IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The value passed in to addr_referenced is of type void __user *, so update
the addr_referenced parameter in trace_mpx_bounds_register_exception to match.
Also update the addr_referenced paramater in TP_STRUCT__entry as it again
holdes the same value.
I don't know why this was missed earlier but sparse was complaining when
testing test branch so fix this now.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Replace user_single_step_siginfo with user_single_step_report
that allocates siginfo structure on the stack and sends it.
This allows tracehook_report_syscall_exit to become a simple
if statement that calls user_single_step_report or ptrace_report_syscall
depending on the value of step.
Update the default helper function now called user_single_step_report
to explicitly set si_code to SI_USER and to set si_uid and si_pid to 0.
The default helper has always been doing this (using memset) but it
was far from obvious.
The powerpc helper can now just call force_sig_fault.
The x86 helper can now just call send_sigtrap.
Unfortunately the default implementation of user_single_step_report
can not use force_sig_fault as it does not use a SIGTRAP si_code.
So it has to carefully setup the siginfo and use use force_sig_info.
The net result is code that is easier to understand and simpler
to maintain.
Ref: 85ec7fd9f8e5 ("ptrace: introduce user_single_step_siginfo() helper")
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
kvmclock defines few static variables which are shared with the
hypervisor during the kvmclock initialization.
When SEV is active, memory is encrypted with a guest-specific key, and
if the guest OS wants to share the memory region with the hypervisor
then it must clear the C-bit before sharing it.
Currently, we use kernel_physical_mapping_init() to split large pages
before clearing the C-bit on shared pages. But it fails when called from
the kvmclock initialization (mainly because the memblock allocator is
not ready that early during boot).
Add a __bss_decrypted section attribute which can be used when defining
such shared variable. The so-defined variables will be placed in the
.bss..decrypted section. This section will be mapped with C=0 early
during boot.
The .bss..decrypted section has a big chunk of memory that may be unused
when memory encryption is not active, free it when memory encryption is
not active.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Radim Krčmář<rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/1536932759-12905-2-git-send-email-brijesh.singh@amd.com
This reverts commit 1f40a46cf47c12d93a5ad9dccd82bd36ff8f956a.
It turned out that this patch is not sufficient to enable PTI on 32 bit
systems with legacy 2-level page-tables. In this paging mode the huge-page
PTEs are in the top-level page-table directory, where also the mirroring to
the user-space page-table happens. So every huge PTE exits twice, in the
kernel and in the user page-table.
That means that accessed/dirty bits need to be fetched from two PTEs in
this mode to be safe, but this is not trivial to implement because it needs
changes to generic code just for the sake of enabling PTI with 32-bit
legacy paging. As all systems that need PTI should support PAE anyway,
remove support for PTI when 32-bit legacy paging is used.
Fixes: 7757d607c6b3 ('x86/pti: Allow CONFIG_PAGE_TABLE_ISOLATION for x86_32')
Reported-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Link: https://lkml.kernel.org/r/1536922754-31379-1-git-send-email-joro@8bytes.org
The SYSCALL64 trampoline has a couple of nice properties:
- The usual sequence of SWAPGS followed by two GS-relative accesses to
set up RSP is somewhat slow because the GS-relative accesses need
to wait for SWAPGS to finish. The trampoline approach allows
RIP-relative accesses to set up RSP, which avoids the stall.
- The trampoline avoids any percpu access before CR3 is set up,
which means that no percpu memory needs to be mapped in the user
page tables. This prevents using Meltdown to read any percpu memory
outside the cpu_entry_area and prevents using timing leaks
to directly locate the percpu areas.
The downsides of using a trampoline may outweigh the upsides, however.
It adds an extra non-contiguous I$ cache line to system calls, and it
forces an indirect jump to transfer control back to the normal kernel
text after CR3 is set up. The latter is because x86 lacks a 64-bit
direct jump instruction that could jump from the trampoline to the entry
text. With retpolines enabled, the indirect jump is extremely slow.
Change the code to map the percpu TSS into the user page tables to allow
the non-trampoline SYSCALL64 path to work under PTI. This does not add a
new direct information leak, since the TSS is readable by Meltdown from the
cpu_entry_area alias regardless. It does allow a timing attack to locate
the percpu area, but KASLR is more or less a lost cause against local
attack on CPUs vulnerable to Meltdown regardless. As far as I'm concerned,
on current hardware, KASLR is only useful to mitigate remote attacks that
try to attack the kernel without first gaining RCE against a vulnerable
user process.
On Skylake, with CONFIG_RETPOLINE=y and KPTI on, this reduces syscall
overhead from ~237ns to ~228ns.
There is a possible alternative approach: Move the trampoline within 2G of
the entry text and make a separate copy for each CPU. This would allow a
direct jump to rejoin the normal entry path. There are pro's and con's for
this approach:
+ It avoids a pipeline stall
- It executes from an extra page and read from another extra page during
the syscall. The latter is because it needs to use a relative
addressing mode to find sp1 -- it's the same *cacheline*, but accessed
using an alias, so it's an extra TLB entry.
- Slightly more memory. This would be one page per CPU for a simple
implementation and 64-ish bytes per CPU or one page per node for a more
complex implementation.
- More code complexity.
The current approach is chosen for simplicity and because the alternative
does not provide a significant benefit, which makes it worth.
[ tglx: Added the alternative discussion to the changelog ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/8c7c6e483612c3e4e10ca89495dc160b1aa66878.1536015544.git.luto@kernel.org
I use memcpy_flushcache() in my persistent memory driver for metadata
updates, there are many 8-byte and 16-byte updates and it turns out that
the overhead of memcpy_flushcache causes 2% performance degradation
compared to "movnti" instruction explicitly coded using inline assembler.
The tests were done on a Skylake processor with persistent memory emulated
using the "memmap" kernel parameter. dd was used to copy data to the
dm-writecache target.
This patch recognizes memcpy_flushcache calls with constant short length
and turns them into inline assembler - so that I don't have to use inline
assembler in the driver.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: device-mapper development <dm-devel@redhat.com>
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1808081720460.24747@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for x86:
- Prevent multiplication result truncation on 32bit. Introduced with
the early timestamp reworrk.
- Ensure microcode revision storage to be consistent under all
circumstances
- Prevent write tearing of PTEs
- Prevent confusion of user and kernel reegisters when dumping fatal
signals verbosely
- Make an error return value in a failure path of the vector
allocation negative. Returning EINVAL might the caller assume
success and causes further wreckage.
- A trivial kernel doc warning fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Use WRITE_ONCE() when setting PTEs
x86/apic/vector: Make error return value negative
x86/process: Don't mix user/kernel regs in 64bit __show_regs()
x86/tsc: Prevent result truncation on 32bit
x86: Fix kernel-doc atomic.h warnings
x86/microcode: Update the new microcode revision unconditionally
x86/microcode: Make sure boot_cpu_data.microcode is up-to-date
When page-table entries are set, the compiler might optimize their
assignment by using multiple instructions to set the PTE. This might
turn into a security hazard if the user somehow manages to use the
interim PTE. L1TF does not make our lives easier, making even an interim
non-present PTE a security hazard.
Using WRITE_ONCE() to set PTEs and friends should prevent this potential
security hazard.
I skimmed the differences in the binary with and without this patch. The
differences are (obviously) greater when CONFIG_PARAVIRT=n as more
code optimizations are possible. For better and worse, the impact on the
binary with this patch is pretty small. Skimming the code did not cause
anything to jump out as a security hazard, but it seems that at least
move_soft_dirty_pte() caused set_pte_at() to use multiple writes.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180902181451.80520-1-namit@vmware.com
In the non-trampoline SYSCALL64 path, a percpu variable is used to
temporarily store the user RSP value.
Instead of a separate variable, use the otherwise unused sp2 slot in the
TSS. This will improve cache locality, as the sp1 slot is already used in
the same code to find the kernel stack. It will also simplify a future
change to make the non-trampoline path work in PTI mode.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/08e769a0023dbad4bac6f34f3631dbaf8ad59f4f.1536015544.git.luto@kernel.org
Dan Carpenter reported that the untrusted data returns from kvm_register_read()
results in the following static checker warning:
arch/x86/kvm/lapic.c:576 kvm_pv_send_ipi()
error: buffer underflow 'map->phys_map' 's32min-s32max'
KVM guest can easily trigger this by executing the following assembly sequence
in Ring0:
mov $10, %rax
mov $0xFFFFFFFF, %rbx
mov $0xFFFFFFFF, %rdx
mov $0, %rsi
vmcall
As this will cause KVM to execute the following code-path:
vmx_handle_exit() -> handle_vmcall() -> kvm_emulate_hypercall() -> kvm_pv_send_ipi()
which will reach out-of-bounds access.
This patch fixes it by adding a check to kvm_pv_send_ipi() against map->max_apic_id,
ignoring destinations that are not present and delivering the rest. We also check
whether or not map->phys_map[min + i] is NULL since the max_apic_id is set to the
max apic id, some phys_map maybe NULL when apic id is sparse, especially kvm
unconditionally set max_apic_id to 255 to reserve enough space for any xAPIC ID.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Add second "if (min > map->max_apic_id)" to complete the fix. -Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
- Fix a VFP corruption in 32-bit guest
- Add missing cache invalidation for CoW pages
- Two small cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJbkngmAAoJEEtpOizt6ddyeaoH/15bbGHlwWf23tGjSoDzhyD4
zAXfy+SJdm4cR8K7jEkVrNffkEMAby7Zl28hTHKB9jsY1K8DD+EuCE3Nd4kkVAsc
iHJwV4aiHil/zC5SyE0MqMzELeS8UhsxESYebG6yNF0ElQDQ0SG+QAFr47/OBN9S
u4I7x0rhyJP6Kg8z9U4KtEX0hM6C7VVunGWu44/xZSAecTaMuJnItCIM4UMdEkSs
xpAoI59lwM6BWrXLvEunekAkxEXoR7AVpQER2PDINoLK2I0i0oavhPim9Xdt2ZXs
rqQqfmwmPOVvYbexDp97JtfWo3/psGLqvgoK1tq9bzF3u6Y3ylnUK5IspyVYwuQ=
=TK8A
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-for-v4.19-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
Fixes for KVM/ARM for Linux v4.19 v2:
- Fix a VFP corruption in 32-bit guest
- Add missing cache invalidation for CoW pages
- Two small cleanups
kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to
deal with. Drop the now obsolete code.
Fixes: fb1522e099f0 ("KVM: update to new mmu_notifier semantic v2")
Cc: James Hogan <jhogan@kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
The PARAVIRT_XXL changes introduced a redefinition of SAVE_FLAGS under
certain configurations. Cure it
Fixes: 6da63eb241a0 ("x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella").
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20180905053720.13710-1-jgross@suse.com
When the kernel.print-fatal-signals sysctl has been enabled, a simple
userspace crash will cause the kernel to write a crash dump that contains,
among other things, the kernel gsbase into dmesg.
As suggested by Andy, limit output to pt_regs, FS_BASE and KERNEL_GS_BASE
in this case.
This also moves the bitness-specific logic from show_regs() into
process_{32,64}.c.
Fixes: 45807a1df9f5 ("vdso: print fatal signals")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180831194151.123586-1-jannh@google.com
This is preparation for looking at trap number and fault address in the
handlers for uaccess errors. No functional change.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-kernel@vger.kernel.org
Cc: dvyukov@google.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180828201421.157735-6-jannh@google.com
Currently, most fixups for attempting to access userspace memory are
handled using _ASM_EXTABLE, which is also used for various other types of
fixups (e.g. safe MSR access, IRET failures, and a bunch of other things).
In order to make it possible to add special safety checks to uaccess fixups
(in particular, checking whether the fault address is actually in
userspace), introduce a new exception table handler ex_handler_uaccess()
and wire it up to all the user access fixups (excluding ones that
already use _ASM_EXTABLE_EX).
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: dvyukov@google.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180828201421.157735-5-jannh@google.com
Fix kernel-doc warnings in arch/x86/include/asm/atomic.h that are caused by
having a #define macro between the kernel-doc notation and the function
name. Fixed by moving the #define macro to after the function
implementation.
Make the same change for atomic64_{32,64}.h for consistency even though
there were no kernel-doc warnings found in these header files, but there
would be if they were used in generation of documentation.
Fixes these kernel-doc warnings:
../arch/x86/include/asm/atomic.h:84: warning: Excess function parameter 'i' description in 'arch_atomic_sub_and_test'
../arch/x86/include/asm/atomic.h:84: warning: Excess function parameter 'v' description in 'arch_atomic_sub_and_test'
../arch/x86/include/asm/atomic.h:96: warning: Excess function parameter 'v' description in 'arch_atomic_inc'
../arch/x86/include/asm/atomic.h:109: warning: Excess function parameter 'v' description in 'arch_atomic_dec'
../arch/x86/include/asm/atomic.h:124: warning: Excess function parameter 'v' description in 'arch_atomic_dec_and_test'
../arch/x86/include/asm/atomic.h:138: warning: Excess function parameter 'v' description in 'arch_atomic_inc_and_test'
../arch/x86/include/asm/atomic.h:153: warning: Excess function parameter 'i' description in 'arch_atomic_add_negative'
../arch/x86/include/asm/atomic.h:153: warning: Excess function parameter 'v' description in 'arch_atomic_add_negative'
Fixes: 18cc1814d4e7 ("atomics/treewide: Make test ops optional")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/0a1e678d-c8c5-b32c-2640-ed4e94d399d2@infradead.org
Pull x86 fixes from Thomas Gleixner:
"Speculation:
- Make the microcode check more robust
- Make the L1TF memory limit depend on the internal cache physical
address space and not on the CPUID advertised physical address
space, which might be significantly smaller. This avoids disabling
L1TF on machines which utilize the full physical address space.
- Fix the GDT mapping for EFI calls on 32bit PTI
- Fix the MCE nospec implementation to prevent #GP
Fixes and robustness:
- Use the proper operand order for LSL in the VDSO
- Prevent NMI uaccess race against CR3 switching
- Add a lockdep check to verify that text_mutex is held in
text_poke() functions
- Repair the fallout of giving native_restore_fl() a prototype
- Prevent kernel memory dumps based on usermode RIP
- Wipe KASAN shadow stack before rewinding the stack to prevent false
positives
- Move the AMS GOTO enforcement to the actual build stage to allow
user API header extraction without a compiler
- Fix a section mismatch introduced by the on demand VDSO mapping
change
Miscellaneous:
- Trivial typo, GCC quirk removal and CC_SET/OUT() cleanups"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pti: Fix section mismatch warning/error
x86/vdso: Fix lsl operand order
x86/mce: Fix set_mce_nospec() to avoid #GP fault
x86/efi: Load fixmap GDT in efi_call_phys_epilog()
x86/nmi: Fix NMI uaccess race against CR3 switching
x86: Allow generating user-space headers without a compiler
x86/dumpstack: Don't dump kernel memory based on usermode RIP
x86/asm: Use CC_SET()/CC_OUT() in __gen_sigismember()
x86/alternatives: Lockdep-enforce text_mutex in text_poke*()
x86/entry/64: Wipe KASAN stack shadow before rewind_stack_do_exit()
x86/irqflags: Mark native_restore_fl extern inline
x86/build: Remove jump label quirk for GCC older than 4.5.2
x86/Kconfig: Fix trivial typo
x86/speculation/l1tf: Increase l1tf memory limit for Nehalem+
x86/spectre: Add missing family 6 check to microcode check
In the __getcpu function, lsl is using the wrong target and destination
registers. Luckily, the compiler tends to choose %eax for both variables,
so it has been working so far.
Fixes: a582c540ac1b ("x86/vdso: Use RDPID in preference to LSL when available")
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180901201452.27828-1-sneves@dei.uc.pt
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCW4lM6AAKCRCAXGG7T9hj
vs8AAQDysFccg97UdopW3B7yklIaRqkfEIAsxe65f191MXsH2AEAp5SKxZqRPqBP
a9WHDj8ShB3BhZ/IxpdO9Y59U3Jo4wA=
=Gt4c
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.19b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
- minor cleanup avoiding a warning when building with new gcc
- a patch to add a new sysfs node for Xen frontend/backend drivers to
make it easier to obtain the state of a pv device
- two fixes for 32-bit pv-guests to avoid intermediate L1TF vulnerable
PTEs
* tag 'for-linus-4.19b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
x86/xen: remove redundant variable save_pud
xen: export device state to sysfs
x86/pae: use 64 bit atomic xchg function in native_ptep_get_and_clear
x86/xen: don't write ptes directly in 32-bit PV guests
A NMI can hit in the middle of context switching or in the middle of
switch_mm_irqs_off(). In either case, CR3 might not match current->mm,
which could cause copy_from_user_nmi() and friends to read the wrong
memory.
Fix it by adding a new nmi_uaccess_okay() helper and checking it in
copy_from_user_nmi() and in __copy_from_user_nmi()'s callers.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jann Horn <jannh@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/dd956eba16646fd0b15c3c0741269dfd84452dac.1535557289.git.luto@kernel.org
show_opcodes() is used both for dumping kernel instructions and for dumping
user instructions. If userspace causes #PF by jumping to a kernel address,
show_opcodes() can be reached with regs->ip controlled by the user,
pointing to kernel code. Make sure that userspace can't trick us into
dumping kernel memory into dmesg.
Fixes: 7cccf0725cf7 ("x86/dumpstack: Add a show_ip() function")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: security@kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180828154901.112726-1-jannh@google.com
Allowing x86_emulate_instruction() to be called directly has led to
subtle bugs being introduced, e.g. not setting EMULTYPE_NO_REEXECUTE
in the emulation type. While most of the blame lies on re-execute
being opt-out, exporting x86_emulate_instruction() also exposes its
cr2 parameter, which may have contributed to commit d391f1207067
("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO
when running nested") using x86_emulate_instruction() instead of
emulate_instruction() because "hey, I have a cr2!", which in turn
introduced its EMULTYPE_NO_REEXECUTE bug.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Lack of the kvm_ prefix gives the impression that it's a VMX or SVM
specific function, and there's no conflict that prevents adding the
kvm_ prefix.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
retry_instruction() and reexecute_instruction() are a package deal,
i.e. there is no scenario where one is allowed and the other is not.
Merge their controlling emulation type flags to enforce this in code.
Name the combined flag EMULTYPE_ALLOW_RETRY to make it abundantly
clear that we are allowing re{try,execute} to occur, as opposed to
explicitly requesting retry of a previously failed instruction.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Re-execution of an instruction after emulation decode failure is
intended to be used only when emulating shadow page accesses. Invert
the flag to make allowing re-execution opt-in since that behavior is
by far in the minority.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Re-execution after an emulation decode failure is only intended to
handle a case where two or vCPUs race to write a shadowed page, i.e.
we should never re-execute an instruction as part of RSM emulation.
Add a new helper, kvm_emulate_instruction_from_buffer(), to support
emulating from a pre-defined buffer. This eliminates the last direct
call to x86_emulate_instruction() outside of kvm_mmu_page_fault(),
which means x86_emulate_instruction() can be unexported in a future
patch.
Fixes: 7607b7174405 ("KVM: SVM: install RSM intercept")
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This should have been marked extern inline in order to pick up the out
of line definition in arch/x86/kernel/irqflags.S.
Fixes: 208cbb325589 ("x86/irqflags: Provide a declaration for native_save_fl")
Reported-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180827214011.55428-1-ndesaulniers@google.com
After changing over to 64-bit time_t syscalls, many architectures will
want compat_sys_utimensat() but not respective handlers for utime(),
utimes() and futimesat(). This adds a new __ARCH_WANT_SYS_UTIME32 to
complement __ARCH_WANT_SYS_UTIME. For now, all 64-bit architectures that
support CONFIG_COMPAT set it, but future 64-bit architectures will not
(tile would not have needed it either, but got removed).
As older 32-bit architectures get converted to using CONFIG_64BIT_TIME,
they will have to use __ARCH_WANT_SYS_UTIME32 instead of
__ARCH_WANT_SYS_UTIME. Architectures using the generic syscall ABI don't
need either of them as they never had a utime syscall.
Since the compat_utimbuf structure is now required outside of
CONFIG_COMPAT, I'm moving it into compat_time.h.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
---
changed from last version:
- renamed __ARCH_WANT_COMPAT_SYS_UTIME to __ARCH_WANT_SYS_UTIME32
The sys_llseek sytem call is needed on all 32-bit architectures and
none of the 64-bit ones, so we can remove the __ARCH_WANT_SYS_LLSEEK guard
and simplify the include/asm-generic/unistd.h header further.
Since 32-bit tasks can run either natively or in compat mode on 64-bit
architectures, we have to check for both !CONFIG_64BIT and CONFIG_COMPAT.
There are a few 64-bit architectures that also reference sys_llseek
in their 64-bit ABI (e.g. sparc), but I verified that those all
select CONFIG_COMPAT, so the #if check is still correct here. It's
a bit odd to include it in the syscall table though, as it's the
same as sys_lseek() on 64-bit, but with strange calling conventions.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
While converting compat system call handlers to work on 32-bit
architectures, I found a number of types used in those handlers
that are identical between all architectures.
Let's move all the identical ones into asm-generic/compat.h to avoid
having to add even more identical definitions of those types.
For unknown reasons, mips defines __compat_gid32_t, __compat_uid32_t
and compat_caddr_t as signed, while all others have them unsigned.
This seems to be a mistake, but I'm leaving it alone here. The other
types all differ by size or alignment on at least on architecture.
compat_aio_context_t is currently defined in linux/compat.h but
also needed for compat_sys_io_getevents(), so let's move it into
the same place.
While we still have not decided whether the 32-bit time handling
will always use the compat syscalls, or in which form, I think this
is a useful cleanup that we can merge regardless.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
We have four generations of stat() syscalls:
- the oldstat syscalls that are only used on the older architectures
- the newstat family that is used on all 64-bit architectures but
lacked support for large files on 32-bit architectures.
- the stat64 family that is used mostly on 32-bit architectures to
replace newstat
- statx() to replace all of the above, adding 64-bit timestamps among
other things.
We already compile stat64 only on those architectures that need it,
but newstat is always built, including on those that don't reference
it. This adds a new __ARCH_WANT_NEW_STAT symbol along the lines of
__ARCH_WANT_OLD_STAT and __ARCH_WANT_STAT64 to control compilation of
newstat. All architectures that need it use an explict define, the
others now get a little bit smaller, and future architecture (including
64-bit targets) won't ever see it.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Using only 32-bit writes for the pte will result in an intermediate
L1TF vulnerable PTE. When running as a Xen PV guest this will at once
switch the guest to shadow mode resulting in a loss of performance.
Use arch_atomic64_xchg() instead which will perform the requested
operation atomically with all 64 bits.
Some performance considerations according to:
https://software.intel.com/sites/default/files/managed/ad/dc/Intel-Xeon-Scalable-Processor-throughput-latency.pdf
The main number should be the latency, as there is no tight loop around
native_ptep_get_and_clear().
"lock cmpxchg8b" has a latency of 20 cycles, while "lock xchg" (with a
memory operand) isn't mentioned in that document. "lock xadd" (with xadd
having 3 cycles less latency than xchg) has a latency of 11, so we can
assume a latency of 14 for "lock xchg".
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Tested-by: Jason Andryuk <jandryuk@gmail.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
On Nehalem and newer core CPUs the CPU cache internally uses 44 bits
physical address space. The L1TF workaround is limited by this internal
cache address width, and needs to have one bit free there for the
mitigation to work.
Older client systems report only 36bit physical address space so the range
check decides that L1TF is not mitigated for a 36bit phys/32GB system with
some memory holes.
But since these actually have the larger internal cache width this warning
is bogus because it would only really be needed if the system had more than
43bits of memory.
Add a new internal x86_cache_bits field. Normally it is the same as the
physical bits field reported by CPUID, but for Nehalem and newerforce it to
be at least 44bits.
Change the L1TF memory size warning to use the new cache_bits field to
avoid bogus warnings and remove the bogus comment about memory size.
Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Reported-by: George Anchev <studio@anchev.net>
Reported-by: Christopher Snowhill <kode54@gmail.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Michael Hocko <mhocko@suse.com>
Cc: vbabka@suse.cz
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180824170351.34874-1-andi@firstfloor.org
Pull x86 fixes from Thomas Gleixner:
- Correct the L1TF fallout on 32bit and the off by one in the 'too much
RAM for protection' calculation.
- Add a helpful kernel message for the 'too much RAM' case
- Unbreak the VDSO in case that the compiler desides to use indirect
jumps/calls and emits retpolines which cannot be resolved because the
kernel uses its own thunks, which does not work for the VDSO. Make it
use the builtin thunks.
- Re-export start_thread() which was unexported when the 32/64bit
implementation was unified. start_thread() is required by modular
binfmt handlers.
- Trivial cleanups
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/l1tf: Suggest what to do on systems with too much RAM
x86/speculation/l1tf: Fix off-by-one error when warning that system has too much RAM
x86/kvm/vmx: Remove duplicate l1d flush definitions
x86/speculation/l1tf: Fix overflow in l1tf_pfn_limit() on 32bit
x86/process: Re-export start_thread()
x86/mce: Add notifier_block forward declaration
x86/vdso: Fix vDSO build if a retpoline is emitted
* memory_failure() gets confused by dev_pagemap backed mappings. The
recovery code has specific enabling for several possible page states
that needs new enabling to handle poison in dax mappings. Teach
memory_failure() about ZONE_DEVICE pages.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5DAy15EJMCV1R6v9YGjFFmlTOEoFAlt9ui8ACgkQYGjFFmlT
OEpNRw//XGj9s7sezfJFeol4psJlRUd935yii/gmJRgi/yPf2VxxQG9qyM6SMBUc
75jASfOL6FSsfxHz0kplyWzMDNdrTkNNAD+9rv80FmY7GqWgcas9DaJX7jZ994vI
5SRO7pfvNZcXlo7IhqZippDw3yxkIU9Ufi0YQKaEUm7GFieptvCZ0p9x3VYfdvwM
BExrxQe0X1XUF4xErp5P78+WUbKxP47DLcucRDig8Q7dmHELUdyNzo3E1SVoc7m+
3CmvyTj6XuFQgOZw7ZKun1BJYfx/eD5ZlRJLZbx6wJHRtTXv/Uea8mZ8mJ31ykN9
F7QVd0Pmlyxys8lcXfK+nvpL09QBE0/PhwWKjmZBoU8AdgP/ZvBXLDL/D6YuMTg6
T4wwtPNJorfV4lVD06OliFkVI4qbKbmNsfRq43Ns7PCaLueu4U/eMaSwSH99UMaZ
MGbO140XW2RZsHiU9yTRUmZq73AplePEjxtzR8oHmnjo45nPDPy8mucWPlkT9kXA
oUFMhgiviK7dOo19H4eaPJGqLmHM93+x5tpYxGqTr0dUOXUadKWxMsTnkID+8Yi7
/kzQWCFvySz3VhiEHGuWkW08GZT6aCcpkREDomnRh4MEnETlZI8bblcuXYOCLs6c
nNf1SIMtLdlsl7U1fEX89PNeQQ2y237vEDhFQZftaalPeu/JJV0=
=Ftop
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm memory-failure update from Dave Jiang:
"As it stands, memory_failure() gets thoroughly confused by dev_pagemap
backed mappings. The recovery code has specific enabling for several
possible page states and needs new enabling to handle poison in dax
mappings.
In order to support reliable reverse mapping of user space addresses:
1/ Add new locking in the memory_failure() rmap path to prevent races
that would typically be handled by the page lock.
2/ Since dev_pagemap pages are hidden from the page allocator and the
"compound page" accounting machinery, add a mechanism to determine
the size of the mapping that encompasses a given poisoned pfn.
3/ Given pmem errors can be repaired, change the speculatively
accessed poison protection, mce_unmap_kpfn(), to be reversible and
otherwise allow ongoing access from the kernel.
A side effect of this enabling is that MADV_HWPOISON becomes usable
for dax mappings, however the primary motivation is to allow the
system to survive userspace consumption of hardware-poison via dax.
Specifically the current behavior is:
mce: Uncorrected hardware memory error in user-access at af34214200
{1}[Hardware Error]: It has been corrected by h/w and requires no further action
mce: [Hardware Error]: Machine check events logged
{1}[Hardware Error]: event severity: corrected
Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users
[..]
Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed
mce: Memory error not recovered
<reboot>
...and with these changes:
Injecting memory failure for pfn 0x20cb00 at process virtual address 0x7f763dd00000
Memory failure: 0x20cb00: Killing dax-pmd:5421 due to hardware memory corruption
Memory failure: 0x20cb00: recovery action for dax page: Recovered
Given all the cross dependencies I propose taking this through
nvdimm.git with acks from Naoya, x86/core, x86/RAS, and of course dax
folks"
* tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm, pmem: Restore page attributes when clearing errors
x86/memory_failure: Introduce {set, clear}_mce_nospec()
x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses
mm, memory_failure: Teach memory_failure() about dev_pagemap pages
filesystem-dax: Introduce dax_lock_mapping_entry()
mm, memory_failure: Collect mapping size in collect_procs()
mm, madvise_inject_error: Let memory_failure() optionally take a page reference
mm, dev_pagemap: Do not clear ->mapping on final put
mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages
filesystem-dax: Set page->index
device-dax: Set page->index
device-dax: Enable page_mapping()
device-dax: Convert to vmf_insert_mixed and vm_fault_t
Including:
- PASID table handling updates for the Intel VT-d driver. It
implements a global PASID space now so that applications
usings multiple devices will just have one PASID.
- A new config option to make iommu passthroug mode the default.
- New sysfs attribute for iommu groups to export the type of the
default domain.
- A debugfs interface (for debug only) usable by IOMMU drivers
to export internals to user-space.
- R-Car Gen3 SoCs support for the ipmmu-vmsa driver
- The ARM-SMMU now aborts transactions from unknown devices and
devices not attached to any domain.
- Various cleanups and smaller fixes all over the place.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABAgAGBQJbf/9wAAoJECvwRC2XARrjcuYP/3dIsOFN7Xb4sTOB5wxk4wmD
2Rm5o/18cFekEy4M8fwIBCYkzH/McohgKbOFcH6XiCxIwJ5RdXzITLAwmp4PbvIO
KtwppXSp+MQtboip/bp6NDNBhABErgUtgdXawwENCCrFivXDsB8W4wnXESAOkLv9
4fLXrUgDFCAquLZpLqQobXHhajtGAkSekaasphlhejXFulFyF1YcEUcliU7eXZ0R
rZjL4Zqcyyi5kv6d3WhL+tvmmhr7wfMsMPaW18eRf9tXvMpWRM2GOAj65coI2AWs
1T1kW/jvvrxnewOsmo1nYlw7R07uiRkUfHmJ9tY65xW4120HJFhdFLPUQZXfrX/b
wcGbheYIh6cwAaZBtPJ35bPeW6pREkDOShohbzt45T62Q837cBkr3zyHhNsoOXHS
13YVtTd2vtPa4iLdu2qmEOC1OuhQnMvqHqX0iN8U74QbDxEYYvMfAdx0JL3hmPp/
uynY3QmXIKCeZg+vH2qcWHm07nfaAr5y8WSPA0crnqeznD5zJ4kvJf5dFGmDyTKr
pyTkhidkifm6ZejrJsDZveoZdLpHrOatrqKaoLFh2crMUG3d807NYqQ3JmA3NDjg
zPbYyU4joFGNVjd3XkSnRTGxR6YvLIwNbkQ3b/K/B5AqWJ6VrTbbTCOa4GSms6rF
Qm8wRrmYaycKxkcMqtls
=TeYQ
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull IOMMU updates from Joerg Roedel:
- PASID table handling updates for the Intel VT-d driver. It implements
a global PASID space now so that applications usings multiple devices
will just have one PASID.
- A new config option to make iommu passthroug mode the default.
- New sysfs attribute for iommu groups to export the type of the
default domain.
- A debugfs interface (for debug only) usable by IOMMU drivers to
export internals to user-space.
- R-Car Gen3 SoCs support for the ipmmu-vmsa driver
- The ARM-SMMU now aborts transactions from unknown devices and devices
not attached to any domain.
- Various cleanups and smaller fixes all over the place.
* tag 'iommu-updates-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (42 commits)
iommu/omap: Fix cache flushes on L2 table entries
iommu: Remove the ->map_sg indirection
iommu/arm-smmu-v3: Abort all transactions if SMMU is enabled in kdump kernel
iommu/arm-smmu-v3: Prevent any devices access to memory without registration
iommu/ipmmu-vmsa: Don't register as BUS IOMMU if machine doesn't have IPMMU-VMSA
iommu/ipmmu-vmsa: Clarify supported platforms
iommu/ipmmu-vmsa: Fix allocation in atomic context
iommu: Add config option to set passthrough as default
iommu: Add sysfs attribyte for domain type
iommu/arm-smmu-v3: sync the OVACKFLG to PRIQ consumer register
iommu/arm-smmu: Error out only if not enough context interrupts
iommu/io-pgtable-arm-v7s: Abort allocation when table address overflows the PTE
iommu/io-pgtable-arm: Fix pgtable allocation in selftest
iommu/vt-d: Remove the obsolete per iommu pasid tables
iommu/vt-d: Apply per pci device pasid table in SVA
iommu/vt-d: Allocate and free pasid table
iommu/vt-d: Per PCI device pasid table interfaces
iommu/vt-d: Add for_each_device_domain() helper
iommu/vt-d: Move device_domain_info to header
iommu/vt-d: Apply global PASID in SVA
...
Two users have reported [1] that they have an "extremely unlikely" system
with more than MAX_PA/2 memory and L1TF mitigation is not effective. In
fact it's a CPU with 36bits phys limit (64GB) and 32GB memory, but due to
holes in the e820 map, the main region is almost 500MB over the 32GB limit:
[ 0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000081effffff] usable
Suggestions to use 'mem=32G' to enable the L1TF mitigation while losing the
500MB revealed, that there's an off-by-one error in the check in
l1tf_select_mitigation().
l1tf_pfn_limit() returns the last usable pfn (inclusive) and the range
check in the mitigation path does not take this into account.
Instead of amending the range check, make l1tf_pfn_limit() return the first
PFN which is over the limit which is less error prone. Adjust the other
users accordingly.
[1] https://bugzilla.suse.com/show_bug.cgi?id=1105536
Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Reported-by: George Anchev <studio@anchev.net>
Reported-by: Christopher Snowhill <kode54@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180823134418.17008-1-vbabka@suse.cz