvement as what VAES provides, this
still seems worthwhile.  This implementation is fairly easy to provide
based on the assembly macro that's needed for VAES anyway, and it will
be the best implementation on a large number of CPUs (very roughly, the
CPUs launched by Intel and AMD from 2011 to 2018).

This makes the existing xts-aes-aesni *mostly* obsolete.  For now, leave
it in place to support 32-bit kernels and also CPUs like Intel Westmere
that support AES-NI but not AVX.  (We could potentially remove it anyway
and just rely on the indirect acceleration via ecb-aes-aesni in those
cases, but that change will need to be considered separately.)

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-05 15:46:33 +08:00
Eric Biggers
d637168810 crypto: x86/aes-xts - add AES-XTS assembly macro for modern CPUs
Add an assembly file aes-xts-avx-x86_64.S which contains a macro that
expands into AES-XTS implementations for x86_64 CPUs that support at
least AES-NI and AVX, optionally also taking advantage of VAES,
VPCLMULQDQ, and AVX512 or AVX10.

This patch doesn't expand the macro at all.  Later patches will do so,
adding each implementation individually so that the motivation and use
case for each individual implementation can be fully presented.

The file also provides a function aes_xts_encrypt_iv() which handles the
encryption of the IV (tweak), using AES-NI and AVX.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-05 15:46:33 +08:00
Eric Biggers
7d4700d161 x86: add kconfig symbols for assembler VAES and VPCLMULQDQ support
Add config symbols AS_VAES and AS_VPCLMULQDQ that expose whether the
assembler supports the vector AES and carryless multiplication
cryptographic extensions.

Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-05 15:46:33 +08:00
Chang S. Bae
e3299a4c1c crypto: x86/aesni - Update aesni_set_key() to return void
The aesni_set_key() implementation has no error case, yet its prototype
specifies to return an error code.

Modify the function prototype to return void and adjust the related code.

Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: linux-crypto@vger.kernel.org
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-02 10:49:39 +08:00
Chang S. Bae
d50b35f0c4 crypto: x86/aesni - Rearrange AES key size check
aes_expandkey() already includes an AES key size check. If AES-NI is
unusable, invoke the function without the size check.

Also, use aes_check_keylen() instead of open code.

Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: linux-crypto@vger.kernel.org
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-02 10:49:39 +08:00
Linus Torvalds
ab8de2dbfc EFI fixes for v6.9 #2
- Fix logic that is supposed to prevent placement of the kernel image
   below LOAD_PHYSICAL_ADDR
 - Use the firmware stack in the EFI stub when running in mixed mode
 - Clear BSS only once when using mixed mode
 - Check efi.get_variable() function pointer for NULL before trying to
   call it
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQQQm/3uucuRGn1Dmh0wbglWLn0tXAUCZgCRgwAKCRAwbglWLn0t
 XHozAP9jLdeGs1ReYZAn+W0QtW/SJHJznoPiHcktdNKG4rNX3QD9G3URu0f4jKCG
 yvjw8qHM1pC2cihXXjABjf7gL7g6LAE=
 =cNP7
 -----END PGP SIGNATURE-----

Merge tag 'efi-fixes-for-v6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi

Pull EFI fixes from Ard Biesheuvel:

 - Fix logic that is supposed to prevent placement of the kernel image
   below LOAD_PHYSICAL_ADDR

 - Use the firmware stack in the EFI stub when running in mixed mode

 - Clear BSS only once when using mixed mode

 - Check efi.get_variable() function pointer for NULL before trying to
   call it

* tag 'efi-fixes-for-v6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
  efi: fix panic in kdump kernel
  x86/efistub: Don't clear BSS twice in mixed mode
  x86/efistub: Call mixed mode boot services on the firmware's stack
  efi/libstub: fix efi_random_alloc() to allocate memory at alloc_min or higher address
2024-03-24 13:54:06 -07:00
Linus Torvalds
5e74df2f8f A set of x86 fixes:
- Ensure that the encryption mask at boot is properly propagated on
     5-level page tables, otherwise the PGD entry is incorrectly set to
     non-encrypted, which causes system crashes during boot.
 
   - Undo the deferred 5-level page table setup as it cannot work with
     memory encryption enabled.
 
   - Prevent inconsistent XFD state on CPU hotplug, where the MSR is reset
     to the default value but the cached variable is not, so subsequent
     comparisons might yield the wrong result and as a consequence the
     result prevents updating the MSR.
 
   - Register the local APIC address only once in the MPPARSE enumeration to
     prevent triggering the related WARN_ONs() in the APIC and topology code.
 
   - Handle the case where no APIC is found gracefully by registering a fake
     APIC in the topology code. That makes all related topology functions
     work correctly and does not affect the actual APIC driver code at all.
 
   - Don't evaluate logical IDs during early boot as the local APIC IDs are
     not yet enumerated and the invoked function returns an error
     code. Nothing requires the logical IDs before the final CPUID
     enumeration takes place, which happens after the enumeration.
 
   - Cure the fallout of the per CPU rework on UP which misplaced the
     copying of boot_cpu_data to per CPU data so that the final update to
     boot_cpu_data got lost which caused inconsistent state and boot
     crashes.
 
   - Use copy_from_kernel_nofault() in the kprobes setup as there is no
     guarantee that the address can be safely accessed.
 
   - Reorder struct members in struct saved_context to work around another
     kmemleak false positive
 
   - Remove the buggy code which tries to update the E820 kexec table for
     setup_data as that is never passed to the kexec kernel.
 
   - Update the resource control documentation to use the proper units.
 
   - Fix a Kconfig warning observed with tinyconfig
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmYAUH4THHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoXzREAC/HVB7yzUEbjbh7dyYRBEgFU19bcyC
 JKf9HVmEHj03HstUxF1dxguUhwfHVPNTWpjmy/fRwxqgM9JG+QpV6T4DIldWqchv
 AUYFrQBMvql8hTKxRa/Ny75d2IqKPgEEGUuyU+ZHAzEEPwhKrbtVRDPuEiMxpd5I
 9B1Pya4EzUyOv1UhPIg7PRoya1msimBZ0mCw4In6ri6xVRm1uC3Ln4LZPylxn96l
 f77rz5UToUw0gfgDaezF0z4ml1phGEdSX0Z3hhD0PX12wbJGEdvPzL0qTgEq72Ad
 AeLmHx4K8z2zoHMHK7iTEwjoplQxGsWLoezh22cVEEJX0dtzHz6R0ftBCa6uzATJ
 C8FF1oDDHAhTL94YmVSTZHr6AdJ6LwgYHO3zXZUhxuB7PNXAT4FmT0zgU1fU3sC1
 U/1mIFdgOEUOlGll2Ra5uTUKc0K/dc+yC9dcbz37Kwj3KlfqTN+5BWocjySkHomr
 gcv37aU1TJGSC/D1lYWTDWGKVbbP5lk+KIGICT5SBKn0METa/wOo8dE6+T1kIwvS
 t2QTlJdzilLcWGVQ8GiNjjRxFtRKY5i9Shi4K+wUvCee4/XJzRrpxrCEY8w/qceV
 hc3kfUIon3TCv8+rnlSuNRZBvmFhXMYwMt0gQv4YywB+aOITKTzbGUOazLtRNKAH
 lFCnBRS55AB8mg==
 =WyQ2
 -----END PGP SIGNATURE-----

Merge tag 'x86-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fixes from Thomas Gleixner:

 - Ensure that the encryption mask at boot is properly propagated on
   5-level page tables, otherwise the PGD entry is incorrectly set to
   non-encrypted, which causes system crashes during boot.

 - Undo the deferred 5-level page table setup as it cannot work with
   memory encryption enabled.

 - Prevent inconsistent XFD state on CPU hotplug, where the MSR is reset
   to the default value but the cached variable is not, so subsequent
   comparisons might yield the wrong result and as a consequence the
   result prevents updating the MSR.

 - Register the local APIC address only once in the MPPARSE enumeration
   to prevent triggering the related WARN_ONs() in the APIC and topology
   code.

 - Handle the case where no APIC is found gracefully by registering a
   fake APIC in the topology code. That makes all related topology
   functions work correctly and does not affect the actual APIC driver
   code at all.

 - Don't evaluate logical IDs during early boot as the local APIC IDs
   are not yet enumerated and the invoked function returns an error
   code. Nothing requires the logical IDs before the final CPUID
   enumeration takes place, which happens after the enumeration.

 - Cure the fallout of the per CPU rework on UP which misplaced the
   copying of boot_cpu_data to per CPU data so that the final update to
   boot_cpu_data got lost which caused inconsistent state and boot
   crashes.

 - Use copy_from_kernel_nofault() in the kprobes setup as there is no
   guarantee that the address can be safely accessed.

 - Reorder struct members in struct saved_context to work around another
   kmemleak false positive

 - Remove the buggy code which tries to update the E820 kexec table for
   setup_data as that is never passed to the kexec kernel.

 - Update the resource control documentation to use the proper units.

 - Fix a Kconfig warning observed with tinyconfig

* tag 'x86-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/boot/64: Move 5-level paging global variable assignments back
  x86/boot/64: Apply encryption mask to 5-level pagetable update
  x86/cpu: Add model number for another Intel Arrow Lake mobile processor
  x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
  Documentation/x86: Document that resctrl bandwidth control units are MiB
  x86/mpparse: Register APIC address only once
  x86/topology: Handle the !APIC case gracefully
  x86/topology: Don't evaluate logical IDs during early boot
  x86/cpu: Ensure that CPU info updates are propagated on UP
  kprobes/x86: Use copy_from_kernel_nofault() to read from unsafe address
  x86/pm: Work around false positive kmemleak report in msr_build_context()
  x86/kexec: Do not update E820 kexec table for setup_data
  x86/config: Fix warning for 'make ARCH=x86_64 tinyconfig'
2024-03-24 11:13:56 -07:00
Ard Biesheuvel
cefcd4fe2e x86/efistub: Call mixed mode boot services on the firmware's stack
Normally, the EFI stub calls into the EFI boot services using the stack
that was live when the stub was entered. According to the UEFI spec,
this stack needs to be at least 128k in size - this might seem large but
all asynchronous processing and event handling in EFI runs from the same
stack and so quite a lot of space may be used in practice.

In mixed mode, the situation is a bit different: the bootloader calls
the 32-bit EFI stub entry point, which calls the decompressor's 32-bit
entry point, where the boot stack is set up, using a fixed allocation
of 16k. This stack is still in use when the EFI stub is started in
64-bit mode, and so all calls back into the EFI firmware will be using
the decompressor's limited boot stack.

Due to the placement of the boot stack right after the boot heap, any
stack overruns have gone unnoticed. However, commit

  5c4feadb00 ("x86/decompressor: Move global symbol references to C code")

moved the definition of the boot heap into C code, and now the boot
stack is placed right at the base of BSS, where any overruns will
corrupt the end of the .data section.

While it would be possible to work around this by increasing the size of
the boot stack, doing so would affect all x86 systems, and mixed mode
systems are a tiny (and shrinking) fraction of the x86 installed base.

So instead, record the firmware stack pointer value when entering from
the 32-bit firmware, and switch to this stack every time a EFI boot
service call is made.

Cc: <stable@kernel.org> # v6.1+
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-03-24 09:28:32 +01:00
Tom Lendacky
9843231c97 x86/boot/64: Move 5-level paging global variable assignments back
Commit 63bed96604 ("x86/startup_64: Defer assignment of 5-level paging
global variables") moved assignment of 5-level global variables to later
in the boot in order to avoid having to use RIP relative addressing in
order to set them. However, when running with 5-level paging and SME
active (mem_encrypt=on), the variables are needed as part of the page
table setup needed to encrypt the kernel (using pgd_none(), p4d_offset(),
etc.). Since the variables haven't been set, the page table manipulation
is done as if 4-level paging is active, causing the system to crash on
boot.

While only a subset of the assignments that were moved need to be set
early, move all of the assignments back into check_la57_support() so that
these assignments aren't spread between two locations. Instead of just
reverting the fix, this uses the new RIP_REL_REF() macro when assigning
the variables.

Fixes: 63bed96604 ("x86/startup_64: Defer assignment of 5-level paging global variables")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/2ca419f4d0de719926fd82353f6751f717590a86.1711122067.git.thomas.lendacky@amd.com
2024-03-24 05:00:36 +01:00
Tom Lendacky
4d0d7e7852 x86/boot/64: Apply encryption mask to 5-level pagetable update
When running with 5-level page tables, the kernel mapping PGD entry is
updated to point to the P4D table. The assignment uses _PAGE_TABLE_NOENC,
which, when SME is active (mem_encrypt=on), results in a page table
entry without the encryption mask set, causing the system to crash on
boot.

Change the assignment to use _PAGE_TABLE instead of _PAGE_TABLE_NOENC so
that the encryption mask is set for the PGD entry.

Fixes: 533568e06b ("x86/boot/64: Use RIP_REL_REF() to access early_top_pgt[]")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/8f20345cda7dbba2cf748b286e1bc00816fe649a.1711122067.git.thomas.lendacky@amd.com
2024-03-24 05:00:35 +01:00
Tony Luck
8a8a9c9047 x86/cpu: Add model number for another Intel Arrow Lake mobile processor
This one is the regular laptop CPU.

Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240322161725.195614-1-tony.luck@intel.com
2024-03-24 04:08:10 +01:00
Adamos Ttofari
10e4b5166d x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
Commit 672365477a ("x86/fpu: Update XFD state where required") and
commit 8bf26758ca ("x86/fpu: Add XFD state to fpstate") introduced a
per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in
order to avoid unnecessary writes to the MSR.

On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which
wipes out any stale state. But the per CPU cached xfd value is not
reset, which brings them out of sync.

As a consequence a subsequent xfd_update_state() might fail to update
the MSR which in turn can result in XRSTOR raising a #NM in kernel
space, which crashes the kernel.

To fix this, introduce xfd_set_state() to write xfd_state together
with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD.

Fixes: 672365477a ("x86/fpu: Update XFD state where required")
Signed-off-by: Adamos Ttofari <attofari@amazon.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240322230439.456571-1-chang.seok.bae@intel.com

Closes: https://lore.kernel.org/lkml/20230511152818.13839-1-attofari@amazon.de
2024-03-24 04:03:54 +01:00
Thomas Gleixner
f2208aa12c x86/mpparse: Register APIC address only once
The APIC address is registered twice. First during the early detection and
afterwards when actually scanning the table for APIC IDs. The APIC and
topology core warn about the second attempt.

Restrict it to the early detection call.

Fixes: 81287ad65d ("x86/apic: Sanitize APIC address setup")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.297774848@linutronix.de
2024-03-23 12:41:48 +01:00
Thomas Gleixner
5e25eb25da x86/topology: Handle the !APIC case gracefully
If there is no local APIC enumerated and registered then the topology
bitmaps are empty. Therefore, topology_init_possible_cpus() will die with
a division by zero exception.

Prevent this by registering a fake APIC id to populate the topology
bitmap. This also allows to use all topology query interfaces
unconditionally. It does not affect the actual APIC code because either
the local APIC address was not registered or no local APIC could be
detected.

Fixes: f1f758a805 ("x86/topology: Add a mechanism to track topology via APIC IDs")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.242709302@linutronix.de
2024-03-23 12:35:56 +01:00
Thomas Gleixner
7af541cee1 x86/topology: Don't evaluate logical IDs during early boot
The local APICs have not yet been enumerated so the logical ID evaluation
from the topology bitmaps does not work and would return an error code.

Skip the evaluation during the early boot CPUID evaluation and only apply
it on the final run.

Fixes: 380414be78 ("x86/cpu/topology: Use topology logical mapping mechanism")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.186943142@linutronix.de
2024-03-23 12:28:06 +01:00
Thomas Gleixner
c90399fbd7 x86/cpu: Ensure that CPU info updates are propagated on UP
The boot sequence evaluates CPUID information twice:

  1) During early boot

  2) When finalizing the early setup right before
     mitigations are selected and alternatives are patched.

In both cases the evaluation is stored in boot_cpu_data, but on UP the
copying of boot_cpu_data to the per CPU info of the boot CPU happens
between #1 and #2. So any update which happens in #2 is never propagated to
the per CPU info instance.

Consolidate the whole logic and copy boot_cpu_data right before applying
alternatives as that's the point where boot_cpu_data is in it's final
state and not supposed to change anymore.

This also removes the voodoo mb() from smp_prepare_cpus_common() which
had absolutely no purpose.

Fixes: 71eb4893cf ("x86/percpu: Cure per CPU madness on UP")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.127642785@linutronix.de
2024-03-23 12:22:04 +01:00
Masami Hiramatsu (Google)
4e51653d5d kprobes/x86: Use copy_from_kernel_nofault() to read from unsafe address
Read from an unsafe address with copy_from_kernel_nofault() in
arch_adjust_kprobe_addr() because this function is used before checking
the address is in text or not. Syzcaller bot found a bug and reported
the case if user specifies inaccessible data area,
arch_adjust_kprobe_addr() will cause a kernel panic.

[ mingo: Clarified the comment. ]

Fixes: cc66bb9145 ("x86/ibt,kprobes: Cure sym+0 equals fentry woes")
Reported-by: Qiang Zhang <zzqq0103.hey@gmail.com>
Tested-by: Jinghao Jia <jinghao7@illinois.edu>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/171042945004.154897.2221804961882915806.stgit@devnote2
2024-03-22 11:40:56 +01:00
Anton Altaparmakov
e3f269ed0a x86/pm: Work around false positive kmemleak report in msr_build_context()
Since:

  7ee18d6779 ("x86/power: Make restore_processor_context() sane")

kmemleak reports this issue:

  unreferenced object 0xf68241e0 (size 32):
    comm "swapper/0", pid 1, jiffies 4294668610 (age 68.432s)
    hex dump (first 32 bytes):
      00 cc cc cc 29 10 01 c0 00 00 00 00 00 00 00 00  ....)...........
      00 42 82 f6 cc cc cc cc cc cc cc cc cc cc cc cc  .B..............
    backtrace:
      [<461c1d50>] __kmem_cache_alloc_node+0x106/0x260
      [<ea65e13b>] __kmalloc+0x54/0x160
      [<c3858cd2>] msr_build_context.constprop.0+0x35/0x100
      [<46635aff>] pm_check_save_msr+0x63/0x80
      [<6b6bb938>] do_one_initcall+0x41/0x1f0
      [<3f3add60>] kernel_init_freeable+0x199/0x1e8
      [<3b538fde>] kernel_init+0x1a/0x110
      [<938ae2b2>] ret_from_fork+0x1c/0x28

Which is a false positive.

Reproducer:

  - Run rsync of whole kernel tree (multiple times if needed).
  - start a kmemleak scan
  - Note this is just an example: a lot of our internal tests hit these.

The root cause is similar to the fix in:

  b0b592cf08 x86/pm: Fix false positive kmemleak report in msr_build_context()

ie. the alignment within the packed struct saved_context
which has everything unaligned as there is only "u16 gs;" at start of
struct where in the past there were four u16 there thus aligning
everything afterwards.  The issue is with the fact that Kmemleak only
searches for pointers that are aligned (see how pointers are scanned in
kmemleak.c) so when the struct members are not aligned it doesn't see
them.

Testing:

We run a lot of tests with our CI, and after applying this fix we do not
see any kmemleak issues any more whilst without it we see hundreds of
the above report. From a single, simple test run consisting of 416 individual test
cases on kernel 5.10 x86 with kmemleak enabled we got 20 failures due to this,
which is quite a lot. With this fix applied we get zero kmemleak related failures.

Fixes: 7ee18d6779 ("x86/power: Make restore_processor_context() sane")
Signed-off-by: Anton Altaparmakov <anton@tuxera.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240314142656.17699-1-anton@tuxera.com
2024-03-22 11:01:31 +01:00
Dave Young
fc7f27cda8 x86/kexec: Do not update E820 kexec table for setup_data
crashkernel reservation failed on a Thinkpad t440s laptop recently.
Actually the memblock reservation succeeded, but later insert_resource()
failed.

Test steps:
  kexec load -> /* make sure add crashkernel param eg. crashkernel=160M */
    kexec reboot ->
        dmesg|grep "crashkernel reserved";
            crashkernel memory range like below reserved successfully:
              0x00000000d0000000 - 0x00000000da000000
        But no such "Crash kernel" region in /proc/iomem

The background story:

Currently the E820 code reserves setup_data regions for both the current
kernel and the kexec kernel, and it inserts them into the resources list.

Before the kexec kernel reboots nobody passes the old setup_data, and
kexec only passes fresh SETUP_EFI/SETUP_IMA/SETUP_RNG_SEED if needed.
Thus the old setup data memory is not used at all.

Due to old kernel updates the kexec e820 table as well so kexec kernel
sees them as E820_TYPE_RESERVED_KERN regions, and later the old setup_data
regions are inserted into resources list in the kexec kernel by
e820__reserve_resources().

Note, due to no setup_data is passed in for those old regions they are not
early reserved (by function early_reserve_memory), and the crashkernel
memblock reservation will just treat them as usable memory and it could
reserve the crashkernel region which overlaps with the old setup_data
regions. And just like the bug I noticed here, kdump insert_resource
failed because e820__reserve_resources has added the overlapped chunks
in /proc/iomem already.

Finally, looking at the code, the old setup_data regions are not used
at all as no setup_data is passed in by the kexec boot loader. Although
something like SETUP_PCI etc could be needed, kexec should pass
the info as new setup_data so that kexec kernel can take care of them.
This should be taken care of in other separate patches if needed.

Thus drop the useless buggy code here.

Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Eric DeVolder <eric.devolder@oracle.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/Zf0T3HCG-790K-pZ@darkstar.users.ipa.redhat.com
2024-03-22 10:07:45 +01:00
Linus Torvalds
1d35aae78f Kbuild updates for v6.9
- Generate a list of built DTB files (arch/*/boot/dts/dtbs-list)
 
  - Use more threads when building Debian packages in parallel
 
  - Fix warnings shown during the RPM kernel package uninstallation
 
  - Change OBJECT_FILES_NON_STANDARD_*.o etc. to take a relative path to
    Makefile
 
  - Support GCC's -fmin-function-alignment flag
 
  - Fix a null pointer dereference bug in modpost
 
  - Add the DTB support to the RPM package
 
  - Various fixes and cleanups in Kconfig
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmX8HGIVHG1hc2FoaXJv
 eUBrZXJuZWwub3JnAAoJED2LAQed4NsGYfIQAIl/zEFoNVSHGR4TIvO7SIwkT4MM
 VAm0W6XRFaXfIGw8HL/MXe+U9jAyeQ9yL9uUVv8PqFTO+LzBbW1X1X97tlmrlQsC
 7mdxbA1KJXwkwt4wH/8/EZQMwHr327vtVH4AilSm+gAaWMXaSKAye3ulKQQ2gevz
 vP6aOcfbHIWOPdxA53cLdSl9LOGrYNczKySHXKV9O39T81F+ko7wPpdkiMWw5LWG
 ISRCV8bdXli8j10Pmg8jlbevSKl4Z5FG2BVw/Cl8rQ5tBBoCzFsUPnnp9A29G8QP
 OqRhbwxtkSm67BMJAYdHnhjp/l0AOEbmetTGpna+R06hirOuXhR3vc6YXZxhQjff
 LmKaqfG5YchRALS1fNDsRUNIkQxVJade+tOUG+V4WbxHQKWX7Ghu5EDlt2/x7P0p
 +XLPE48HoNQLQOJ+pgIOkaEDl7WLfGhoEtEgprZBuEP2h39xcdbYJyF10ZAAR4UZ
 FF6J9lDHbf7v1uqD2YnAQJQ6jJ06CvN6/s6SdiJnCWSs5cYRW0fnYigSIuwAgGHZ
 c/QFECoGEflXGGuqZDl5iXiIjhWKzH2nADSVEs7maP47vapcMWb9gA7VBNoOr5M0
 IXuFo1khChF4V2pxqlDj3H5TkDlFENYT/Wjh+vvjx8XplKCRKaSh+LaZ39hja61V
 dWH7BPecS44h4KXx
 =tFdl
 -----END PGP SIGNATURE-----

Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild

Pull Kbuild updates from Masahiro Yamada:

 - Generate a list of built DTB files (arch/*/boot/dts/dtbs-list)

 - Use more threads when building Debian packages in parallel

 - Fix warnings shown during the RPM kernel package uninstallation

 - Change OBJECT_FILES_NON_STANDARD_*.o etc. to take a relative path to
   Makefile

 - Support GCC's -fmin-function-alignment flag

 - Fix a null pointer dereference bug in modpost

 - Add the DTB support to the RPM package

 - Various fixes and cleanups in Kconfig

* tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (67 commits)
  kconfig: tests: test dependency after shuffling choices
  kconfig: tests: add a test for randconfig with dependent choices
  kconfig: tests: support KCONFIG_SEED for the randconfig runner
  kbuild: rpm-pkg: add dtb files in kernel rpm
  kconfig: remove unneeded menu_is_visible() call in conf_write_defconfig()
  kconfig: check prompt for choice while parsing
  kconfig: lxdialog: remove unused dialog colors
  kconfig: lxdialog: fix button color for blackbg theme
  modpost: fix null pointer dereference
  kbuild: remove GCC's default -Wpacked-bitfield-compat flag
  kbuild: unexport abs_srctree and abs_objtree
  kbuild: Move -Wenum-{compare-conditional,enum-conversion} into W=1
  kconfig: remove named choice support
  kconfig: use linked list in get_symbol_str() to iterate over menus
  kconfig: link menus to a symbol
  kbuild: fix inconsistent indentation in top Makefile
  kbuild: Use -fmin-function-alignment when available
  alpha: merge two entries for CONFIG_ALPHA_GAMMA
  alpha: merge two entries for CONFIG_ALPHA_EV4
  kbuild: change DTC_FLAGS_<basetarget>.o to take the path relative to $(obj)
  ...
2024-03-21 14:41:00 -07:00
Linus Torvalds
bb41fe35dc Char/Misc and other driver subsystem updates for 6.9-rc1
Here is the big set of char/misc and a number of other driver subsystem
 updates for 6.9-rc1.  Included in here are:
   - IIO driver updates, loads of new ones and evolution of existing ones
   - coresight driver updates
   - const cleanups for many driver subsystems
   - speakup driver additions
   - platform remove callback void cleanups
   - mei driver updates
   - mhi driver updates
   - cdx driver updates for MSI interrupt handling
   - nvmem driver updates
   - other smaller driver updates and cleanups, full details in the
     shortlog
 
 All of these have been in linux-next for a long time with no reported
 issue, other than a build warning with some older versions of gcc for a
 speakup driver, fix for that will come in a few days when I catch up
 with my pending patch queues.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 
 iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZfwuLg8cZ3JlZ0Brcm9h
 aC5jb20ACgkQMUfUDdst+ynKVACgjvR1cD8NYk9PcGWc9ZaXAZ6zSnwAn260kMoe
 lLFtwszo7m0N6ZULBWBd
 =y3yz
 -----END PGP SIGNATURE-----

Merge tag 'char-misc-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc

Pull char/misc and other driver subsystem updates from Greg KH:
 "Here is the big set of char/misc and a number of other driver
  subsystem updates for 6.9-rc1. Included in here are:

   - IIO driver updates, loads of new ones and evolution of existing ones

   - coresight driver updates

   - const cleanups for many driver subsystems

   - speakup driver additions

   - platform remove callback void cleanups

   - mei driver updates

   - mhi driver updates

   - cdx driver updates for MSI interrupt handling

   - nvmem driver updates

   - other smaller driver updates and cleanups, full details in the
    shortlog

  All of these have been in linux-next for a long time with no reported
  issue, other than a build warning for the speakup driver"

The build warning hits clang and is a gcc (and C23) extension, and is
fixed up in the merge.

Link: https://lore.kernel.org/all/20240321134831.GA2762840@dev-arch.thelio-3990X/

* tag 'char-misc-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (279 commits)
  binder: remove redundant variable page_addr
  uio_dmem_genirq: UIO_MEM_DMA_COHERENT conversion
  uio_pruss: UIO_MEM_DMA_COHERENT conversion
  cnic,bnx2,bnx2x: use UIO_MEM_DMA_COHERENT
  uio: introduce UIO_MEM_DMA_COHERENT type
  cdx: add MSI support for CDX bus
  pps: use cflags-y instead of EXTRA_CFLAGS
  speakup: Add /dev/synthu device
  speakup: Fix 8bit characters from direct synth
  parport: sunbpp: Convert to platform remove callback returning void
  parport: amiga: Convert to platform remove callback returning void
  char: xillybus: Convert to platform remove callback returning void
  vmw_balloon: change maintainership
  MAINTAINERS: change the maintainer for hpilo driver
  char: xilinx_hwicap: Fix NULL vs IS_ERR() bug
  hpet: remove hpets::hp_clocksource
  platform: goldfish: move the separate 'default' propery for CONFIG_GOLDFISH
  char: xilinx_hwicap: drop casting to void in dev_set_drvdata
  greybus: move is_gb_* functions out of greybus.h
  greybus: Remove usage of the deprecated ida_simple_xx() API
  ...
2024-03-21 13:21:31 -07:00
Linus Torvalds
cfce216e14 hyperv-next for v6.9
-----BEGIN PGP SIGNATURE-----
 
 iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmX7sYwTHHdlaS5saXVA
 a2VybmVsLm9yZwAKCRB2FHBfkEGgXiMeCADAUfjuJyU1jrQxjXv0U9u0tng77FAt
 iT3+YFLR2Y4l8KRjD6Tpyk4fl/VN5VbJv1zPtSdNaViyri15gJjV7iMPujkx/pqO
 pxNfbOVZG7VeKMrudJzP2BHN2mAf8N0qyuVTFyMwLO5EtJrY44t4PtkA1r5cO6Pc
 eyoJWBofxH7XjkhOAMk4I3LXZMrq+hmtJ31G3eek6v/VjD1PtxU4f6/gJiqK9fz6
 ssvSfII0aCIKman5sYlhl11TO8omz/68L4db25ZLDSCdOrE5ZlQykmUshluuoesw
 eTUiuUZEh1O42Lsq7/hdUh+dSVGdTLHa9NKRQyWcruZiZ1idoZIA74ZW
 =4vOw
 -----END PGP SIGNATURE-----

Merge tag 'hyperv-next-signed-20240320' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux

Pull hyperv updates from Wei Liu:

 - Use Hyper-V entropy to seed guest random number generator (Michael
   Kelley)

 - Convert to platform remove callback returning void for vmbus (Uwe
   Kleine-König)

 - Introduce hv_get_hypervisor_version function (Nuno Das Neves)

 - Rename some HV_REGISTER_* defines for consistency (Nuno Das Neves)

 - Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* (Nuno Das
   Neves)

 - Cosmetic changes for hv_spinlock.c (Purna Pavan Chandra Aekkaladevi)

 - Use per cpu initial stack for vtl context (Saurabh Sengar)

* tag 'hyperv-next-signed-20240320' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
  x86/hyperv: Use Hyper-V entropy to seed guest random number generator
  x86/hyperv: Cosmetic changes for hv_spinlock.c
  hyperv-tlfs: Rename some HV_REGISTER_* defines for consistency
  hv: vmbus: Convert to platform remove callback returning void
  mshyperv: Introduce hv_get_hypervisor_version function
  x86/hyperv: Use per cpu initial stack for vtl context
  hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_*
2024-03-21 10:01:02 -07:00
Masahiro Yamada
b0f269728c x86/config: Fix warning for 'make ARCH=x86_64 tinyconfig'
Kconfig emits a warning for the following command:

  $ make ARCH=x86_64 tinyconfig
  ...
  .config:1380:warning: override: UNWINDER_GUESS changes choice state

When X86_64=y, the unwinder is exclusively selected from the following
three options:

 - UNWINDER_ORC
 - UNWINDER_FRAME_POINTER
 - UNWINDER_GUESS

However, arch/x86/configs/tiny.config only specifies the values of the
last two. UNWINDER_ORC must be explicitly disabled.

Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240320154313.612342-1-masahiroy@kernel.org
2024-03-21 10:09:41 +01:00
Linus Torvalds
0815d5cc7d xen: branch for v6.9-rc1
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCZfk4/AAKCRCAXGG7T9hj
 vpBgAP9BtxbGtHlFEncQSscfktbcFgMQ6EiVwa7o9HEOuDimBwEAx1kqej0meNzE
 BRRvDHIHhNQb2aQHz8Xu/3DdQ4i2YA0=
 =6BT4
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-6.9-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip

Pull xen updates from Juergen Gross:

 - Xen event channel handling fix for a regression with a rare kernel
   config and some added hardening

 - better support of running Xen dom0 in PVH mode

 - a cleanup for the xen grant-dma-iommu driver

* tag 'for-linus-6.9-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
  xen/events: increment refcnt only if event channel is refcounted
  xen/evtchn: avoid WARN() when unbinding an event channel
  x86/xen: attempt to inflate the memory balloon on PVH
  xen/grant-dma-iommu: Convert to platform remove callback returning void
2024-03-19 08:48:09 -07:00
Michael Kelley
f2580a907e x86/hyperv: Use Hyper-V entropy to seed guest random number generator
A Hyper-V host provides its guest VMs with entropy in a custom ACPI
table named "OEM0".  The entropy bits are updated each time Hyper-V
boots the VM, and are suitable for seeding the Linux guest random
number generator (rng). See a brief description of OEM0 in [1].

Generation 2 VMs on Hyper-V use UEFI to boot. Existing EFI code in
Linux seeds the rng with entropy bits from the EFI_RNG_PROTOCOL.
Via this path, the rng is seeded very early during boot with good
entropy. The ACPI OEM0 table provided in such VMs is an additional
source of entropy.

Generation 1 VMs on Hyper-V boot from BIOS. For these VMs, Linux
doesn't currently get any entropy from the Hyper-V host. While this
is not fundamentally broken because Linux can generate its own entropy,
using the Hyper-V host provided entropy would get the rng off to a
better start and would do so earlier in the boot process.

Improve the rng seeding for Generation 1 VMs by having Hyper-V specific
code in Linux take advantage of the OEM0 table to seed the rng. For
Generation 2 VMs, use the OEM0 table to provide additional entropy
beyond the EFI_RNG_PROTOCOL. Because the OEM0 table is custom to
Hyper-V, parse it directly in the Hyper-V code in the Linux kernel
and use add_bootloader_randomness() to add it to the rng. Once the
entropy bits are read from OEM0, zero them out in the table so
they don't appear in /sys/firmware/acpi/tables/OEM0 in the running
VM. The zero'ing is done out of an abundance of caution to avoid
potential security risks to the rng. Also set the OEM0 data length
to zero so a kexec or other subsequent use of the table won't try
to use the zero'ed bits.

[1] https://download.microsoft.com/download/1/c/9/1c9813b8-089c-4fef-b2ad-ad80e79403ba/Whitepaper%20-%20The%20Windows%2010%20random%20number%20generation%20infrastructure.pdf

Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20240318155408.216851-1-mhklinux@outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240318155408.216851-1-mhklinux@outlook.com>
2024-03-18 22:01:52 +00:00
Purna Pavan Chandra Aekkaladevi
eac03d81cd x86/hyperv: Cosmetic changes for hv_spinlock.c
Fix issues reported by checkpatch.pl script for hv_spinlock.c file.
- Place __initdata after variable name
- Add missing blank line after enum declaration

No functional changes intended.

Signed-off-by: Purna Pavan Chandra Aekkaladevi <paekkaladevi@linux.microsoft.com>
Reviewed-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Link: https://lore.kernel.org/r/1710763751-14137-1-git-send-email-paekkaladevi@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <1710763751-14137-1-git-send-email-paekkaladevi@linux.microsoft.com>
2024-03-18 21:56:19 +00:00
Nuno Das Neves
b967df6293 hyperv-tlfs: Rename some HV_REGISTER_* defines for consistency
Rename HV_REGISTER_GUEST_OSID to HV_REGISTER_GUEST_OS_ID. This matches
the existing HV_X64_MSR_GUEST_OS_ID.

Rename HV_REGISTER_CRASH_* to HV_REGISTER_GUEST_CRASH_*. Including
GUEST_ is consistent with other #defines such as
HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE. The new names also match the TLFS
document more accurately, i.e. HvRegisterGuestCrash*.

Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Link: https://lore.kernel.org/r/1710285687-9160-1-git-send-email-nunodasneves@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <1710285687-9160-1-git-send-email-nunodasneves@linux.microsoft.com>
2024-03-18 04:58:49 +00:00
Linus Torvalds
b463a3c347 Two x86 PMU fixes:
- Work around AMD erratum to filter out bogus LBR stack entries
 
  - Fix incorrect PMU reset that can result in warnings (or worse)
    during suspend/hibernation.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmX2sDIRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gGSBAAvD73hYShlVcc398uQ3LTfiugE8hMNU1p
 /OqnVWBhiRaKlgWkCF2Ohmw4zFLkKiq2Db3x6Fc00U1YUiq1Xyf+2aeU3Y7Zc/ji
 sKgh+13fySxyhhnNGrbixGPqZObUkoya5pLdZvokvY1QI2Zh/RADTw/pBrdX5TLe
 qOdcLK8/eRb68PYQ1Bd3vMgwap+47NA10mxycbWbkopL5RS3aX2nERBrui4b4yt6
 Ob/QPWiVwfCou4uuGvPFIfP2V6Zgp1/gzBuHMJpVSbRkPxlRwOB44o9HflVLfTHF
 AY7QhK1Nf0IeOZgYTU60q2DlMuqmL9fQ4sc/D3apfncq29umO7SKcvpEGRbFKLcu
 UBNxTqf4YumOyGPiUX4PmHWAxq3LNUZ3M5T/bqFq1AnZ9MOLEzLzyVb8VBV9NOBk
 7hVvRZpiZzgXJEZYas5S7kM2UYiXHb2DKIG7/dMW0NrlSgtlAA2zRrkXKMNJuPbP
 oQKJmH3ww8tdaiDjIVSMS6zjjqfEnI9hBjJ/svyLL7b3cr0+9Pb+Nh8/fzccFiyl
 FUq9NuSLmgt+hWS3rId/MSRHaU+Sf2rEVHvCJ5Ht8bsFR2+cvn4a5IkYEWGEoZp1
 jXq52h3LzVVfbryJK8TbOJm7oy9meD5i37SKyBNxBfh/okAt2LAI/rzR+vA4LEfx
 JOn5rP9rMtk=
 =5C1q
 -----END PGP SIGNATURE-----

Merge tag 'perf-urgent-2024-03-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 perf event fixes from Ingo Molnar:

 - Work around AMD erratum to filter out bogus LBR stack entries

 - Fix incorrect PMU reset that can result in warnings (or worse)
   during suspend/hibernation

* tag 'perf-urgent-2024-03-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/x86/amd/core: Avoid register reset when CPU is dead
  perf/x86/amd/lbr: Discard erroneous branch entries
2024-03-17 12:12:55 -07:00
Borislav Petkov (AMD)
5c84b051bd x86/CPU/AMD: Update the Zenbleed microcode revisions
Update them to the correct revision numbers.

Fixes: 522b1d6921 ("x86/cpu/amd: Add a Zenbleed fix")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-03-16 09:04:09 -07:00
Linus Torvalds
4f712ee0cb S390:
* Changes to FPU handling came in via the main s390 pull request
 
 * Only deliver to the guest the SCLP events that userspace has
   requested.
 
 * More virtual vs physical address fixes (only a cleanup since
   virtual and physical address spaces are currently the same).
 
 * Fix selftests undefined behavior.
 
 x86:
 
 * Fix a restriction that the guest can't program a PMU event whose
   encoding matches an architectural event that isn't included in the
   guest CPUID.  The enumeration of an architectural event only says
   that if a CPU supports an architectural event, then the event can be
   programmed *using the architectural encoding*.  The enumeration does
   NOT say anything about the encoding when the CPU doesn't report support
   the event *in general*.  It might support it, and it might support it
   using the same encoding that made it into the architectural PMU spec.
 
 * Fix a variety of bugs in KVM's emulation of RDPMC (more details on
   individual commits) and add a selftest to verify KVM correctly emulates
   RDMPC, counter availability, and a variety of other PMC-related
   behaviors that depend on guest CPUID and therefore are easier to
   validate with selftests than with custom guests (aka kvm-unit-tests).
 
 * Zero out PMU state on AMD if the virtual PMU is disabled, it does not
   cause any bug but it wastes time in various cases where KVM would check
   if a PMC event needs to be synthesized.
 
 * Optimize triggering of emulated events, with a nice ~10% performance
   improvement in VM-Exit microbenchmarks when a vPMU is exposed to the
   guest.
 
 * Tighten the check for "PMI in guest" to reduce false positives if an NMI
   arrives in the host while KVM is handling an IRQ VM-Exit.
 
 * Fix a bug where KVM would report stale/bogus exit qualification information
   when exiting to userspace with an internal error exit code.
 
 * Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
 
 * Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
   read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
 
 * Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB).  KVM
   doesn't support yielding in the middle of processing a zap, and 1GiB
   granularity resulted in multi-millisecond lags that are quite impolite
   for CONFIG_PREEMPT kernels.
 
 * Allocate write-tracking metadata on-demand to avoid the memory overhead when
   a kernel is built with i915 virtualization support but the workloads use
   neither shadow paging nor i915 virtualization.
 
 * Explicitly initialize a variety of on-stack variables in the emulator that
   triggered KMSAN false positives.
 
 * Fix the debugregs ABI for 32-bit KVM.
 
 * Rework the "force immediate exit" code so that vendor code ultimately decides
   how and when to force the exit, which allowed some optimization for both
   Intel and AMD.
 
 * Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
   vCPU creation ultimately failed, causing extra unnecessary work.
 
 * Cleanup the logic for checking if the currently loaded vCPU is in-kernel.
 
 * Harden against underflowing the active mmu_notifier invalidation
   count, so that "bad" invalidations (usually due to bugs elsehwere in the
   kernel) are detected earlier and are less likely to hang the kernel.
 
 x86 Xen emulation:
 
 * Overlay pages can now be cached based on host virtual address,
   instead of guest physical addresses.  This removes the need to
   reconfigure and invalidate the cache if the guest changes the
   gpa but the underlying host virtual address remains the same.
 
 * When possible, use a single host TSC value when computing the deadline for
   Xen timers in order to improve the accuracy of the timer emulation.
 
 * Inject pending upcall events when the vCPU software-enables its APIC to fix
   a bug where an upcall can be lost (and to follow Xen's behavior).
 
 * Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
   events fails, e.g. if the guest has aliased xAPIC IDs.
 
 RISC-V:
 
 * Support exception and interrupt handling in selftests
 
 * New self test for RISC-V architectural timer (Sstc extension)
 
 * New extension support (Ztso, Zacas)
 
 * Support userspace emulation of random number seed CSRs.
 
 ARM:
 
 * Infrastructure for building KVM's trap configuration based on the
   architectural features (or lack thereof) advertised in the VM's ID
   registers
 
 * Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
   x86's WC) at stage-2, improving the performance of interacting with
   assigned devices that can tolerate it
 
 * Conversion of KVM's representation of LPIs to an xarray, utilized to
   address serialization some of the serialization on the LPI injection
   path
 
 * Support for _architectural_ VHE-only systems, advertised through the
   absence of FEAT_E2H0 in the CPU's ID register
 
 * Miscellaneous cleanups, fixes, and spelling corrections to KVM and
   selftests
 
 LoongArch:
 
 * Set reserved bits as zero in CPUCFG.
 
 * Start SW timer only when vcpu is blocking.
 
 * Do not restart SW timer when it is expired.
 
 * Remove unnecessary CSR register saving during enter guest.
 
 * Misc cleanups and fixes as usual.
 
 Generic:
 
 * cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always
   true on all architectures except MIPS (where Kconfig determines the
   available depending on CPU capabilities).  It is replaced either by
   an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM)
   everywhere else.
 
 * Factor common "select" statements in common code instead of requiring
   each architecture to specify it
 
 * Remove thoroughly obsolete APIs from the uapi headers.
 
 * Move architecture-dependent stuff to uapi/asm/kvm.h
 
 * Always flush the async page fault workqueue when a work item is being
   removed, especially during vCPU destruction, to ensure that there are no
   workers running in KVM code when all references to KVM-the-module are gone,
   i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded.
 
 * Grab a reference to the VM's mm_struct in the async #PF worker itself instead
   of gifting the worker a reference, so that there's no need to remember
   to *conditionally* clean up after the worker.
 
 Selftests:
 
 * Reduce boilerplate especially when utilize selftest TAP infrastructure.
 
 * Add basic smoke tests for SEV and SEV-ES, along with a pile of library
   support for handling private/encrypted/protected memory.
 
 * Fix benign bugs where tests neglect to close() guest_memfd files.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z
 eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP
 6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd
 j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK
 Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y
 5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA==
 =mqOV
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "S390:

   - Changes to FPU handling came in via the main s390 pull request

   - Only deliver to the guest the SCLP events that userspace has
     requested

   - More virtual vs physical address fixes (only a cleanup since
     virtual and physical address spaces are currently the same)

   - Fix selftests undefined behavior

  x86:

   - Fix a restriction that the guest can't program a PMU event whose
     encoding matches an architectural event that isn't included in the
     guest CPUID. The enumeration of an architectural event only says
     that if a CPU supports an architectural event, then the event can
     be programmed *using the architectural encoding*. The enumeration
     does NOT say anything about the encoding when the CPU doesn't
     report support the event *in general*. It might support it, and it
     might support it using the same encoding that made it into the
     architectural PMU spec

   - Fix a variety of bugs in KVM's emulation of RDPMC (more details on
     individual commits) and add a selftest to verify KVM correctly
     emulates RDMPC, counter availability, and a variety of other
     PMC-related behaviors that depend on guest CPUID and therefore are
     easier to validate with selftests than with custom guests (aka
     kvm-unit-tests)

   - Zero out PMU state on AMD if the virtual PMU is disabled, it does
     not cause any bug but it wastes time in various cases where KVM
     would check if a PMC event needs to be synthesized

   - Optimize triggering of emulated events, with a nice ~10%
     performance improvement in VM-Exit microbenchmarks when a vPMU is
     exposed to the guest

   - Tighten the check for "PMI in guest" to reduce false positives if
     an NMI arrives in the host while KVM is handling an IRQ VM-Exit

   - Fix a bug where KVM would report stale/bogus exit qualification
     information when exiting to userspace with an internal error exit
     code

   - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support

   - Rework TDP MMU root unload, free, and alloc to run with mmu_lock
     held for read, e.g. to avoid serializing vCPUs when userspace
     deletes a memslot

   - Tear down TDP MMU page tables at 4KiB granularity (used to be
     1GiB). KVM doesn't support yielding in the middle of processing a
     zap, and 1GiB granularity resulted in multi-millisecond lags that
     are quite impolite for CONFIG_PREEMPT kernels

   - Allocate write-tracking metadata on-demand to avoid the memory
     overhead when a kernel is built with i915 virtualization support
     but the workloads use neither shadow paging nor i915 virtualization

   - Explicitly initialize a variety of on-stack variables in the
     emulator that triggered KMSAN false positives

   - Fix the debugregs ABI for 32-bit KVM

   - Rework the "force immediate exit" code so that vendor code
     ultimately decides how and when to force the exit, which allowed
     some optimization for both Intel and AMD

   - Fix a long-standing bug where kvm_has_noapic_vcpu could be left
     elevated if vCPU creation ultimately failed, causing extra
     unnecessary work

   - Cleanup the logic for checking if the currently loaded vCPU is
     in-kernel

   - Harden against underflowing the active mmu_notifier invalidation
     count, so that "bad" invalidations (usually due to bugs elsehwere
     in the kernel) are detected earlier and are less likely to hang the
     kernel

  x86 Xen emulation:

   - Overlay pages can now be cached based on host virtual address,
     instead of guest physical addresses. This removes the need to
     reconfigure and invalidate the cache if the guest changes the gpa
     but the underlying host virtual address remains the same

   - When possible, use a single host TSC value when computing the
     deadline for Xen timers in order to improve the accuracy of the
     timer emulation

   - Inject pending upcall events when the vCPU software-enables its
     APIC to fix a bug where an upcall can be lost (and to follow Xen's
     behavior)

   - Fall back to the slow path instead of warning if "fast" IRQ
     delivery of Xen events fails, e.g. if the guest has aliased xAPIC
     IDs

  RISC-V:

   - Support exception and interrupt handling in selftests

   - New self test for RISC-V architectural timer (Sstc extension)

   - New extension support (Ztso, Zacas)

   - Support userspace emulation of random number seed CSRs

  ARM:

   - Infrastructure for building KVM's trap configuration based on the
     architectural features (or lack thereof) advertised in the VM's ID
     registers

   - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
     x86's WC) at stage-2, improving the performance of interacting with
     assigned devices that can tolerate it

   - Conversion of KVM's representation of LPIs to an xarray, utilized
     to address serialization some of the serialization on the LPI
     injection path

   - Support for _architectural_ VHE-only systems, advertised through
     the absence of FEAT_E2H0 in the CPU's ID register

   - Miscellaneous cleanups, fixes, and spelling corrections to KVM and
     selftests

  LoongArch:

   - Set reserved bits as zero in CPUCFG

   - Start SW timer only when vcpu is blocking

   - Do not restart SW timer when it is expired

   - Remove unnecessary CSR register saving during enter guest

   - Misc cleanups and fixes as usual

  Generic:

   - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
     always true on all architectures except MIPS (where Kconfig
     determines the available depending on CPU capabilities). It is
     replaced either by an architecture-dependent symbol for MIPS, and
     IS_ENABLED(CONFIG_KVM) everywhere else

   - Factor common "select" statements in common code instead of
     requiring each architecture to specify it

   - Remove thoroughly obsolete APIs from the uapi headers

   - Move architecture-dependent stuff to uapi/asm/kvm.h

   - Always flush the async page fault workqueue when a work item is
     being removed, especially during vCPU destruction, to ensure that
     there are no workers running in KVM code when all references to
     KVM-the-module are gone, i.e. to prevent a very unlikely
     use-after-free if kvm.ko is unloaded

   - Grab a reference to the VM's mm_struct in the async #PF worker
     itself instead of gifting the worker a reference, so that there's
     no need to remember to *conditionally* clean up after the worker

  Selftests:

   - Reduce boilerplate especially when utilize selftest TAP
     infrastructure

   - Add basic smoke tests for SEV and SEV-ES, along with a pile of
     library support for handling private/encrypted/protected memory

   - Fix benign bugs where tests neglect to close() guest_memfd files"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
  selftests: kvm: remove meaningless assignments in Makefiles
  KVM: riscv: selftests: Add Zacas extension to get-reg-list test
  RISC-V: KVM: Allow Zacas extension for Guest/VM
  KVM: riscv: selftests: Add Ztso extension to get-reg-list test
  RISC-V: KVM: Allow Ztso extension for Guest/VM
  RISC-V: KVM: Forward SEED CSR access to user space
  KVM: riscv: selftests: Add sstc timer test
  KVM: riscv: selftests: Change vcpu_has_ext to a common function
  KVM: riscv: selftests: Add guest helper to get vcpu id
  KVM: riscv: selftests: Add exception handling support
  LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
  LoongArch: KVM: Do not restart SW timer when it is expired
  LoongArch: KVM: Start SW timer only when vcpu is blocking
  LoongArch: KVM: Set reserved bits as zero in CPUCFG
  KVM: selftests: Explicitly close guest_memfd files in some gmem tests
  KVM: x86/xen: fix recursive deadlock in timer injection
  KVM: pfncache: simplify locking and make more self-contained
  KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
  KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
  KVM: x86/xen: improve accuracy of Xen timers
  ...
2024-03-15 13:03:13 -07:00