62c9827cbb
25 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Kuan-Ying Lee
|
a0503b8a0b |
kasan: integrate the common part of two KASAN tag-based modes
1. Move kasan_get_free_track() and kasan_set_free_info() into tags.c and combine these two functions for SW_TAGS and HW_TAGS kasan mode. 2. Move kasan_get_bug_type() to report_tags.c and make this function compatible for SW_TAGS and HW_TAGS kasan mode. Link: https://lkml.kernel.org/r/20210626100931.22794-3-Kuan-Ying.Lee@mediatek.com Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com> Suggested-by: Marco Elver <elver@google.com> Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Nicholas Tang <nicholas.tang@mediatek.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
2e903b9147 |
kasan, arm64: implement HW_TAGS runtime
Provide implementation of KASAN functions required for the hardware tag-based mode. Those include core functions for memory and pointer tagging (tags_hw.c) and bug reporting (report_tags_hw.c). Also adapt common KASAN code to support the new mode. Link: https://lkml.kernel.org/r/cfd0fbede579a6b66755c98c88c108e54f9c56bf.1606161801.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
59fd51b2ba |
kasan: rename report and tags files
Rename generic_report.c to report_generic.c and tags_report.c to report_sw_tags.c, as their content is more relevant to report.c file. Also rename tags.c to sw_tags.c to better reflect that this file contains code for software tag-based mode. No functional changes. Link: https://lkml.kernel.org/r/a6105d416da97d389580015afed66c4c3cfd4c08.1606161801.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
bb359dbcb7 |
kasan: split out shadow.c from common.c
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. The new mode won't be using shadow memory. Move all shadow-related code to shadow.c, which is only enabled for software KASAN modes that use shadow memory. No functional changes for software modes. Link: https://lkml.kernel.org/r/17d95cfa7d5cf9c4fcd9bf415f2a8dea911668df.1606161801.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
b266e8fee9 |
kasan: only build init.c for software modes
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. The new mode won't be using shadow memory, so only build init.c that contains shadow initialization code for software modes. No functional changes for software modes. Link: https://lkml.kernel.org/r/bae0a6a35b7a9b1a443803c1a55e6e3fecc311c9.1606161801.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Masahiro Yamada
|
893ab00439 |
kbuild: remove cc-option test of -fno-stack-protector
Some Makefiles already pass -fno-stack-protector unconditionally. For example, arch/arm64/kernel/vdso/Makefile, arch/x86/xen/Makefile. No problem report so far about hard-coding this option. So, we can assume all supported compilers know -fno-stack-protector. GCC 4.8 and Clang support this option (https://godbolt.org/z/_HDGzN) Get rid of cc-option from -fno-stack-protector. Remove CONFIG_CC_HAS_STACKPROTECTOR_NONE, which is always 'y'. Note: arch/mips/vdso/Makefile adds -fno-stack-protector twice, first unconditionally, and second conditionally. I removed the second one. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> |
||
Andrey Konovalov
|
ca734cc67e |
kasan: fix clang compilation warning due to stack protector
KASAN uses a single cc-option invocation to disable both conserve-stack and stack-protector flags. The former flag is not present in Clang, which causes cc-option to fail, and results in stack-protector being enabled. Fix by using separate cc-option calls for each flag. Also collect all flags in a variable to avoid calling cc-option multiple times for different files. Reported-by: Qian Cai <cai@lca.pw> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Marco Elver <elver@google.com> Link: http://lkml.kernel.org/r/c2f0c8e4048852ae014f4a391d96ca42d27e3255.1590779332.git.andreyknvl@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Marco Elver
|
33cd65e73a |
kasan: disable branch tracing for core runtime
During early boot, while KASAN is not yet initialized, it is possible to enter reporting code-path and end up in kasan_report(). While uninitialized, the branch there prevents generating any reports, however, under certain circumstances when branches are being traced (TRACE_BRANCH_PROFILING), we may recurse deep enough to cause kernel reboots without warning. To prevent similar issues in future, we should disable branch tracing for the core runtime. [elver@google.com: remove duplicate DISABLE_BRANCH_PROFILING, per Qian Cai] Link: https://lore.kernel.org/lkml/20200517011732.GE24705@shao2-debian/ Link: http://lkml.kernel.org/r/20200522075207.157349-1-elver@google.com Reported-by: kernel test robot <rong.a.chen@intel.com> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrey Konovalov <andreyknvl@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Qian Cai <cai@lca.pw> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r//20200517011732.GE24705@shao2-debian/ Link: http://lkml.kernel.org/r/20200519182459.87166-1-elver@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
8a16c09edc |
kasan: consistently disable debugging features
KASAN is incompatible with some kernel debugging/tracing features. There's been multiple patches that disable those feature for some of KASAN files one by one. Instead of prolonging that, disable these features for all KASAN files at once. Reported-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Leon Romanovsky <leonro@mellanox.com> Link: http://lkml.kernel.org/r/29bd753d5ff5596425905b0b07f51153e2345cc1.1589297433.git.andreyknvl@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
c620f7bd0b |
arm64 updates for 5.2
Mostly just incremental improvements here: - Introduce AT_HWCAP2 for advertising CPU features to userspace - Expose SVE2 availability to userspace - Support for "data cache clean to point of deep persistence" (DC PODP) - Honour "mitigations=off" on the cmdline and advertise status via sysfs - CPU timer erratum workaround (Neoverse-N1 #1188873) - Introduce perf PMU driver for the SMMUv3 performance counters - Add config option to disable the kuser helpers page for AArch32 tasks - Futex modifications to ensure liveness under contention - Rework debug exception handling to seperate kernel and user handlers - Non-critical fixes and cleanup -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAlzMFGgACgkQt6xw3ITB YzTicAf/TX1h1+ecbx4WJAa4qeiOCPoNpG9efldQumqJhKL44MR5bkhuShna5mwE ptm5qUXkZCxLTjzssZKnbdbgwa3t+emW8Of3D91IfI9akiZbMoDx5FGgcNbqjazb RLrhOFHwgontA38yppZN+DrL+sXbvif/CVELdHahkEx6KepSGaS2lmPXRmz/W56v 4yIRy/zxc3Dhjgfm3wKh72nBwoZdLiIc4mchd5pthNlR9E2idrYkQegG1C+gA00r o8uZRVOWgoh7H+QJE+xLUc8PaNCg8xqRRXOuZYg9GOz6hh7zSWhm+f1nRz9S2tIR gIgsCHNqoO2I3E1uJpAQXDGtt2kFhA== =ulpJ -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "Mostly just incremental improvements here: - Introduce AT_HWCAP2 for advertising CPU features to userspace - Expose SVE2 availability to userspace - Support for "data cache clean to point of deep persistence" (DC PODP) - Honour "mitigations=off" on the cmdline and advertise status via sysfs - CPU timer erratum workaround (Neoverse-N1 #1188873) - Introduce perf PMU driver for the SMMUv3 performance counters - Add config option to disable the kuser helpers page for AArch32 tasks - Futex modifications to ensure liveness under contention - Rework debug exception handling to seperate kernel and user handlers - Non-critical fixes and cleanup" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits) Documentation: Add ARM64 to kernel-parameters.rst arm64/speculation: Support 'mitigations=' cmdline option arm64: ssbs: Don't treat CPUs with SSBS as unaffected by SSB arm64: enable generic CPU vulnerabilites support arm64: add sysfs vulnerability show for speculative store bypass arm64: Fix size of __early_cpu_boot_status clocksource/arm_arch_timer: Use arch_timer_read_counter to access stable counters clocksource/arm_arch_timer: Remove use of workaround static key clocksource/arm_arch_timer: Drop use of static key in arch_timer_reg_read_stable clocksource/arm_arch_timer: Direcly assign set_next_event workaround arm64: Use arch_timer_read_counter instead of arch_counter_get_cntvct watchdog/sbsa: Use arch_timer_read_counter instead of arch_counter_get_cntvct ARM: vdso: Remove dependency with the arch_timer driver internals arm64: Apply ARM64_ERRATUM_1188873 to Neoverse-N1 arm64: Add part number for Neoverse N1 arm64: Make ARM64_ERRATUM_1188873 depend on COMPAT arm64: Restrict ARM64_ERRATUM_1188873 mitigation to AArch32 arm64: mm: Remove pte_unmap_nested() arm64: Fix compiler warning from pte_unmap() with -Wunused-but-set-variable arm64: compat: Reduce address limit for 64K pages ... |
||
Torsten Duwe
|
e2092740b7 |
kasan: Makefile: Replace -pg with CC_FLAGS_FTRACE
In preparation for arm64 supporting ftrace built on other compiler options, let's have Makefiles remove the $(CC_FLAGS_FTRACE) flags, whatever these may be, rather than assuming '-pg'. There should be no functional change as a result of this patch. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Torsten Duwe <duwe@suse.de> Signed-off-by: Will Deacon <will.deacon@arm.com> |
||
Peter Zijlstra
|
57b78a62e7 |
x86/uaccess, kasan: Fix KASAN vs SMAP
KASAN inserts extra code for every LOAD/STORE emitted by te compiler. Much of this code is simple and safe to run with AC=1, however the kasan_report() function, called on error, is most certainly not safe to call with AC=1. Therefore wrap kasan_report() in user_access_{save,restore}; which for x86 SMAP, saves/restores EFLAGS and clears AC before calling the real function. Also ensure all the functions are without __fentry__ hook. The function tracer is also not safe. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andrey Konovalov
|
dc15a8a254 |
kasan: prevent tracing of tags.c
Similarly to commit
|
||
Anders Roxell
|
0d0c8de878 |
kasan: mark file common so ftrace doesn't trace it
When option CONFIG_KASAN is enabled toghether with ftrace, function ftrace_graph_caller() gets in to a recursion, via functions kasan_check_read() and kasan_check_write(). Breakpoint 2, ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:179 179 mcount_get_pc x0 // function's pc (gdb) bt #0 ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:179 #1 0xffffff90101406c8 in ftrace_caller () at ../arch/arm64/kernel/entry-ftrace.S:151 #2 0xffffff90106fd084 in kasan_check_write (p=0xffffffc06c170878, size=4) at ../mm/kasan/common.c:105 #3 0xffffff90104a2464 in atomic_add_return (v=<optimized out>, i=<optimized out>) at ./include/generated/atomic-instrumented.h:71 #4 atomic_inc_return (v=<optimized out>) at ./include/generated/atomic-fallback.h:284 #5 trace_graph_entry (trace=0xffffffc03f5ff380) at ../kernel/trace/trace_functions_graph.c:441 #6 0xffffff9010481774 in trace_graph_entry_watchdog (trace=<optimized out>) at ../kernel/trace/trace_selftest.c:741 #7 0xffffff90104a185c in function_graph_enter (ret=<optimized out>, func=<optimized out>, frame_pointer=18446743799894897728, retp=<optimized out>) at ../kernel/trace/trace_functions_graph.c:196 #8 0xffffff9010140628 in prepare_ftrace_return (self_addr=18446743592948977792, parent=0xffffffc03f5ff418, frame_pointer=18446743799894897728) at ../arch/arm64/kernel/ftrace.c:231 #9 0xffffff90101406f4 in ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:182 Backtrace stopped: previous frame identical to this frame (corrupt stack?) (gdb) Rework so that the kasan implementation isn't traced. Link: http://lkml.kernel.org/r/20181212183447.15890-1-anders.roxell@linaro.org Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Acked-by: Dmitry Vyukov <dvyukov@google.com> Tested-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
11cd3cd69a |
kasan: split out generic_report.c from report.c
Move generic KASAN specific error reporting routines to generic_report.c without any functional changes, leaving common error reporting code in report.c to be later reused by tag-based KASAN. Link: http://lkml.kernel.org/r/ba48c32f8e5aefedee78998ccff0413bee9e0f5b.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
2bd926b439 |
kasan: add CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGS
This commit splits the current CONFIG_KASAN config option into two: 1. CONFIG_KASAN_GENERIC, that enables the generic KASAN mode (the one that exists now); 2. CONFIG_KASAN_SW_TAGS, that enables the software tag-based KASAN mode. The name CONFIG_KASAN_SW_TAGS is chosen as in the future we will have another hardware tag-based KASAN mode, that will rely on hardware memory tagging support in arm64. With CONFIG_KASAN_SW_TAGS enabled, compiler options are changed to instrument kernel files with -fsantize=kernel-hwaddress (except the ones for which KASAN_SANITIZE := n is set). Both CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGS support both CONFIG_KASAN_INLINE and CONFIG_KASAN_OUTLINE instrumentation modes. This commit also adds empty placeholder (for now) implementation of tag-based KASAN specific hooks inserted by the compiler and adjusts common hooks implementation. While this commit adds the CONFIG_KASAN_SW_TAGS config option, this option is not selectable, as it depends on HAVE_ARCH_KASAN_SW_TAGS, which we will enable once all the infrastracture code has been added. Link: http://lkml.kernel.org/r/b2550106eb8a68b10fefbabce820910b115aa853.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
b938fcf427 |
kasan: rename source files to reflect the new naming scheme
We now have two KASAN modes: generic KASAN and tag-based KASAN. Rename kasan.c to generic.c to reflect that. Also rename kasan_init.c to init.c as it contains initialization code for both KASAN modes. Link: http://lkml.kernel.org/r/88c6fd2a883e459e6242030497230e5fb0d44d44.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
bffa986c6f |
kasan: move common generic and tag-based code to common.c
Tag-based KASAN reuses a significant part of the generic KASAN code, so move the common parts to common.c without any functional changes. Link: http://lkml.kernel.org/r/114064d002356e03bb8cc91f7835e20dc61b51d9.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Alexander Potapenko
|
80a9201a59 |
mm, kasan: switch SLUB to stackdepot, enable memory quarantine for SLUB
For KASAN builds: - switch SLUB allocator to using stackdepot instead of storing the allocation/deallocation stacks in the objects; - change the freelist hook so that parts of the freelist can be put into the quarantine. [aryabinin@virtuozzo.com: fixes] Link: http://lkml.kernel.org/r/1468601423-28676-1-git-send-email-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/1468347165-41906-3-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
55834c5909 |
mm: kasan: initial memory quarantine implementation
Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. When the object is freed, its state changes from KASAN_STATE_ALLOC to KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine instead of being returned to the allocator, therefore every subsequent access to that object triggers a KASAN error, and the error handler is able to say where the object has been allocated and deallocated. When it's time for the object to leave quarantine, its state becomes KASAN_STATE_FREE and it's returned to the allocator. From now on the allocator may reuse it for another allocation. Before that happens, it's still possible to detect a use-after free on that object (it retains the allocation/deallocation stacks). When the allocator reuses this object, the shadow is unpoisoned and old allocation/deallocation stacks are wiped. Therefore a use of this object, even an incorrect one, won't trigger ASan warning. Without the quarantine, it's not guaranteed that the objects aren't reused immediately, that's why the probability of catching a use-after-free is lower than with quarantine in place. Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. Freed objects are first added to per-cpu quarantine queues. When a cache is destroyed or memory shrinking is requested, the objects are moved into the global quarantine queue. Whenever a kmalloc call allows memory reclaiming, the oldest objects are popped out of the global queue until the total size of objects in quarantine is less than 3/4 of the maximum quarantine size (which is a fraction of installed physical memory). As long as an object remains in the quarantine, KASAN is able to report accesses to it, so the chance of reporting a use-after-free is increased. Once the object leaves quarantine, the allocator may reuse it, in which case the object is unpoisoned and KASAN can't detect incorrect accesses to it. Right now quarantine support is only enabled in SLAB allocator. Unification of KASAN features in SLAB and SLUB will be done later. This patch is based on the "mm: kasan: quarantine" patch originally prepared by Dmitry Chernenkov. A number of improvements have been suggested by Andrey Ryabinin. [glider@google.com: v9] Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dmitry Vyukov
|
5c9a8750a6 |
kernel: add kcov code coverage
kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
c6d308534a |
UBSAN: run-time undefined behavior sanity checker
UBSAN uses compile-time instrumentation to catch undefined behavior (UB). Compiler inserts code that perform certain kinds of checks before operations that could cause UB. If check fails (i.e. UB detected) __ubsan_handle_* function called to print error message. So the most of the work is done by compiler. This patch just implements ubsan handlers printing errors. GCC has this capability since 4.9.x [1] (see -fsanitize=undefined option and its suboptions). However GCC 5.x has more checkers implemented [2]. Article [3] has a bit more details about UBSAN in the GCC. [1] - https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Debugging-Options.html [2] - https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html [3] - http://developerblog.redhat.com/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan/ Issues which UBSAN has found thus far are: Found bugs: * out-of-bounds access - |
||
Andrey Ryabinin
|
69786cdb37 |
x86/kasan, mm: Introduce generic kasan_populate_zero_shadow()
Introduce generic kasan_populate_zero_shadow(shadow_start, shadow_end). This function maps kasan_zero_page to the [shadow_start, shadow_end] addresses. This replaces x86_64 specific populate_zero_shadow() and will be used for ARM64 in follow on patches. The main changes from original version are: * Use p?d_populate*() instead of set_p?d() * Use memblock allocator directly instead of vmemmap_alloc_block() * __pa() instead of __pa_nodebug(). __pa() causes troubles iff we use it before kasan_early_init(). kasan_populate_zero_shadow() will be used later, so we ok with __pa() here. Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Klimov <klimov.linux@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: David Keitel <dkeitel@codeaurora.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yury <yury.norov@gmail.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/1439444244-26057-3-git-send-email-ryabinin.a.a@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andrey Ryabinin
|
0b24becc81 |
kasan: add kernel address sanitizer infrastructure
Kernel Address sanitizer (KASan) is a dynamic memory error detector. It provides fast and comprehensive solution for finding use-after-free and out-of-bounds bugs. KASAN uses compile-time instrumentation for checking every memory access, therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with putting symbol aliases into the wrong section, which breaks kasan instrumentation of globals. This patch only adds infrastructure for kernel address sanitizer. It's not available for use yet. The idea and some code was borrowed from [1]. Basic idea: The main idea of KASAN is to use shadow memory to record whether each byte of memory is safe to access or not, and use compiler's instrumentation to check the shadow memory on each memory access. Address sanitizer uses 1/8 of the memory addressable in kernel for shadow memory and uses direct mapping with a scale and offset to translate a memory address to its corresponding shadow address. Here is function to translate address to corresponding shadow address: unsigned long kasan_mem_to_shadow(unsigned long addr) { return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } where KASAN_SHADOW_SCALE_SHIFT = 3. So for every 8 bytes there is one corresponding byte of shadow memory. The following encoding used for each shadow byte: 0 means that all 8 bytes of the corresponding memory region are valid for access; k (1 <= k <= 7) means that the first k bytes are valid for access, and other (8 - k) bytes are not; Any negative value indicates that the entire 8-bytes are inaccessible. Different negative values used to distinguish between different kinds of inaccessible memory (redzones, freed memory) (see mm/kasan/kasan.h). To be able to detect accesses to bad memory we need a special compiler. Such compiler inserts a specific function calls (__asan_load*(addr), __asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16. These functions check whether memory region is valid to access or not by checking corresponding shadow memory. If access is not valid an error printed. Historical background of the address sanitizer from Dmitry Vyukov: "We've developed the set of tools, AddressSanitizer (Asan), ThreadSanitizer and MemorySanitizer, for user space. We actively use them for testing inside of Google (continuous testing, fuzzing, running prod services). To date the tools have found more than 10'000 scary bugs in Chromium, Google internal codebase and various open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and lots of others): [2] [3] [4]. The tools are part of both gcc and clang compilers. We have not yet done massive testing under the Kernel AddressSanitizer (it's kind of chicken and egg problem, you need it to be upstream to start applying it extensively). To date it has found about 50 bugs. Bugs that we've found in upstream kernel are listed in [5]. We've also found ~20 bugs in out internal version of the kernel. Also people from Samsung and Oracle have found some. [...] As others noted, the main feature of AddressSanitizer is its performance due to inline compiler instrumentation and simple linear shadow memory. User-space Asan has ~2x slowdown on computational programs and ~2x memory consumption increase. Taking into account that kernel usually consumes only small fraction of CPU and memory when running real user-space programs, I would expect that kernel Asan will have ~10-30% slowdown and similar memory consumption increase (when we finish all tuning). I agree that Asan can well replace kmemcheck. We have plans to start working on Kernel MemorySanitizer that finds uses of unitialized memory. Asan+Msan will provide feature-parity with kmemcheck. As others noted, Asan will unlikely replace debug slab and pagealloc that can be enabled at runtime. Asan uses compiler instrumentation, so even if it is disabled, it still incurs visible overheads. Asan technology is easily portable to other architectures. Compiler instrumentation is fully portable. Runtime has some arch-dependent parts like shadow mapping and atomic operation interception. They are relatively easy to port." Comparison with other debugging features: ======================================== KMEMCHECK: - KASan can do almost everything that kmemcheck can. KASan uses compile-time instrumentation, which makes it significantly faster than kmemcheck. The only advantage of kmemcheck over KASan is detection of uninitialized memory reads. Some brief performance testing showed that kasan could be x500-x600 times faster than kmemcheck: $ netperf -l 30 MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec no debug: 87380 16384 16384 30.00 41624.72 kasan inline: 87380 16384 16384 30.00 12870.54 kasan outline: 87380 16384 16384 30.00 10586.39 kmemcheck: 87380 16384 16384 30.03 20.23 - Also kmemcheck couldn't work on several CPUs. It always sets number of CPUs to 1. KASan doesn't have such limitation. DEBUG_PAGEALLOC: - KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page granularity level, so it able to find more bugs. SLUB_DEBUG (poisoning, redzones): - SLUB_DEBUG has lower overhead than KASan. - SLUB_DEBUG in most cases are not able to detect bad reads, KASan able to detect both reads and writes. - In some cases (e.g. redzone overwritten) SLUB_DEBUG detect bugs only on allocation/freeing of object. KASan catch bugs right before it will happen, so we always know exact place of first bad read/write. [1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel [2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs [3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs [4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs [5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies Based on work by Andrey Konovalov. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Acked-by: Michal Marek <mmarek@suse.cz> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |