IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit 28319d6dc5e2ffefa452c2377dd0f71621b5bff0 ]
RCU Tasks and PID-namespace unshare can interact in do_exit() in a
complicated circular dependency:
1) TASK A calls unshare(CLONE_NEWPID), this creates a new PID namespace
that every subsequent child of TASK A will belong to. But TASK A
doesn't itself belong to that new PID namespace.
2) TASK A forks() and creates TASK B. TASK A stays attached to its PID
namespace (let's say PID_NS1) and TASK B is the first task belonging
to the new PID namespace created by unshare() (let's call it PID_NS2).
3) Since TASK B is the first task attached to PID_NS2, it becomes the
PID_NS2 child reaper.
4) TASK A forks() again and creates TASK C which get attached to PID_NS2.
Note how TASK C has TASK A as a parent (belonging to PID_NS1) but has
TASK B (belonging to PID_NS2) as a pid_namespace child_reaper.
5) TASK B exits and since it is the child reaper for PID_NS2, it has to
kill all other tasks attached to PID_NS2, and wait for all of them to
die before getting reaped itself (zap_pid_ns_process()).
6) TASK A calls synchronize_rcu_tasks() which leads to
synchronize_srcu(&tasks_rcu_exit_srcu).
7) TASK B is waiting for TASK C to get reaped. But TASK B is under a
tasks_rcu_exit_srcu SRCU critical section (exit_notify() is between
exit_tasks_rcu_start() and exit_tasks_rcu_finish()), blocking TASK A.
8) TASK C exits and since TASK A is its parent, it waits for it to reap
TASK C, but it can't because TASK A waits for TASK B that waits for
TASK C.
Pid_namespace semantics can hardly be changed at this point. But the
coverage of tasks_rcu_exit_srcu can be reduced instead.
The current task is assumed not to be concurrently reapable at this
stage of exit_notify() and therefore tasks_rcu_exit_srcu can be
temporarily relaxed without breaking its constraints, providing a way
out of the deadlock scenario.
[ paulmck: Fix build failure by adding additional declaration. ]
Fixes: 3f95aa81d265 ("rcu: Make TASKS_RCU handle tasks that are almost done exiting")
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Suggested-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Eric W . Biederman <ebiederm@xmission.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 44757092958bdd749775022f915b7ac974384c2a ]
Ever since the following commit:
5a41344a3d83 ("srcu: Simplify __srcu_read_unlock() via this_cpu_dec()")
SRCU doesn't rely anymore on preemption to be disabled in order to
modify the per-CPU counter. And even then it used to be done from the API
itself.
Therefore and after checking further, it appears to be safe to remove
the preemption disablement around __srcu_read_[un]lock() in
exit_tasks_rcu_start() and exit_tasks_rcu_finish()
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Suggested-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Stable-dep-of: 28319d6dc5e2 ("rcu-tasks: Fix synchronize_rcu_tasks() VS zap_pid_ns_processes()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e4e1e8089c5fd948da12cb9f4adc93821036945f ]
Make sure we don't need to look again into the depths of git blame in
order not to miss a subtle part about how rcu-tasks is dealing with
exiting tasks.
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Suggested-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Stable-dep-of: 28319d6dc5e2 ("rcu-tasks: Fix synchronize_rcu_tasks() VS zap_pid_ns_processes()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7c4a5b89a0b5a57a64b601775b296abf77a9fe97 ]
Commit 326587b84078 ("sched: fix goto retry in pick_next_task_rt()")
removed any path which could make pick_next_rt_entity() return NULL.
However, BUG_ON(!rt_se) in _pick_next_task_rt() (the only caller of
pick_next_rt_entity()) still checks the error condition, which can
never happen, since list_entry() never returns NULL.
Remove the BUG_ON check, and instead emit a warning in the only
possible error condition here: the queue being empty which should
never happen.
Fixes: 326587b84078 ("sched: fix goto retry in pick_next_task_rt()")
Signed-off-by: Pietro Borrello <borrello@diag.uniroma1.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20230128-list-entry-null-check-sched-v3-1-b1a71bd1ac6b@diag.uniroma1.it
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3f5245538a1964ae186ab7e1636020a41aa63143 ]
Commit:
91d2a812dfb9 ("locking/rwsem: Make handoff writer optimistically spin on owner")
... assumes that when the owner field is changed to NULL, the lock will
become free soon. But commit:
48dfb5d2560d ("locking/rwsem: Disable preemption while trying for rwsem lock")
... disabled preemption when acquiring rwsem for write.
However, preemption has not yet been disabled when acquiring a read lock
on a rwsem. So a reader can add a RWSEM_READER_BIAS to count without
setting owner to signal a reader, got preempted out by a RT task which
then spins in the writer slowpath as owner remains NULL leading to live lock.
One easy way to fix this problem is to disable preemption at all the
down_read*() and up_read() code paths as implemented in this patch.
Fixes: 91d2a812dfb9 ("locking/rwsem: Make handoff writer optimistically spin on owner")
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230126003628.365092-3-longman@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit a449dfbfc0894676ad0aa1873383265047529e3a upstream.
Using pr_cont() in the tasks freezing code related to system-wide
suspend and hibernation is problematic, because the continuation
messages printed there are susceptible to interspersing with other
unrelated messages which results in output that is hard to
understand.
Address this issue by modifying try_to_freeze_tasks() to print
messages that don't require continuations and adjusting its
callers accordingly.
Reported-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f3dd0c53370e70c0f9b7e931bbec12916f3bb8cc upstream.
Commit 74e19ef0ff80 ("uaccess: Add speculation barrier to
copy_from_user()") built fine on x86-64 and arm64, and that's the extent
of my local build testing.
It turns out those got the <linux/nospec.h> include incidentally through
other header files (<linux/kvm_host.h> in particular), but that was not
true of other architectures, resulting in build errors
kernel/bpf/core.c: In function ‘___bpf_prog_run’:
kernel/bpf/core.c:1913:3: error: implicit declaration of function ‘barrier_nospec’
so just make sure to explicitly include the proper <linux/nospec.h>
header file to make everybody see it.
Fixes: 74e19ef0ff80 ("uaccess: Add speculation barrier to copy_from_user()")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Viresh Kumar <viresh.kumar@linaro.org>
Reported-by: Huacai Chen <chenhuacai@loongson.cn>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 74e19ef0ff8061ef55957c3abd71614ef0f42f47 upstream.
The results of "access_ok()" can be mis-speculated. The result is that
you can end speculatively:
if (access_ok(from, size))
// Right here
even for bad from/size combinations. On first glance, it would be ideal
to just add a speculation barrier to "access_ok()" so that its results
can never be mis-speculated.
But there are lots of system calls just doing access_ok() via
"copy_to_user()" and friends (example: fstat() and friends). Those are
generally not problematic because they do not _consume_ data from
userspace other than the pointer. They are also very quick and common
system calls that should not be needlessly slowed down.
"copy_from_user()" on the other hand uses a user-controller pointer and
is frequently followed up with code that might affect caches. Take
something like this:
if (!copy_from_user(&kernelvar, uptr, size))
do_something_with(kernelvar);
If userspace passes in an evil 'uptr' that *actually* points to a kernel
addresses, and then do_something_with() has cache (or other)
side-effects, it could allow userspace to infer kernel data values.
Add a barrier to the common copy_from_user() code to prevent
mis-speculated values which happen after the copy.
Also add a stub for architectures that do not define barrier_nospec().
This makes the macro usable in generic code.
Since the barrier is now usable in generic code, the x86 #ifdef in the
BPF code can also go away.
Reported-by: Jordy Zomer <jordyzomer@google.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Borkmann <daniel@iogearbox.net> # BPF bits
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 710ffe671e014d5ccbcff225130a178b088ef090 ]
Psi polling mechanism is trying to minimize the number of wakeups to
run psi_poll_work and is currently relying on timer_pending() to detect
when this work is already scheduled. This provides a window of opportunity
for psi_group_change to schedule an immediate psi_poll_work after
poll_timer_fn got called but before psi_poll_work could reschedule itself.
Below is the depiction of this entire window:
poll_timer_fn
wake_up_interruptible(&group->poll_wait);
psi_poll_worker
wait_event_interruptible(group->poll_wait, ...)
psi_poll_work
psi_schedule_poll_work
if (timer_pending(&group->poll_timer)) return;
...
mod_timer(&group->poll_timer, jiffies + delay);
Prior to 461daba06bdc we used to rely on poll_scheduled atomic which was
reset and set back inside psi_poll_work and therefore this race window
was much smaller.
The larger window causes increased number of wakeups and our partners
report visible power regression of ~10mA after applying 461daba06bdc.
Bring back the poll_scheduled atomic and make this race window even
narrower by resetting poll_scheduled only when we reach polling expiration
time. This does not completely eliminate the possibility of extra wakeups
caused by a race with psi_group_change however it will limit it to the
worst case scenario of one extra wakeup per every tracking window (0.5s
in the worst case).
This patch also ensures correct ordering between clearing poll_scheduled
flag and obtaining changed_states using memory barrier. Correct ordering
between updating changed_states and setting poll_scheduled is ensured by
atomic_xchg operation.
By tracing the number of immediate rescheduling attempts performed by
psi_group_change and the number of these attempts being blocked due to
psi monitor being already active, we can assess the effects of this change:
Before the patch:
Run#1 Run#2 Run#3
Immediate reschedules attempted: 684365 1385156 1261240
Immediate reschedules blocked: 682846 1381654 1258682
Immediate reschedules (delta): 1519 3502 2558
Immediate reschedules (% of attempted): 0.22% 0.25% 0.20%
After the patch:
Run#1 Run#2 Run#3
Immediate reschedules attempted: 882244 770298 426218
Immediate reschedules blocked: 881996 769796 426074
Immediate reschedules (delta): 248 502 144
Immediate reschedules (% of attempted): 0.03% 0.07% 0.03%
The number of non-blocked immediate reschedules dropped from 0.22-0.25%
to 0.03-0.07%. The drop is attributed to the decrease in the race window
size and the fact that we allow this race only when psi monitors reach
polling window expiration time.
Fixes: 461daba06bdc ("psi: eliminate kthread_worker from psi trigger scheduling mechanism")
Reported-by: Kathleen Chang <yt.chang@mediatek.com>
Reported-by: Wenju Xu <wenju.xu@mediatek.com>
Reported-by: Jonathan Chen <jonathan.jmchen@mediatek.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: SH Chen <show-hong.chen@mediatek.com>
Link: https://lore.kernel.org/r/20221028194541.813985-1-surenb@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d125d1349abeb46945dc5e98f7824bf688266f13 upstream.
syzbot reported a RCU stall which is caused by setting up an alarmtimer
with a very small interval and ignoring the signal. The reproducer arms the
alarm timer with a relative expiry of 8ns and an interval of 9ns. Not a
problem per se, but that's an issue when the signal is ignored because then
the timer is immediately rearmed because there is no way to delay that
rearming to the signal delivery path. See posix_timer_fn() and commit
58229a189942 ("posix-timers: Prevent softirq starvation by small intervals
and SIG_IGN") for details.
The reproducer does not set SIG_IGN explicitely, but it sets up the timers
signal with SIGCONT. That has the same effect as explicitely setting
SIG_IGN for a signal as SIGCONT is ignored if there is no handler set and
the task is not ptraced.
The log clearly shows that:
[pid 5102] --- SIGCONT {si_signo=SIGCONT, si_code=SI_TIMER, si_timerid=0, si_overrun=316014, si_int=0, si_ptr=NULL} ---
It works because the tasks are traced and therefore the signal is queued so
the tracer can see it, which delays the restart of the timer to the signal
delivery path. But then the tracer is killed:
[pid 5087] kill(-5102, SIGKILL <unfinished ...>
...
./strace-static-x86_64: Process 5107 detached
and after it's gone the stall can be observed:
syzkaller login: [ 79.439102][ C0] hrtimer: interrupt took 68471 ns
[ 184.460538][ C1] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
...
[ 184.658237][ C1] rcu: Stack dump where RCU GP kthread last ran:
[ 184.664574][ C1] Sending NMI from CPU 1 to CPUs 0:
[ 184.669821][ C0] NMI backtrace for cpu 0
[ 184.669831][ C0] CPU: 0 PID: 5108 Comm: syz-executor192 Not tainted 6.2.0-rc6-next-20230203-syzkaller #0
...
[ 184.670036][ C0] Call Trace:
[ 184.670041][ C0] <IRQ>
[ 184.670045][ C0] alarmtimer_fired+0x327/0x670
posix_timer_fn() prevents that by checking whether the interval for
timers which have the signal ignored is smaller than a jiffie and
artifically delay it by shifting the next expiry out by a jiffie. That's
accurate vs. the overrun accounting, but slightly inaccurate
vs. timer_gettimer(2).
The comment in that function says what needs to be done and there was a fix
available for the regular userspace induced SIG_IGN mechanism, but that did
not work due to the implicit ignore for SIGCONT and similar signals. This
needs to be worked on, but for now the only available workaround is to do
exactly what posix_timer_fn() does:
Increase the interval of self-rearming timers, which have their signal
ignored, to at least a jiffie.
Interestingly this has been fixed before via commit ff86bf0c65f1
("alarmtimer: Rate limit periodic intervals") already, but that fix got
lost in a later rework.
Reported-by: syzbot+b9564ba6e8e00694511b@syzkaller.appspotmail.com
Fixes: f2c45807d399 ("alarmtimer: Switch over to generic set/get/rearm routine")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87k00q1no2.ffs@tglx
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 70b5339caf847b8b6097b6dfab0c5a99b40713c8 upstream.
trace_define_field_ext() is not used outside of trace_events.c, it should
be static.
Link: https://lore.kernel.org/oe-kbuild-all/202302130750.679RaRog-lkp@intel.com/
Fixes: b6c7abd1c28a ("tracing: Fix TASK_COMM_LEN in trace event format file")
Reported-by: Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eedeb787ebb53de5c5dcf7b7b39d01bf1b0f037d upstream.
Tetsuo-San noted that commit f5d39b020809 ("freezer,sched: Rewrite
core freezer logic") broke call_usermodehelper_exec() for the KILLABLE
case.
Specifically it was missed that the second, unconditional,
wait_for_completion() was not optional and ensures the on-stack
completion is unused before going out-of-scope.
Fixes: f5d39b020809 ("freezer,sched: Rewrite core freezer logic")
Reported-by: syzbot+6cd18e123583550cf469@syzkaller.appspotmail.com
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Debugged-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/Y90ar35uKQoUrLEK@hirez.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c2dbe32d5db5c4ead121cf86dabd5ab691fb47fe upstream.
If a non-root cgroup gets removed when there is a thread that registered
trigger and is polling on a pressure file within the cgroup, the polling
waitqueue gets freed in the following path:
do_rmdir
cgroup_rmdir
kernfs_drain_open_files
cgroup_file_release
cgroup_pressure_release
psi_trigger_destroy
However, the polling thread still has a reference to the pressure file and
will access the freed waitqueue when the file is closed or upon exit:
fput
ep_eventpoll_release
ep_free
ep_remove_wait_queue
remove_wait_queue
This results in use-after-free as pasted below.
The fundamental problem here is that cgroup_file_release() (and
consequently waitqueue's lifetime) is not tied to the file's real lifetime.
Using wake_up_pollfree() here might be less than ideal, but it is in line
with the comment at commit 42288cb44c4b ("wait: add wake_up_pollfree()")
since the waitqueue's lifetime is not tied to file's one and can be
considered as another special case. While this would be fixable by somehow
making cgroup_file_release() be tied to the fput(), it would require
sizable refactoring at cgroups or higher layer which might be more
justifiable if we identify more cases like this.
BUG: KASAN: use-after-free in _raw_spin_lock_irqsave+0x60/0xc0
Write of size 4 at addr ffff88810e625328 by task a.out/4404
CPU: 19 PID: 4404 Comm: a.out Not tainted 6.2.0-rc6 #38
Hardware name: Amazon EC2 c5a.8xlarge/, BIOS 1.0 10/16/2017
Call Trace:
<TASK>
dump_stack_lvl+0x73/0xa0
print_report+0x16c/0x4e0
kasan_report+0xc3/0xf0
kasan_check_range+0x2d2/0x310
_raw_spin_lock_irqsave+0x60/0xc0
remove_wait_queue+0x1a/0xa0
ep_free+0x12c/0x170
ep_eventpoll_release+0x26/0x30
__fput+0x202/0x400
task_work_run+0x11d/0x170
do_exit+0x495/0x1130
do_group_exit+0x100/0x100
get_signal+0xd67/0xde0
arch_do_signal_or_restart+0x2a/0x2b0
exit_to_user_mode_prepare+0x94/0x100
syscall_exit_to_user_mode+0x20/0x40
do_syscall_64+0x52/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Allocated by task 4404:
kasan_set_track+0x3d/0x60
__kasan_kmalloc+0x85/0x90
psi_trigger_create+0x113/0x3e0
pressure_write+0x146/0x2e0
cgroup_file_write+0x11c/0x250
kernfs_fop_write_iter+0x186/0x220
vfs_write+0x3d8/0x5c0
ksys_write+0x90/0x110
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 4407:
kasan_set_track+0x3d/0x60
kasan_save_free_info+0x27/0x40
____kasan_slab_free+0x11d/0x170
slab_free_freelist_hook+0x87/0x150
__kmem_cache_free+0xcb/0x180
psi_trigger_destroy+0x2e8/0x310
cgroup_file_release+0x4f/0xb0
kernfs_drain_open_files+0x165/0x1f0
kernfs_drain+0x162/0x1a0
__kernfs_remove+0x1fb/0x310
kernfs_remove_by_name_ns+0x95/0xe0
cgroup_addrm_files+0x67f/0x700
cgroup_destroy_locked+0x283/0x3c0
cgroup_rmdir+0x29/0x100
kernfs_iop_rmdir+0xd1/0x140
vfs_rmdir+0xfe/0x240
do_rmdir+0x13d/0x280
__x64_sys_rmdir+0x2c/0x30
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: 0e94682b73bf ("psi: introduce psi monitor")
Signed-off-by: Munehisa Kamata <kamatam@amazon.com>
Signed-off-by: Mengchi Cheng <mengcc@amazon.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/lkml/20230106224859.4123476-1-kamatam@amazon.com/
Link: https://lore.kernel.org/r/20230214212705.4058045-1-kamatam@amazon.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit db370a8b9f67ae5f17e3d5482493294467784504 upstream.
Let L1 and L2 be two spinlocks.
Let T1 be a task holding L1 and blocked on L2. T1, currently, is the top
waiter of L2.
Let T2 be the task holding L2.
Let T3 be a task trying to acquire L1.
The following events will lead to a state in which the wait queue of L2
isn't empty, but no task actually holds the lock.
T1 T2 T3
== == ==
spin_lock(L1)
| raw_spin_lock(L1->wait_lock)
| rtlock_slowlock_locked(L1)
| | task_blocks_on_rt_mutex(L1, T3)
| | | orig_waiter->lock = L1
| | | orig_waiter->task = T3
| | | raw_spin_unlock(L1->wait_lock)
| | | rt_mutex_adjust_prio_chain(T1, L1, L2, orig_waiter, T3)
spin_unlock(L2) | | | |
| rt_mutex_slowunlock(L2) | | | |
| | raw_spin_lock(L2->wait_lock) | | | |
| | wakeup(T1) | | | |
| | raw_spin_unlock(L2->wait_lock) | | | |
| | | | waiter = T1->pi_blocked_on
| | | | waiter == rt_mutex_top_waiter(L2)
| | | | waiter->task == T1
| | | | raw_spin_lock(L2->wait_lock)
| | | | dequeue(L2, waiter)
| | | | update_prio(waiter, T1)
| | | | enqueue(L2, waiter)
| | | | waiter != rt_mutex_top_waiter(L2)
| | | | L2->owner == NULL
| | | | wakeup(T1)
| | | | raw_spin_unlock(L2->wait_lock)
T1 wakes up
T1 != top_waiter(L2)
schedule_rtlock()
If the deadline of T1 is updated before the call to update_prio(), and the
new deadline is greater than the deadline of the second top waiter, then
after the requeue, T1 is no longer the top waiter, and the wrong task is
woken up which will then go back to sleep because it is not the top waiter.
This can be reproduced in PREEMPT_RT with stress-ng:
while true; do
stress-ng --sched deadline --sched-period 1000000000 \
--sched-runtime 800000000 --sched-deadline \
1000000000 --mmapfork 23 -t 20
done
A similar issue was pointed out by Thomas versus the cases where the top
waiter drops out early due to a signal or timeout, which is a general issue
for all regular rtmutex use cases, e.g. futex.
The problematic code is in rt_mutex_adjust_prio_chain():
// Save the top waiter before dequeue/enqueue
prerequeue_top_waiter = rt_mutex_top_waiter(lock);
rt_mutex_dequeue(lock, waiter);
waiter_update_prio(waiter, task);
rt_mutex_enqueue(lock, waiter);
// Lock has no owner?
if (!rt_mutex_owner(lock)) {
// Top waiter changed
----> if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
----> wake_up_state(waiter->task, waiter->wake_state);
This only takes the case into account where @waiter is the new top waiter
due to the requeue operation.
But it fails to handle the case where @waiter is not longer the top
waiter due to the requeue operation.
Ensure that the new top waiter is woken up so in all cases so it can take
over the ownerless lock.
[ tglx: Amend changelog, add Fixes tag ]
Fixes: c014ef69b3ac ("locking/rtmutex: Add wake_state to rt_mutex_waiter")
Signed-off-by: Wander Lairson Costa <wander@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230117172649.52465-1-wander@redhat.com
Link: https://lore.kernel.org/r/20230202123020.14844-1-wander@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b6c7abd1c28a63ad633433d037ee15a1bc3023ba upstream.
After commit 3087c61ed2c4 ("tools/testing/selftests/bpf: replace open-coded 16 with TASK_COMM_LEN"),
the content of the format file under
/sys/kernel/tracing/events/task/task_newtask was changed from
field:char comm[16]; offset:12; size:16; signed:0;
to
field:char comm[TASK_COMM_LEN]; offset:12; size:16; signed:0;
John reported that this change breaks older versions of perfetto.
Then Mathieu pointed out that this behavioral change was caused by the
use of __stringify(_len), which happens to work on macros, but not on enum
labels. And he also gave the suggestion on how to fix it:
:One possible solution to make this more robust would be to extend
:struct trace_event_fields with one more field that indicates the length
:of an array as an actual integer, without storing it in its stringified
:form in the type, and do the formatting in f_show where it belongs.
The result as follows after this change,
$ cat /sys/kernel/tracing/events/task/task_newtask/format
field:char comm[16]; offset:12; size:16; signed:0;
Link: https://lore.kernel.org/lkml/Y+QaZtz55LIirsUO@google.com/
Link: https://lore.kernel.org/linux-trace-kernel/20230210155921.4610-1-laoar.shao@gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20230212151303.12353-1-laoar.shao@gmail.com
Cc: stable@vger.kernel.org
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Kajetan Puchalski <kajetan.puchalski@arm.com>
CC: Qais Yousef <qyousef@layalina.io>
Fixes: 3087c61ed2c4 ("tools/testing/selftests/bpf: replace open-coded 16 with TASK_COMM_LEN")
Reported-by: John Stultz <jstultz@google.com>
Debugged-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7a2127e66a00e073db8d90f9aac308f4a8a64226 ]
set_cpus_allowed_ptr() will fail with -EINVAL if the requested
affinity mask is not a subset of the task_cpu_possible_mask() for the
task being updated. Consequently, on a heterogeneous system with cpusets
spanning the different CPU types, updates to the cgroup hierarchy can
silently fail to update task affinities when the effective affinity
mask for the cpuset is expanded.
For example, consider an arm64 system with 4 CPUs, where CPUs 2-3 are
the only cores capable of executing 32-bit tasks. Attaching a 32-bit
task to a cpuset containing CPUs 0-2 will correctly affine the task to
CPU 2. Extending the cpuset to CPUs 0-3, however, will fail to extend
the affinity mask of the 32-bit task because update_tasks_cpumask() will
pass the full 0-3 mask to set_cpus_allowed_ptr().
Extend update_tasks_cpumask() to take a temporary 'cpumask' paramater
and use it to mask the 'effective_cpus' mask with the possible mask for
each task being updated.
Fixes: 431c69fac05b ("cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus()")
Signed-off-by: Will Deacon <will@kernel.org>
Acked-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3e46d910d8acf94e5360126593b68bf4fee4c4a1 upstream.
poll() and select() on per_cpu trace_pipe and trace_pipe_raw do not work
since kernel 6.1-rc6. This issue is seen after the commit
42fb0a1e84ff525ebe560e2baf9451ab69127e2b ("tracing/ring-buffer: Have
polling block on watermark").
This issue is firstly detected and reported, when testing the CXL error
events in the rasdaemon and also erified using the test application for poll()
and select().
This issue occurs for the per_cpu case, when calling the ring_buffer_poll_wait(),
in kernel/trace/ring_buffer.c, with the buffer_percent > 0 and then wait until the
percentage of pages are available. The default value set for the buffer_percent is 50
in the kernel/trace/trace.c.
As a fix, allow userspace application could set buffer_percent as 0 through
the buffer_percent_fops, so that the task will wake up as soon as data is added
to any of the specific cpu buffer.
Link: https://lore.kernel.org/linux-trace-kernel/20230202182309.742-2-shiju.jose@huawei.com
Cc: <mhiramat@kernel.org>
Cc: <mchehab@kernel.org>
Cc: <linux-edac@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark")
Signed-off-by: Shiju Jose <shiju.jose@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d3178e8a434b58678d99257c0387810a24042fb6 upstream.
The verifier skips invalid kfunc call in check_kfunc_call(), which
would be captured in fixup_kfunc_call() if such insn is not eliminated
by dead code elimination. However, this can lead to the following
warning in backtrack_insn(), also see [1]:
------------[ cut here ]------------
verifier backtracking bug
WARNING: CPU: 6 PID: 8646 at kernel/bpf/verifier.c:2756 backtrack_insn
kernel/bpf/verifier.c:2756
__mark_chain_precision kernel/bpf/verifier.c:3065
mark_chain_precision kernel/bpf/verifier.c:3165
adjust_reg_min_max_vals kernel/bpf/verifier.c:10715
check_alu_op kernel/bpf/verifier.c:10928
do_check kernel/bpf/verifier.c:13821 [inline]
do_check_common kernel/bpf/verifier.c:16289
[...]
So make backtracking conservative with this by returning ENOTSUPP.
[1] https://lore.kernel.org/bpf/CACkBjsaXNceR8ZjkLG=dT3P=4A8SBsg0Z5h5PWLryF5=ghKq=g@mail.gmail.com/
Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230104014709.9375-1-sunhao.th@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d83d7ed260283560700d4034a80baad46620481b upstream.
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable <stable@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230202151554.2310273-1-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e5ae8803847b80fe9d744a3174abe2b7bfed222a upstream.
It was found that the check to see if a partition could use up all
the cpus from the parent cpuset in update_parent_subparts_cpumask()
was incorrect. As a result, it is possible to leave parent with no
effective cpu left even if there are tasks in the parent cpuset. This
can lead to system panic as reported in [1].
Fix this probem by updating the check to fail the enabling the partition
if parent's effective_cpus is a subset of the child's cpus_allowed.
Also record the error code when an error happens in update_prstate()
and add a test case where parent partition and child have the same cpu
list and parent has task. Enabling partition in the child will fail in
this case.
[1] https://www.spinics.net/lists/cgroups/msg36254.html
Fixes: f0af1bfc27b5 ("cgroup/cpuset: Relax constraints to partition & cpus changes")
Cc: stable@vger.kernel.org # v6.1
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@intel.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit de4eda9de2d957ef2d6a8365a01e26a435e958cb ]
READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.
Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Stable-dep-of: 6dd88fd59da8 ("vhost-scsi: unbreak any layout for response")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5416c9aea8323583e8696f0500b6142dfae80821 ]
The kernel crash was caused by a BPF program attached to the
"lsm_cgroup/socket_sock_rcv_skb" hook, which performed a call to
`bpf_setsockopt()` in order to set the TCP_NODELAY flag as an
example. Flags like TCP_NODELAY can prompt the kernel to flush a
socket's outgoing queue, and this hook
"lsm_cgroup/socket_sock_rcv_skb" is frequently triggered by
softirqs. The issue was that in certain circumstances, when
`tcp_write_xmit()` was called to flush the queue, it would also allow
BH (bottom-half) to run. This could lead to our program attempting to
flush the same socket recursively, which caused a `skbuff` to be
unlinked twice.
`security_sock_rcv_skb()` is triggered by `tcp_filter()`. This occurs
before the sock ownership is checked in `tcp_v4_rcv()`. Consequently,
if a bpf program runs on `security_sock_rcv_skb()` while under softirq
conditions, it may not possess the lock needed for `bpf_setsockopt()`,
thus presenting an issue.
The patch fixes this issue by ensuring that a BPF program attached to
the "lsm_cgroup/socket_sock_rcv_skb" hook is not allowed to call
`bpf_setsockopt()`.
The differences from v1 are
- changing commit log to explain holding the lock of the sock,
- emphasizing that TCP_NODELAY is not the only flag, and
- adding the fixes tag.
v1: https://lore.kernel.org/bpf/20230125000244.1109228-1-kuifeng@meta.com/
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Fixes: 9113d7e48e91 ("bpf: expose bpf_{g,s}etsockopt to lsm cgroup")
Link: https://lore.kernel.org/r/20230127001732.4162630-1-kuifeng@meta.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 74bc3a5acc82f020d2e126f56c535d02d1e74e37 ]
We take the BTF reference before we register dtors and we need
to put it back when it's done.
We probably won't se a problem with kernel BTF, but module BTF
would stay loaded (because of the extra ref) even when its module
is removed.
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 5ce937d613a4 ("bpf: Populate pairs of btf_id and destructor kfunc in btf")
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230120122148.1522359-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 71f656a50176915d6813751188b5758daa8d012b ]
Register range information is copied in several places. The intent is
to transfer range/id information from one register/stack spill to
another. Currently this is done using direct register assignment, e.g.:
static void find_equal_scalars(..., struct bpf_reg_state *known_reg)
{
...
struct bpf_reg_state *reg;
...
*reg = *known_reg;
...
}
However, such assignments also copy the following bpf_reg_state fields:
struct bpf_reg_state {
...
struct bpf_reg_state *parent;
...
enum bpf_reg_liveness live;
...
};
Copying of these fields is accidental and incorrect, as could be
demonstrated by the following example:
0: call ktime_get_ns()
1: r6 = r0
2: call ktime_get_ns()
3: r7 = r0
4: if r0 > r6 goto +1 ; r0 & r6 are unbound thus generated
; branch states are identical
5: *(u64 *)(r10 - 8) = 0xdeadbeef ; 64-bit write to fp[-8]
--- checkpoint ---
6: r1 = 42 ; r1 marked as written
7: *(u8 *)(r10 - 8) = r1 ; 8-bit write, fp[-8] parent & live
; overwritten
8: r2 = *(u64 *)(r10 - 8)
9: r0 = 0
10: exit
This example is unsafe because 64-bit write to fp[-8] at (5) is
conditional, thus not all bytes of fp[-8] are guaranteed to be set
when it is read at (8). However, currently the example passes
verification.
First, the execution path 1-10 is examined by verifier.
Suppose that a new checkpoint is created by is_state_visited() at (6).
After checkpoint creation:
- r1.parent points to checkpoint.r1,
- fp[-8].parent points to checkpoint.fp[-8].
At (6) the r1.live is set to REG_LIVE_WRITTEN.
At (7) the fp[-8].parent is set to r1.parent and fp[-8].live is set to
REG_LIVE_WRITTEN, because of the following code called in
check_stack_write_fixed_off():
static void save_register_state(struct bpf_func_state *state,
int spi, struct bpf_reg_state *reg,
int size)
{
...
state->stack[spi].spilled_ptr = *reg; // <--- parent & live copied
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
...
}
Note the intent to mark stack spill as written only if 8 bytes are
spilled to a slot, however this intent is spoiled by a 'live' field copy.
At (8) the checkpoint.fp[-8] should be marked as REG_LIVE_READ but
this does not happen:
- fp[-8] in a current state is already marked as REG_LIVE_WRITTEN;
- fp[-8].parent points to checkpoint.r1, parentage chain is used by
mark_reg_read() to mark checkpoint states.
At (10) the verification is finished for path 1-10 and jump 4-6 is
examined. The checkpoint.fp[-8] never gets REG_LIVE_READ mark and this
spill is pruned from the cached states by clean_live_states(). Hence
verifier state obtained via path 1-4,6 is deemed identical to one
obtained via path 1-6 and program marked as safe.
Note: the example should be executed with BPF_F_TEST_STATE_FREQ flag
set to force creation of intermediate verifier states.
This commit revisits the locations where bpf_reg_state instances are
copied and replaces the direct copies with a call to a function
copy_register_state(dst, src) that preserves 'parent' and 'live'
fields of the 'dst'.
Fixes: 679c782de14b ("bpf/verifier: per-register parent pointers")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230106142214.1040390-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bdb7fdb0aca8b96cef9995d3a57e251c2289322f ]
In current bpf_send_signal() and bpf_send_signal_thread() helper
implementation, irq_work is used to handle nmi context. Hao Sun
reported in [1] that the current task at the entry of the helper
might be gone during irq_work callback processing. To fix the issue,
a reference is acquired for the current task before enqueuing into
the irq_work so that the queued task is still available during
irq_work callback processing.
[1] https://lore.kernel.org/bpf/20230109074425.12556-1-sunhao.th@gmail.com/
Fixes: 8b401f9ed244 ("bpf: implement bpf_send_signal() helper")
Tested-by: Hao Sun <sunhao.th@gmail.com>
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230118204815.3331855-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 36024d023d139a0c8b552dc3b7f4dc7b4c139e8f ]
According to the definition of sizes[NUM_CACHES], when the size passed
to bpf_mem_cache_size() is 256, it should return 6 instead 7.
Fixes: 7c8199e24fa0 ("bpf: Introduce any context BPF specific memory allocator.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230118084630.3750680-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a3d81bc1eaef48e34dd0b9b48eefed9e02a06451 ]
The following kernel panic can be triggered when a task with pid=1 attaches
a prog that attempts to send killing signal to itself, also see [1] for more
details:
Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
CPU: 3 PID: 1 Comm: systemd Not tainted 6.1.0-09652-g59fe41b5255f #148
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x100/0x178 lib/dump_stack.c:106
panic+0x2c4/0x60f kernel/panic.c:275
do_exit.cold+0x63/0xe4 kernel/exit.c:789
do_group_exit+0xd4/0x2a0 kernel/exit.c:950
get_signal+0x2460/0x2600 kernel/signal.c:2858
arch_do_signal_or_restart+0x78/0x5d0 arch/x86/kernel/signal.c:306
exit_to_user_mode_loop kernel/entry/common.c:168 [inline]
exit_to_user_mode_prepare+0x15f/0x250 kernel/entry/common.c:203
__syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline]
syscall_exit_to_user_mode+0x1d/0x50 kernel/entry/common.c:296
do_syscall_64+0x44/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x63/0xcd
So skip task with pid=1 in bpf_send_signal_common() to avoid the panic.
[1] https://lore.kernel.org/bpf/20221222043507.33037-1-sunhao.th@gmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230106084838.12690-1-sunhao.th@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 685b64e4d6da4be8b4595654a57db663b3d1dfc2 ]
list_for_each_entry_rcu() has built-in RCU and lock checking.
Pass cond argument to list_for_each_entry_rcu() to silence false lockdep
warning when CONFIG_PROVE_RCU_LIST is enabled.
Execute as follow:
[tracing]# echo osnoise > current_tracer
[tracing]# echo 1 > tracing_on
[tracing]# echo 0 > tracing_on
The trace_types_lock is held when osnoise_tracer_stop() or
timerlat_tracer_stop() are called in the non-RCU read side section.
So, pass lockdep_is_held(&trace_types_lock) to silence false lockdep
warning.
Link: https://lkml.kernel.org/r/20221227023036.784337-1-nashuiliang@gmail.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: dae181349f1e ("tracing/osnoise: Support a list of trace_array *tr")
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Chuang Wang <nashuiliang@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 8b152e9150d07a885f95e1fd401fc81af202d9a4 upstream.
Function 'create_hist_field' is called recursively at
trace_events_hist.c:1954 and can return NULL-value that's why we have
to check it to avoid null pointer dereference.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Link: https://lkml.kernel.org/r/20230111120409.4111-1-n.petrova@fintech.ru
Cc: stable@vger.kernel.org
Fixes: 30350d65ac56 ("tracing: Add variable support to hist triggers")
Signed-off-by: Natalia Petrova <n.petrova@fintech.ru>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3bb06eb6e9acf7c4a3e1b5bc87aed398ff8e2253 upstream.
Currently trace_printk() can be used as soon as early_trace_init() is
called from start_kernel(). But if a crash happens, and
"ftrace_dump_on_oops" is set on the kernel command line, all you get will
be:
[ 0.456075] <idle>-0 0dN.2. 347519us : Unknown type 6
[ 0.456075] <idle>-0 0dN.2. 353141us : Unknown type 6
[ 0.456075] <idle>-0 0dN.2. 358684us : Unknown type 6
This is because the trace_printk() event (type 6) hasn't been registered
yet. That gets done via an early_initcall(), which may be early, but not
early enough.
Instead of registering the trace_printk() event (and other ftrace events,
which are not trace events) via an early_initcall(), have them registered at
the same time that trace_printk() can be used. This way, if there is a
crash before early_initcall(), then the trace_printk()s will actually be
useful.
Link: https://lkml.kernel.org/r/20230104161412.019f6c55@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: e725c731e3bb1 ("tracing: Split tracing initialization into two for early initialization")
Reported-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8be9fbd5345da52f4a74f7f81d55ff9fa0a2958e upstream.
Setting filters on an ftrace ops results in some memory being allocated
for the filter hashes, which must be freed before the ops can be freed.
This can be done by removing every individual element of the hash by
calling ftrace_set_filter_ip() or ftrace_set_filter_ips() with `remove`
set, but this is somewhat error prone as it's easy to forget to remove
an element.
Make it easier to clean this up by exporting ftrace_free_filter(), which
can be used to clean up all of the filter hashes after an ftrace_ops has
been unregistered.
Using this, fix the ftrace-direct* samples to free hashes prior to being
unloaded. All other code either removes individual filters explicitly or
is built-in and already calls ftrace_free_filter().
Link: https://lkml.kernel.org/r/20230103124912.2948963-3-mark.rutland@arm.com
Cc: stable@vger.kernel.org
Cc: Florent Revest <revest@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: e1067a07cfbc ("ftrace/samples: Add module to test multi direct modify interface")
Fixes: 5fae941b9a6f ("ftrace/samples: Add multi direct interface test module")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0254127ab977e70798707a7a2b757c9f3c971210 upstream.
During a system boot, it can happen that the kernel receives a burst of
requests to insert the same module but loading it eventually fails
during its init call. For instance, udev can make a request to insert
a frequency module for each individual CPU when another frequency module
is already loaded which causes the init function of the new module to
return an error.
Since commit 6e6de3dee51a ("kernel/module.c: Only return -EEXIST for
modules that have finished loading"), the kernel waits for modules in
MODULE_STATE_GOING state to finish unloading before making another
attempt to load the same module.
This creates unnecessary work in the described scenario and delays the
boot. In the worst case, it can prevent udev from loading drivers for
other devices and might cause timeouts of services waiting on them and
subsequently a failed boot.
This patch attempts a different solution for the problem 6e6de3dee51a
was trying to solve. Rather than waiting for the unloading to complete,
it returns a different error code (-EBUSY) for modules in the GOING
state. This should avoid the error situation that was described in
6e6de3dee51a (user space attempting to load a dependent module because
the -EEXIST error code would suggest to user space that the first module
had been loaded successfully), while avoiding the delay situation too.
This has been tested on linux-next since December 2022 and passes
all kmod selftests except test 0009 with module compression enabled
but it has been confirmed that this issue has existed and has gone
unnoticed since prior to this commit and can also be reproduced without
module compression with a simple usleep(5000000) on tools/modprobe.c [0].
These failures are caused by hitting the kernel mod_concurrent_max and can
happen either due to a self inflicted kernel module auto-loead DoS somehow
or on a system with large CPU count and each CPU count incorrectly triggering
many module auto-loads. Both of those issues need to be fixed in-kernel.
[0] https://lore.kernel.org/all/Y9A4fiobL6IHp%2F%2FP@bombadil.infradead.org/
Fixes: 6e6de3dee51a ("kernel/module.c: Only return -EEXIST for modules that have finished loading")
Co-developed-by: Martin Wilck <mwilck@suse.com>
Signed-off-by: Martin Wilck <mwilck@suse.com>
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Cc: stable@vger.kernel.org
Reviewed-by: Petr Mladek <pmladek@suse.com>
[mcgrof: enhance commit log with testing and kmod test result interpretation ]
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ad841e569f5c88e3332b32a000f251f33ff32187 ]
When evaluating the CPU candidates in the perf domain (pd) containing
the previously used CPU (prev_cpu), find_energy_efficient_cpu()
evaluates the energy of the pd:
- without the task (base_energy)
- with the task placed on prev_cpu (if the task fits)
- with the task placed on the CPU with the highest spare capacity,
prev_cpu being excluded from this set
If prev_cpu is already the CPU with the highest spare capacity,
max_spare_cap_cpu will be the CPU with the second highest spare
capacity.
On an Arm64 Juno-r2, with a workload of 10 tasks at a 10% duty cycle,
when prev_cpu and max_spare_cap_cpu are both valid candidates,
prev_spare_cap > max_spare_cap at ~82%.
Thus the energy of the pd when placing the task on max_spare_cap_cpu
is computed with no possible positive outcome 82% most of the time.
Do not consider max_spare_cap_cpu as a valid candidate if
prev_spare_cap > max_spare_cap.
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20221006081052.3862167-2-pierre.gondois@arm.com
Stable-dep-of: e26fd28db828 ("sched/uclamp: Fix a uninitialized variable warnings")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5b24ac2dfd3eb3e36f794af3aa7f2828b19035bd ]
Size of the 'expect' array in the __report_matches is 1536 bytes, which
is exactly the default frame size warning limit of the xtensa
architecture.
As a result allmodconfig xtensa kernel builds with the gcc that does not
support the compiler plugins (which otherwise would push the said
warning limit to 2K) fail with the following message:
kernel/kcsan/kcsan_test.c:257:1: error: the frame size of 1680 bytes
is larger than 1536 bytes
Fix it by dynamically allocating the 'expect' array.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Marco Elver <elver@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e4f4db47794c9f474b184ee1418f42e6a07412b6 ]
To mitigate Spectre v4, 2039f26f3aca ("bpf: Fix leakage due to
insufficient speculative store bypass mitigation") inserts lfence
instructions after 1) initializing a stack slot and 2) spilling a
pointer to the stack.
However, this does not cover cases where a stack slot is first
initialized with a pointer (subject to sanitization) but then
overwritten with a scalar (not subject to sanitization because
the slot was already initialized). In this case, the second write
may be subject to speculative store bypass (SSB) creating a
speculative pointer-as-scalar type confusion. This allows the
program to subsequently leak the numerical pointer value using,
for example, a branch-based cache side channel.
To fix this, also sanitize scalars if they write a stack slot
that previously contained a pointer. Assuming that pointer-spills
are only generated by LLVM on register-pressure, the performance
impact on most real-world BPF programs should be small.
The following unprivileged BPF bytecode drafts a minimal exploit
and the mitigation:
[...]
// r6 = 0 or 1 (skalar, unknown user input)
// r7 = accessible ptr for side channel
// r10 = frame pointer (fp), to be leaked
//
r9 = r10 # fp alias to encourage ssb
*(u64 *)(r9 - 8) = r10 // fp[-8] = ptr, to be leaked
// lfence added here because of pointer spill to stack.
//
// Ommitted: Dummy bpf_ringbuf_output() here to train alias predictor
// for no r9-r10 dependency.
//
*(u64 *)(r10 - 8) = r6 // fp[-8] = scalar, overwrites ptr
// 2039f26f3aca: no lfence added because stack slot was not STACK_INVALID,
// store may be subject to SSB
//
// fix: also add an lfence when the slot contained a ptr
//
r8 = *(u64 *)(r9 - 8)
// r8 = architecturally a scalar, speculatively a ptr
//
// leak ptr using branch-based cache side channel:
r8 &= 1 // choose bit to leak
if r8 == 0 goto SLOW // no mispredict
// architecturally dead code if input r6 is 0,
// only executes speculatively iff ptr bit is 1
r8 = *(u64 *)(r7 + 0) # encode bit in cache (0: slow, 1: fast)
SLOW:
[...]
After running this, the program can time the access to *(r7 + 0) to
determine whether the chosen pointer bit was 0 or 1. Repeat this 64
times to recover the whole address on amd64.
In summary, sanitization can only be skipped if one scalar is
overwritten with another scalar. Scalar-confusion due to speculative
store bypass can not lead to invalid accesses because the pointer
bounds deducted during verification are enforced using branchless
logic. See 979d63d50c0c ("bpf: prevent out of bounds speculation on
pointer arithmetic") for details.
Do not make the mitigation depend on !env->allow_{uninit_stack,ptr_leaks}
because speculative leaks are likely unexpected if these were enabled.
For example, leaking the address to a protected log file may be acceptable
while disabling the mitigation might unintentionally leak the address
into the cached-state of a map that is accessible to unprivileged
processes.
Fixes: 2039f26f3aca ("bpf: Fix leakage due to insufficient speculative store bypass mitigation")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Henriette Hofmeier <henriette.hofmeier@rub.de>
Link: https://lore.kernel.org/bpf/edc95bad-aada-9cfc-ffe2-fa9bb206583c@cs.fau.de
Link: https://lore.kernel.org/bpf/20230109150544.41465-1-gerhorst@cs.fau.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9f907439dc80e4a2fcfb949927b36c036468dbb3 ]
The deadlock still may occur while accessed in NMI and non-NMI
context. Because in NMI, we still may access the same bucket but with
different map_locked index.
For example, on the same CPU, .max_entries = 2, we update the hash map,
with key = 4, while running bpf prog in NMI nmi_handle(), to update
hash map with key = 20, so it will have the same bucket index but have
different map_locked index.
To fix this issue, using min mask to hash again.
Fixes: 20b6cc34ea74 ("bpf: Avoid hashtab deadlock with map_locked")
Signed-off-by: Tonghao Zhang <tong@infragraf.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Song Liu <song@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Stanislav Fomichev <sdf@google.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230111092903.92389-1-tong@infragraf.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7535b832c6399b5ebfc5b53af5c51dd915ee2538 upstream.
Use a temporary variable to take full advantage of READ_ONCE() behavior.
Without this, the report (and even the test) might be out of sync with
the initial test.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/lkml/Y5x7GXeluFmZ8E0E@hirez.programming.kicks-ass.net
Fixes: 9fc9e278a5c0 ("panic: Introduce warn_limit")
Fixes: d4ccd54d28d3 ("exit: Put an upper limit on how often we can oops")
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Jann Horn <jannh@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Marco Elver <elver@google.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8b05aa26336113c4cea25f1c333ee8cd4fc212a6 upstream.
Since Warn count is now tracked and is a fairly interesting signal, add
the entry /sys/kernel/warn_count to expose it to userspace.
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-6-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9fc9e278a5c0b708eeffaf47d6eb0c82aa74ed78 upstream.
Like oops_limit, add warn_limit for limiting the number of warnings when
panic_on_warn is not set.
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: linux-doc@vger.kernel.org
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-5-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 79cc1ba7badf9e7a12af99695a557e9ce27ee967 upstream.
Several run-time checkers (KASAN, UBSAN, KFENCE, KCSAN, sched) roll
their own warnings, and each check "panic_on_warn". Consolidate this
into a single function so that future instrumentation can be added in
a single location.
Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Gow <davidgow@google.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: Jann Horn <jannh@google.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: kasan-dev@googlegroups.com
Cc: linux-mm@kvack.org
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20221117234328.594699-4-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9db89b41117024f80b38b15954017fb293133364 upstream.
Since Oops count is now tracked and is a fairly interesting signal, add
the entry /sys/kernel/oops_count to expose it to userspace.
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Jann Horn <jannh@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-3-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d4ccd54d28d3c8598e2354acc13e28c060961dbb upstream.
Many Linux systems are configured to not panic on oops; but allowing an
attacker to oops the system **really** often can make even bugs that look
completely unexploitable exploitable (like NULL dereferences and such) if
each crash elevates a refcount by one or a lock is taken in read mode, and
this causes a counter to eventually overflow.
The most interesting counters for this are 32 bits wide (like open-coded
refcounts that don't use refcount_t). (The ldsem reader count on 32-bit
platforms is just 16 bits, but probably nobody cares about 32-bit platforms
that much nowadays.)
So let's panic the system if the kernel is constantly oopsing.
The speed of oopsing 2^32 times probably depends on several factors, like
how long the stack trace is and which unwinder you're using; an empirically
important one is whether your console is showing a graphical environment or
a text console that oopses will be printed to.
In a quick single-threaded benchmark, it looks like oopsing in a vfork()
child with a very short stack trace only takes ~510 microseconds per run
when a graphical console is active; but switching to a text console that
oopses are printed to slows it down around 87x, to ~45 milliseconds per
run.
(Adding more threads makes this faster, but the actual oops printing
happens under &die_lock on x86, so you can maybe speed this up by a factor
of around 2 and then any further improvement gets eaten up by lock
contention.)
It looks like it would take around 8-12 days to overflow a 32-bit counter
with repeated oopsing on a multi-core X86 system running a graphical
environment; both me (in an X86 VM) and Seth (with a distro kernel on
normal hardware in a standard configuration) got numbers in that ballpark.
12 days aren't *that* short on a desktop system, and you'd likely need much
longer on a typical server system (assuming that people don't run graphical
desktop environments on their servers), and this is a *very* noisy and
violent approach to exploiting the kernel; and it also seems to take orders
of magnitude longer on some machines, probably because stuff like EFI
pstore will slow it down a ton if that's active.
Signed-off-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/r/20221107201317.324457-1-jannh@google.com
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-2-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9360d035a579d95d1e76c471061b9065b18a0eb1 upstream.
In preparation for adding more sysctls directly in kernel/panic.c, split
CONFIG_SMP from the logic that adds sysctls.
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221117234328.594699-1-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ef01f4e25c1760920e2c94f1c232350277ace69b upstream.
When changing the ebpf program put() routines to support being called
from within IRQ context the program ID was reset to zero prior to
calling the perf event and audit UNLOAD record generators, which
resulted in problems as the ebpf program ID was bogus (always zero).
This patch addresses this problem by removing an unnecessary call to
bpf_prog_free_id() in __bpf_prog_offload_destroy() and adjusting
__bpf_prog_put() to only call bpf_prog_free_id() after audit and perf
have finished their bpf program unload tasks in
bpf_prog_put_deferred(). For the record, no one can determine, or
remember, why it was necessary to free the program ID, and remove it
from the IDR, prior to executing bpf_prog_put_deferred();
regardless, both Stanislav and Alexei agree that the approach in this
patch should be safe.
It is worth noting that when moving the bpf_prog_free_id() call, the
do_idr_lock parameter was forced to true as the ebpf devs determined
this was the correct as the do_idr_lock should always be true. The
do_idr_lock parameter will be removed in a follow-up patch, but it
was kept here to keep the patch small in an effort to ease any stable
backports.
I also modified the bpf_audit_prog() logic used to associate the
AUDIT_BPF record with other associated records, e.g. @ctx != NULL.
Instead of keying off the operation, it now keys off the execution
context, e.g. '!in_irg && !irqs_disabled()', which is much more
appropriate and should help better connect the UNLOAD operations with
the associated audit state (other audit records).
Cc: stable@vger.kernel.org
Fixes: d809e134be7a ("bpf: Prepare bpf_prog_put() to be called from irq context.")
Reported-by: Burn Alting <burn.alting@iinet.net.au>
Reported-by: Jiri Olsa <olsajiri@gmail.com>
Suggested-by: Stanislav Fomichev <sdf@google.com>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230106154400.74211-1-paul@paul-moore.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 739790605705ddcf18f21782b9c99ad7d53a8c11 upstream.
do_prlimit() adds the user-controlled resource value to a pointer that
will subsequently be dereferenced. In order to help prevent this
codepath from being used as a spectre "gadget" a barrier needs to be
added after checking the range.
Reported-by: Jordy Zomer <jordyzomer@google.com>
Tested-by: Jordy Zomer <jordyzomer@google.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7ff94f276f8ea05df82eb115225e9b26f47a3347 ]
Fix the system crash that happens when a task iterator travel through
vma of tasks.
In task iterators, we used to access mm by following the pointer on
the task_struct; however, the death of a task will clear the pointer,
even though we still hold the task_struct. That can cause an
unexpected crash for a null pointer when an iterator is visiting a
task that dies during the visit. Keeping a reference of mm on the
iterator ensures we always have a valid pointer to mm.
Co-developed-by: Song Liu <song@kernel.org>
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Reported-by: Nathan Slingerland <slinger@meta.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221216221855.4122288-2-kuifeng@meta.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7fb3ff22ad8772bbf0e3ce1ef3eb7b09f431807f ]
In order for the scheduler to be frequency invariant we measure the
ratio between the maximum CPU frequency and the actual CPU frequency.
During long tickless periods of time the calculations that keep track
of that might overflow, in the function scale_freq_tick():
if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
goto error;
eventually forcing the kernel to disable the feature for all CPUs,
and show the warning message:
"Scheduler frequency invariance went wobbly, disabling!".
Let's avoid that by limiting the frequency invariant calculations
to CPUs with regular tick.
Fixes: e2b0d619b400 ("x86, sched: check for counters overflow in frequency invariant accounting")
Suggested-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Yair Podemsky <ypodemsk@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Link: https://lore.kernel.org/r/20221130125121.34407-1-ypodemsk@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 87ca4f9efbd7cc649ff43b87970888f2812945b8 upstream.
Since commit 07ec77a1d4e8 ("sched: Allow task CPU affinity to be
restricted on asymmetric systems"), the setting and clearing of
user_cpus_ptr are done under pi_lock for arm64 architecture. However,
dup_user_cpus_ptr() accesses user_cpus_ptr without any lock
protection. Since sched_setaffinity() can be invoked from another
process, the process being modified may be undergoing fork() at
the same time. When racing with the clearing of user_cpus_ptr in
__set_cpus_allowed_ptr_locked(), it can lead to user-after-free and
possibly double-free in arm64 kernel.
Commit 8f9ea86fdf99 ("sched: Always preserve the user requested
cpumask") fixes this problem as user_cpus_ptr, once set, will never
be cleared in a task's lifetime. However, this bug was re-introduced
in commit 851a723e45d1 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") which allows the clearing of user_cpus_ptr in
do_set_cpus_allowed(). This time, it will affect all arches.
Fix this bug by always clearing the user_cpus_ptr of the newly
cloned/forked task before the copying process starts and check the
user_cpus_ptr state of the source task under pi_lock.
Note to stable, this patch won't be applicable to stable releases.
Just copy the new dup_user_cpus_ptr() function over.
Fixes: 07ec77a1d4e8 ("sched: Allow task CPU affinity to be restricted on asymmetric systems")
Fixes: 851a723e45d1 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()")
Reported-by: David Wang 王标 <wangbiao3@xiaomi.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221231041120.440785-2-longman@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>