IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern. This patch flushes the L1 cache after user accesses.
This is part of the fix for CVE-2020-4788.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern. This patch flushes the L1 cache on kernel entry.
This is part of the fix for CVE-2020-4788.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If both count cache and link stack are to be flushed, and can be flushed
with the special bcctr, patch that in directly to the flush/branch nop
site.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200609070610.846703-7-npiggin@gmail.com
Highlights:
- Infrastructure for secure boot on some bare metal Power9 machines. The
firmware support is still in development, so the code here won't actually
activate secure boot on any existing systems.
- A change to xmon (our crash handler / pseudo-debugger) to restrict it to
read-only mode when the kernel is lockdown'ed, otherwise it's trivial to drop
into xmon and modify kernel data, such as the lockdown state.
- Support for KASLR on 32-bit BookE machines (Freescale / NXP).
- Fixes for our flush_icache_range() and __kernel_sync_dicache() (VDSO) to work
with memory ranges >4GB.
- Some reworks of the pseries CMM (Cooperative Memory Management) driver to
make it behave more like other balloon drivers and enable some cleanups of
generic mm code.
- A series of fixes to our hardware breakpoint support to properly handle
unaligned watchpoint addresses.
Plus a bunch of other smaller improvements, fixes and cleanups.
Thanks to:
Alastair D'Silva, Andrew Donnellan, Aneesh Kumar K.V, Anthony Steinhauser,
Cédric Le Goater, Chris Packham, Chris Smart, Christophe Leroy, Christopher M.
Riedl, Christoph Hellwig, Claudio Carvalho, Daniel Axtens, David Hildenbrand,
Deb McLemore, Diana Craciun, Eric Richter, Geert Uytterhoeven, Greg
Kroah-Hartman, Greg Kurz, Gustavo L. F. Walbon, Hari Bathini, Harish, Jason
Yan, Krzysztof Kozlowski, Leonardo Bras, Mathieu Malaterre, Mauro S. M.
Rodrigues, Michal Suchanek, Mimi Zohar, Nathan Chancellor, Nathan Lynch, Nayna
Jain, Nick Desaulniers, Oliver O'Halloran, Qian Cai, Rasmus Villemoes, Ravi
Bangoria, Sam Bobroff, Santosh Sivaraj, Scott Wood, Thomas Huth, Tyrel
Datwyler, Vaibhav Jain, Valentin Longchamp, YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl3hBycTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgApBEACk91MEQDYJ9MF9I6uN+85qb5p4pMsp
rGzqnpt+XFidbDAc3eP63pYfIDSo3jtkQ2YL7shAnDOTvkO0md+Vqkl9Aq/G6FIf
lDBlwbgkXMSxS/O2Lpvfn4NZAoK6dKmiV55LSgfliM62X3e2Saeg6TR55wBTgJ6/
SlYPDwZfcVHOAiFS3UmfB+hkiIZk+AI5Zr5VAZvT2ZmeH36yAWkq4JgJI1uAk6m1
/7iCnlfUjx/nl/BhnA3kjjmAgGCJ5s/WuVgwFMz47XpMBWGBhLWpMh/NqDTFb8ca
kpiVQoVPQe2xyO3pL/kOwBy6sii26ftfHDhLKMy1hJdEhVQzS5LerPIMeh1qsU8Q
hV/Cj+jfsrS/vBDOehj3jwx93t+861PmTOqgLnpYQ6Ltrt+2B/74+fufGMHE1kI3
Ffo7xvNw4sw6bSziDxDFqUx2P1dFN5D5EJsJsYM98ekkVAAkzNqCDRvfD2QI8Pif
VXWPYXqtNJTrVPJA0D7Yfo9FDNwhANd0f1zi7r/U5mVXBFUyKOlGqTQSkXgMrVeK
3I7wHPOVGgdA5UUkfcd3pcuqsY081U9E//o5PUfj8ybO5JCwly8NoatbG+xHmKia
a72uJT8MjCo9mGCHKDrwi9l/kqms6ZSv8RP+yMhGuB52YoiGc6PpVyab5jXIUd1N
yTtBlC0YGW1JYw==
=JHzg
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights:
- Infrastructure for secure boot on some bare metal Power9 machines.
The firmware support is still in development, so the code here
won't actually activate secure boot on any existing systems.
- A change to xmon (our crash handler / pseudo-debugger) to restrict
it to read-only mode when the kernel is lockdown'ed, otherwise it's
trivial to drop into xmon and modify kernel data, such as the
lockdown state.
- Support for KASLR on 32-bit BookE machines (Freescale / NXP).
- Fixes for our flush_icache_range() and __kernel_sync_dicache()
(VDSO) to work with memory ranges >4GB.
- Some reworks of the pseries CMM (Cooperative Memory Management)
driver to make it behave more like other balloon drivers and enable
some cleanups of generic mm code.
- A series of fixes to our hardware breakpoint support to properly
handle unaligned watchpoint addresses.
Plus a bunch of other smaller improvements, fixes and cleanups.
Thanks to: Alastair D'Silva, Andrew Donnellan, Aneesh Kumar K.V,
Anthony Steinhauser, Cédric Le Goater, Chris Packham, Chris Smart,
Christophe Leroy, Christopher M. Riedl, Christoph Hellwig, Claudio
Carvalho, Daniel Axtens, David Hildenbrand, Deb McLemore, Diana
Craciun, Eric Richter, Geert Uytterhoeven, Greg Kroah-Hartman, Greg
Kurz, Gustavo L. F. Walbon, Hari Bathini, Harish, Jason Yan, Krzysztof
Kozlowski, Leonardo Bras, Mathieu Malaterre, Mauro S. M. Rodrigues,
Michal Suchanek, Mimi Zohar, Nathan Chancellor, Nathan Lynch, Nayna
Jain, Nick Desaulniers, Oliver O'Halloran, Qian Cai, Rasmus Villemoes,
Ravi Bangoria, Sam Bobroff, Santosh Sivaraj, Scott Wood, Thomas Huth,
Tyrel Datwyler, Vaibhav Jain, Valentin Longchamp, YueHaibing"
* tag 'powerpc-5.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (144 commits)
powerpc/fixmap: fix crash with HIGHMEM
x86/efi: remove unused variables
powerpc: Define arch_is_kernel_initmem_freed() for lockdep
powerpc/prom_init: Use -ffreestanding to avoid a reference to bcmp
powerpc: Avoid clang warnings around setjmp and longjmp
powerpc: Don't add -mabi= flags when building with Clang
powerpc: Fix Kconfig indentation
powerpc/fixmap: don't clear fixmap area in paging_init()
selftests/powerpc: spectre_v2 test must be built 64-bit
powerpc/powernv: Disable native PCIe port management
powerpc/kexec: Move kexec files into a dedicated subdir.
powerpc/32: Split kexec low level code out of misc_32.S
powerpc/sysdev: drop simple gpio
powerpc/83xx: map IMMR with a BAT.
powerpc/32s: automatically allocate BAT in setbat()
powerpc/ioremap: warn on early use of ioremap()
powerpc: Add support for GENERIC_EARLY_IOREMAP
powerpc/fixmap: Use __fix_to_virt() instead of fix_to_virt()
powerpc/8xx: use the fixmapped IMMR in cpm_reset()
powerpc/8xx: add __init to cpm1 init functions
...
In commit ee13cb249fab ("powerpc/64s: Add support for software count
cache flush"), I added support for software to flush the count
cache (indirect branch cache) on context switch if firmware told us
that was the required mitigation for Spectre v2.
As part of that code we also added a software flush of the link
stack (return address stack), which protects against Spectre-RSB
between user processes.
That is all correct for CPUs that activate that mitigation, which is
currently Power9 Nimbus DD2.3.
What I got wrong is that on older CPUs, where firmware has disabled
the count cache, we also need to flush the link stack on context
switch.
To fix it we create a new feature bit which is not set by firmware,
which tells us we need to flush the link stack. We set that when
firmware tells us that either of the existing Spectre v2 mitigations
are enabled.
Then we adjust the patching code so that if we see that feature bit we
enable the link stack flush. If we're also told to flush the count
cache in software then we fall through and do that also.
On the older CPUs we don't need to do do the software count cache
flush, firmware has disabled it, so in that case we patch in an early
return after the link stack flush.
The naming of some of the functions is awkward after this patch,
because they're called "count cache" but they also do link stack. But
we'll fix that up in a later commit to ease backporting.
This is the fix for CVE-2019-18660.
Reported-by: Anthony Steinhauser <asteinhauser@google.com>
Fixes: ee13cb249fab ("powerpc/64s: Add support for software count cache flush")
Cc: stable@vger.kernel.org # v4.4+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
"powerpc_security_features" is "unsigned long", i.e. 32-bit or 64-bit,
depending on the platform (PPC_FSL_BOOK3E or PPC_BOOK3S_64). Hence
casting its address to "u64 *", and calling debugfs_create_x64() is
wrong, and leaks 32-bit of nearby data to userspace on 32-bit platforms.
While all currently defined SEC_FTR_* security feature flags fit in
32-bit, they all have "ULL" suffixes to make them 64-bit constants.
Hence fix the leak by changing the type of "powerpc_security_features"
(and the parameter types of its accessors) to "u64". This also allows
to drop the cast.
Fixes: 398af571128fe75f ("powerpc/security: Show powerpc_security_features in debugfs")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191021142309.28105-1-geert+renesas@glider.be
Some CPU revisions support a mode where the count cache needs to be
flushed by software on context switch. Additionally some revisions may
have a hardware accelerated flush, in which case the software flush
sequence can be shortened.
If we detect the appropriate flag from firmware we patch a branch
into _switch() which takes us to a count cache flush sequence.
That sequence in turn may be patched to return early if we detect that
the CPU supports accelerating the flush sequence in hardware.
Add debugfs support for reporting the state of the flush, as well as
runtime disabling it.
And modify the spectre_v2 sysfs file to report the state of the
software flush.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add security feature flags to indicate the need for software to flush
the count cache on context switch, and for the presence of a hardware
assisted count cache flush.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On some CPUs we can prevent a vulnerability related to store-to-load
forwarding by preventing store forwarding between privilege domains,
by inserting a barrier in kernel entry and exit paths.
This is known to be the case on at least Power7, Power8 and Power9
powerpc CPUs.
Barriers must be inserted generally before the first load after moving
to a higher privilege, and after the last store before moving to a
lower privilege, HV and PR privilege transitions must be protected.
Barriers are added as patch sections, with all kernel/hypervisor entry
points patched, and the exit points to lower privilge levels patched
similarly to the RFI flush patching.
Firmware advertisement is not implemented yet, so CPU flush types
are hard coded.
Thanks to Michal Suchánek for bug fixes and review.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michal Suchánek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the definition of the default security feature flags
(i.e., enabled by default) closer to the security feature flags.
This can be used to restore current flags to the default flags.
Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Now that we have the security feature flags we can make the
information displayed in the "meltdown" file more informative.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This commit adds security feature flags to reflect the settings we
receive from firmware regarding Spectre/Meltdown mitigations.
The feature names reflect the names we are given by firmware on bare
metal machines. See the hostboot source for details.
Arguably these could be firmware features, but that then requires them
to be read early in boot so they're available prior to asm feature
patching, but we don't actually want to use them for patching. We may
also want to dynamically update them in future, which would be
incompatible with the way firmware features work (at the moment at
least). So for now just make them separate flags.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>