IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We implement regs_set_return_value() and override_function_with_return()
for this purpose.
On powerpc, a return from a function (blr) just branches to the location
contained in the link register. So, we can just update pt_regs rather
than redirecting execution to a dummy function that returns.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Reviewed-by: Samuel Mendoza-Jonas <sam@mendozajonas.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Back when I added -Werror in commit ba55bd74360e ("powerpc: Add
configurable -Werror for arch/powerpc") I did it by adding it to most
of the arch Makefiles.
At the time we excluded math-emu, because apparently it didn't build
cleanly. But that seems to have been fixed somewhere in the interim.
So move the -Werror addition to the top-level of the arch, this saves
us from repeating it in every Makefile and means we won't forget to
add it to any new sub-dirs.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In order to avoid multiple conversions, handover directly a
pgprot_t to map_kernel_page() as already done for radix.
Do the same for __ioremap_caller() and __ioremap_at().
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 51c3c62b58b3 ("powerpc: Avoid code patching freed init
sections") accesses 'init_mem_is_free' flag too early, before the
kernel is relocated. This provokes early boot failure (before the
console is active).
As it is not necessary to do this verification that early, this
patch moves the test into patch_instruction() instead of
__patch_instruction().
This modification also has the advantage of avoiding unnecessary
remappings.
Fixes: 51c3c62b58b3 ("powerpc: Avoid code patching freed init sections")
Cc: stable@vger.kernel.org # 4.13+
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On little endian platforms, csum_ipv6_magic() keeps len and proto in
CPU byte order. This generates a bad results leading to ICMPv6 packets
from other hosts being dropped by powerpc64le platforms.
In order to fix this, len and proto should be converted to network
byte order ie bigendian byte order. However checksumming 0x12345678
and 0x56341278 provide the exact same result so it is enough to
rotate the sum of len and proto by 1 byte.
PPC32 only support bigendian so the fix is needed for PPC64 only
Fixes: e9c4943a107b ("powerpc: Implement csum_ipv6_magic in assembly")
Reported-by: Jianlin Shi <jishi@redhat.com>
Reported-by: Xin Long <lucien.xin@gmail.com>
Cc: <stable@vger.kernel.org> # 4.18+
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Tested-by: Xin Long <lucien.xin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This stops us from doing code patching in init sections after they've
been freed.
In this chain:
kvm_guest_init() ->
kvm_use_magic_page() ->
fault_in_pages_readable() ->
__get_user() ->
__get_user_nocheck() ->
barrier_nospec();
We have a code patching location at barrier_nospec() and
kvm_guest_init() is an init function. This whole chain gets inlined,
so when we free the init section (hence kvm_guest_init()), this code
goes away and hence should no longer be patched.
We seen this as userspace memory corruption when using a memory
checker while doing partition migration testing on powervm (this
starts the code patching post migration via
/sys/kernel/mobility/migration). In theory, it could also happen when
using /sys/kernel/debug/powerpc/barrier_nospec.
Cc: stable@vger.kernel.org # 4.13+
Signed-off-by: Michael Neuling <mikey@neuling.org>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Static branch hints override dynamic branch prediction on recent
POWER CPUs. We should only use them when we are overwhelmingly
sure of the direction.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The symbol memcpy_nocache_branch defined in order to allow patching
of memset function once cache is enabled leads to confusing reports
by perf tool.
Using the new patch_site functionality solves this issue.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In __copy_tofrom_user, if we encounter an exception on a store, we
stop copying and return the number of bytes not copied. However,
if the store is wider than one byte and is to an unaligned address,
it is possible that the store operand overlaps a page boundary
and the exception occurred on the latter part of the store operand,
meaning that it would be possible to copy a few more bytes. Since
copy_to_user is generally expected to copy as much as possible,
it would be better to copy those extra few bytes. This adds code
to do that. Since this edge case is not performance-critical,
the code has been written to be compact rather than as fast as
possible.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The hand-coded assembler 64-bit copy routines include feature sections
that select one code path or another depending on which CPU we are
executing on. The self-tests for these copy routines end up testing
just one path. This adds a mechanism for selecting any desired code
path at compile time, and makes 2 or 3 versions of each test, each
using a different code path, so as to cover all the possible paths.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Add -mcpu=power4 to CFLAGS for older compilers]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This aims to make the generation of exception table entries for the
loads and stores in __copy_tofrom_user_base clearer and easier to
verify. Instead of having a series of local labels on the loads and
stores, with a series of corresponding labels later for the exception
handlers, we now use macros to generate exception table entries at the
point of each load and store that could potentially trap. We do this
with the macros lex (load exception) and stex (store exception).
These macros are used right before the load or store to which they
apply.
Some complexity is introduced by the fact that we have some more work
to do after hitting an exception, because we need to calculate and
return the number of bytes not copied. The code uses r3 as the
current pointer into the destination buffer, that is, the address of
the first byte of the destination that has not been modified.
However, at various points in the copy loops, r3 can be 4, 8, 16 or 24
bytes behind that point.
To express this offset in an understandable way, we define a symbol
r3_offset which is updated at various points so that it equal to the
difference between the address of the first unmodified byte of the
destination and the value in r3. (In fact it only needs to be
accurate at the point of each lex or stex macro invocation.)
The rules for updating r3_offset are as follows:
* It starts out at 0
* An addi r3,r3,N instruction decreases r3_offset by N
* A store instruction (stb, sth, stw, std) to N(r3)
increases r3_offset by the width of the store (1, 2, 4, 8)
* A store with update instruction (stbu, sthu, stwu, stdu) to N(r3)
sets r3_offset to the width of the store.
There is some trickiness to the way that the lex and stex macros and
the associated exception handlers work. I would have liked to use
the current value of r3_offset in the name of the symbol used as
the exception handler, as in ".Lld_exc_$(r3_offset)" and then
have symbols .Lld_exc_0, .Lld_exc_8, .Lld_exc_16 etc. corresponding
to the offsets that needed to be added to r3. However, I couldn't
see a way to do that with gas.
Instead, the exception handler address is .Lld_exc - r3_offset or
.Lst_exc - r3_offset, that is, the distance ahead of .Lld_exc/.Lst_exc
that we start executing is equal to the amount that we need to add to
r3. This works because r3_offset is always a small multiple of 4,
and our instructions are 4 bytes long. This means that before
.Lld_exc and .Lst_exc, we have a sequence of instructions that
increments r3 by 4, 8, 16 or 24 depending on where we start. The
sequence increments r3 by 4 per instruction (on average).
We also replace the exception table for the 4k copy loop by a
macro per load or store. These loads and stores all use exactly
the same exception handler, which simply resets the argument registers
r3, r4 and r5 to there original values and re-does the whole copy
using the slower loop.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add a macro and some helper C functions for patching single asm
instructions.
The gas macro means we can do something like:
1: nop
patch_site 1b, patch__foo
Which is less visually distracting than defining a GLOBAL symbol at 1,
and also doesn't pollute the symbol table which can confuse eg. perf.
These are obviously similar to our existing feature sections, but are
not automatically patched based on CPU/MMU features, rather they are
designed to be manually patched by C code at some arbitrary point.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Implement the barrier_nospec as a isync;sync instruction sequence.
The implementation uses the infrastructure built for BOOK3S 64.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
[mpe: Split out of larger patch]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add a config symbol to encode which platforms support the
barrier_nospec speculation barrier. Currently this is just Book3S 64
but we will add Book3E in a future patch.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The generic implementation of strlen() reads strings byte per byte.
This patch implements strlen() in assembly based on a read of entire
words, in the same spirit as what some other arches and glibc do.
On a 8xx the time spent in strlen is reduced by 3/4 for long strings.
strlen() selftest on an 8xx provides the following values:
Before the patch (ie with the generic strlen() in lib/string.c):
len 256 : time = 1.195055
len 016 : time = 0.083745
len 008 : time = 0.046828
len 004 : time = 0.028390
After the patch:
len 256 : time = 0.272185 ==> 78% improvment
len 016 : time = 0.040632 ==> 51% improvment
len 008 : time = 0.033060 ==> 29% improvment
len 004 : time = 0.029149 ==> 2% degradation
On a 832x:
Before the patch:
len 256 : time = 0.236125
len 016 : time = 0.018136
len 008 : time = 0.011000
len 004 : time = 0.007229
After the patch:
len 256 : time = 0.094950 ==> 60% improvment
len 016 : time = 0.013357 ==> 26% improvment
len 008 : time = 0.010586 ==> 4% improvment
len 004 : time = 0.008784
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
files not using feature fixup don't need asm/feature-fixups.h
files using feature fixup need asm/feature-fixups.h
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Only include linux/stringify.h is files using __stringify()
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch moves ASM_CONST() and stringify_in_c() into
dedicated asm-const.h, then cleans all related inclusions.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: asm-compat.h should include asm-const.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch is based on the previous VMX patch on memcmp().
To optimize ppc64 memcmp() with VMX instruction, we need to think about
the VMX penalty brought with: If kernel uses VMX instruction, it needs
to save/restore current thread's VMX registers. There are 32 x 128 bits
VMX registers in PPC, which means 32 x 16 = 512 bytes for load and store.
The major concern regarding the memcmp() performance in kernel is KSM,
who will use memcmp() frequently to merge identical pages. So it will
make sense to take some measures/enhancement on KSM to see whether any
improvement can be done here. Cyril Bur indicates that the memcmp() for
KSM has a higher possibility to fail (unmatch) early in previous bytes
in following mail.
https://patchwork.ozlabs.org/patch/817322/#1773629
And I am taking a follow-up on this with this patch.
Per some testing, it shows KSM memcmp() will fail early at previous 32
bytes. More specifically:
- 76% cases will fail/unmatch before 16 bytes;
- 83% cases will fail/unmatch before 32 bytes;
- 84% cases will fail/unmatch before 64 bytes;
So 32 bytes looks a better choice than other bytes for pre-checking.
The early failure is also true for memcmp() for non-KSM case. With a
non-typical call load, it shows ~73% cases fail before first 32 bytes.
This patch adds a 32 bytes pre-checking firstly before jumping into VMX
operations, to avoid the unnecessary VMX penalty. It is not limited to
KSM case. And the testing shows ~20% improvement on memcmp() average
execution time with this patch.
And note the 32B pre-checking is only performed when the compare size
is long enough (>=4K currently) to allow VMX operation.
The detail data and analysis is at:
https://github.com/justdoitqd/publicFiles/blob/master/memcmp/README.md
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch add VMX primitives to do memcmp() in case the compare size
is equal or greater than 4K bytes. KSM feature can benefit from this.
Test result with following test program(replace the "^>" with ""):
------
># cat tools/testing/selftests/powerpc/stringloops/memcmp.c
>#include <malloc.h>
>#include <stdlib.h>
>#include <string.h>
>#include <time.h>
>#include "utils.h"
>#define SIZE (1024 * 1024 * 900)
>#define ITERATIONS 40
int test_memcmp(const void *s1, const void *s2, size_t n);
static int testcase(void)
{
char *s1;
char *s2;
unsigned long i;
s1 = memalign(128, SIZE);
if (!s1) {
perror("memalign");
exit(1);
}
s2 = memalign(128, SIZE);
if (!s2) {
perror("memalign");
exit(1);
}
for (i = 0; i < SIZE; i++) {
s1[i] = i & 0xff;
s2[i] = i & 0xff;
}
for (i = 0; i < ITERATIONS; i++) {
int ret = test_memcmp(s1, s2, SIZE);
if (ret) {
printf("return %d at[%ld]! should have returned zero\n", ret, i);
abort();
}
}
return 0;
}
int main(void)
{
return test_harness(testcase, "memcmp");
}
------
Without this patch (but with the first patch "powerpc/64: Align bytes
before fall back to .Lshort in powerpc64 memcmp()." in the series):
4.726728762 seconds time elapsed ( +- 3.54%)
With VMX patch:
4.234335473 seconds time elapsed ( +- 2.63%)
There is ~+10% improvement.
Testing with unaligned and different offset version (make s1 and s2 shift
random offset within 16 bytes) can archieve higher improvement than 10%..
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently memcmp() 64bytes version in powerpc will fall back to .Lshort
(compare per byte mode) if either src or dst address is not 8 bytes aligned.
It can be opmitized in 2 situations:
1) if both addresses are with the same offset with 8 bytes boundary:
memcmp() can compare the unaligned bytes within 8 bytes boundary firstly
and then compare the rest 8-bytes-aligned content with .Llong mode.
2) If src/dst addrs are not with the same offset of 8 bytes boundary:
memcmp() can align src addr with 8 bytes, increment dst addr accordingly,
then load src with aligned mode and load dst with unaligned mode.
This patch optmizes memcmp() behavior in the above 2 situations.
Tested with both little/big endian. Performance result below is based on
little endian.
Following is the test result with src/dst having the same offset case:
(a similar result was observed when src/dst having different offset):
(1) 256 bytes
Test with the existing tools/testing/selftests/powerpc/stringloops/memcmp:
- without patch
29.773018302 seconds time elapsed ( +- 0.09% )
- with patch
16.485568173 seconds time elapsed ( +- 0.02% )
-> There is ~+80% percent improvement
(2) 32 bytes
To observe performance impact on < 32 bytes, modify
tools/testing/selftests/powerpc/stringloops/memcmp.c with following:
-------
#include <string.h>
#include "utils.h"
-#define SIZE 256
+#define SIZE 32
#define ITERATIONS 10000
int test_memcmp(const void *s1, const void *s2, size_t n);
--------
- Without patch
0.244746482 seconds time elapsed ( +- 0.36%)
- with patch
0.215069477 seconds time elapsed ( +- 0.51%)
-> There is ~+13% improvement
(3) 0~8 bytes
To observe <8 bytes performance impact, modify
tools/testing/selftests/powerpc/stringloops/memcmp.c with following:
-------
#include <string.h>
#include "utils.h"
-#define SIZE 256
-#define ITERATIONS 10000
+#define SIZE 8
+#define ITERATIONS 1000000
int test_memcmp(const void *s1, const void *s2, size_t n);
-------
- Without patch
1.845642503 seconds time elapsed ( +- 0.12% )
- With patch
1.849767135 seconds time elapsed ( +- 0.26% )
-> They are nearly the same. (-0.2%)
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Notable changes:
- Support for split PMD page table lock on 64-bit Book3S (Power8/9).
- Add support for HAVE_RELIABLE_STACKTRACE, so we properly support live
patching again.
- Add support for patching barrier_nospec in copy_from_user() and syscall entry.
- A couple of fixes for our data breakpoints on Book3S.
- A series from Nick optimising TLB/mm handling with the Radix MMU.
- Numerous small cleanups to squash sparse/gcc warnings from Mathieu Malaterre.
- Several series optimising various parts of the 32-bit code from Christophe Leroy.
- Removal of support for two old machines, "SBC834xE" and "C2K" ("GEFanuc,C2K"),
which is why the diffstat has so many deletions.
And many other small improvements & fixes.
There's a few out-of-area changes. Some minor ftrace changes OK'ed by Steve, and
a fix to our powernv cpuidle driver. Then there's a series touching mm, x86 and
fs/proc/task_mmu.c, which cleans up some details around pkey support. It was
ack'ed/reviewed by Ingo & Dave and has been in next for several weeks.
Thanks to:
Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al Viro, Andrew
Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd Bergmann, Balbir Singh,
Cédric Le Goater, Christophe Leroy, Christophe Lombard, Colin Ian King, Dave
Hansen, Fabio Estevam, Finn Thain, Frederic Barrat, Gautham R. Shenoy, Haren
Myneni, Hari Bathini, Ingo Molnar, Jonathan Neuschäfer, Josh Poimboeuf,
Kamalesh Babulal, Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu
Malaterre, Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica Gupta, Ravi
Bangoria, Russell Currey, Sam Bobroff, Samuel Mendoza-Jonas, Segher
Boessenkool, Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stewart Smith,
Thiago Jung Bauermann, Torsten Duwe, Vaibhav Jain, Wei Yongjun, Wolfram Sang,
Yisheng Xie, YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJbGQKBExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYBq
TRAAioK7rz5xYMkxaM3Ng3ybobEeNAwQqOolz98xvmnB9SfDWNuc99vf8cGu0/fQ
zc8AKZ5RcnwipOjyGlxW9oa1ZhVq0xtYnQPiYLEKMdLQmh5D+C7+KpvAd1UElweg
ub40/xDySWfMujfuMSF9JDCWPIXyojt4Xg5nJKIVRrAm/3YMe/+i5Am7NWHuMCEb
aQmZtlYW5Mz81XY0968hjpUO6eKFRmsaM7yFAhGTXx6+oLRpGj1PZB4AwdRIKS2L
Ak7q/VgxtE4W+s3a0GK2s+eXIhGKeFuX9AVnx3nti+8/K1OqrqhDcLMUC/9JpCpv
EvOtO7dxPnZujHjdu4Eai/xNoo4h6zRy7bWqve9LoBM40CP5jljKzu1lwqqb5yO0
jC7/aXhgiSIxxcRJLjoI/TYpZPu40MifrkydmczykdPyPCnMIWEJDcj4KsRL/9Y8
9SSbJzRNC/SgQNTbUYPZFFi6G0QaMmlcbCb628k8QT+Gn3Xkdf/ZtxzqEyoF4Irq
46kFBsiSSK4Bu0rVlcUtJQLgdqytWULO6NKEYnD67laxYcgQd8pGFQ8SjZhRZLgU
q5LA3HIWhoAI4M0wZhOnKXO6JfiQ1UbO8gUJLsWsfF0Fk5KAcdm+4kb4jbI1H4Qk
Vol9WNRZwEllyaiqScZN9RuVVuH0GPOZeEH1dtWK+uWi0lM=
=ZlBf
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Support for split PMD page table lock on 64-bit Book3S (Power8/9).
- Add support for HAVE_RELIABLE_STACKTRACE, so we properly support
live patching again.
- Add support for patching barrier_nospec in copy_from_user() and
syscall entry.
- A couple of fixes for our data breakpoints on Book3S.
- A series from Nick optimising TLB/mm handling with the Radix MMU.
- Numerous small cleanups to squash sparse/gcc warnings from Mathieu
Malaterre.
- Several series optimising various parts of the 32-bit code from
Christophe Leroy.
- Removal of support for two old machines, "SBC834xE" and "C2K"
("GEFanuc,C2K"), which is why the diffstat has so many deletions.
And many other small improvements & fixes.
There's a few out-of-area changes. Some minor ftrace changes OK'ed by
Steve, and a fix to our powernv cpuidle driver. Then there's a series
touching mm, x86 and fs/proc/task_mmu.c, which cleans up some details
around pkey support. It was ack'ed/reviewed by Ingo & Dave and has
been in next for several weeks.
Thanks to: Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al
Viro, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd
Bergmann, Balbir Singh, Cédric Le Goater, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dave Hansen, Fabio Estevam, Finn Thain,
Frederic Barrat, Gautham R. Shenoy, Haren Myneni, Hari Bathini, Ingo
Molnar, Jonathan Neuschäfer, Josh Poimboeuf, Kamalesh Babulal,
Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu Malaterre,
Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica
Gupta, Ravi Bangoria, Russell Currey, Sam Bobroff, Samuel
Mendoza-Jonas, Segher Boessenkool, Shilpasri G Bhat, Simon Guo,
Souptick Joarder, Stewart Smith, Thiago Jung Bauermann, Torsten Duwe,
Vaibhav Jain, Wei Yongjun, Wolfram Sang, Yisheng Xie, YueHaibing"
* tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (251 commits)
powerpc/64s/radix: Fix missing ptesync in flush_cache_vmap
cpuidle: powernv: Fix promotion from snooze if next state disabled
powerpc: fix build failure by disabling attribute-alias warning in pci_32
ocxl: Fix missing unlock on error in afu_ioctl_enable_p9_wait()
powerpc-opal: fix spelling mistake "Uniterrupted" -> "Uninterrupted"
powerpc: fix spelling mistake: "Usupported" -> "Unsupported"
powerpc/pkeys: Detach execute_only key on !PROT_EXEC
powerpc/powernv: copy/paste - Mask SO bit in CR
powerpc: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove support for Marvell mv64x60 i2c controller
powerpc/boot: Remove support for Marvell MPSC serial controller
powerpc/embedded6xx: Remove C2K board support
powerpc/lib: optimise PPC32 memcmp
powerpc/lib: optimise 32 bits __clear_user()
powerpc/time: inline arch_vtime_task_switch()
powerpc/Makefile: set -mcpu=860 flag for the 8xx
powerpc: Implement csum_ipv6_magic in assembly
powerpc/32: Optimise __csum_partial()
powerpc/lib: Adjust .balign inside string functions for PPC32
...
At the time being, memcmp() compares two chunks of memory
byte per byte.
This patch optimises the comparison by comparing word by word.
On the same way as commit 15c2d45d17418 ("powerpc: Add 64bit
optimised memcmp"), this patch moves memcmp() into a dedicated
file named memcmp_32.S
A small benchmark performed on an 8xx comparing two chuncks
of 512 bytes performed 100000 times gives:
Before : 5852274 TB ticks
After: 1488638 TB ticks
This is almost 4 times faster
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rewrite clear_user() on the same principle as memset(0), making use
of dcbz to clear complete cache lines.
This code is a copy/paste of memset(), with some modifications
in order to retrieve remaining number of bytes to be cleared,
as it needs to be returned in case of error.
On the same way as done on PPC64 in commit 17968fbbd19f1
("powerpc: 64bit optimised __clear_user"), the patch moves
__clear_user() into a dedicated file string_32.S
On a MPC885, throughput is almost doubled:
Before:
~# dd if=/dev/zero of=/dev/null bs=1M count=1000
1048576000 bytes (1000.0MB) copied, 18.990779 seconds, 52.7MB/s
After:
~# dd if=/dev/zero of=/dev/null bs=1M count=1000
1048576000 bytes (1000.0MB) copied, 9.611468 seconds, 104.0MB/s
On a MPC8321, throughput is multiplied by 2.12:
Before:
root@vgoippro:~# dd if=/dev/zero of=/dev/null bs=1M count=1000
1048576000 bytes (1000.0MB) copied, 6.844352 seconds, 146.1MB/s
After:
root@vgoippro:~# dd if=/dev/zero of=/dev/null bs=1M count=1000
1048576000 bytes (1000.0MB) copied, 3.218854 seconds, 310.7MB/s
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Improve __csum_partial by interleaving loads and adds.
On a 8xx, it brings neither improvement nor degradation.
On a 83xx, it brings a 25% improvement.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
commit 87a156fb18fe1 ("Align hot loops of some string functions")
degraded the performance of string functions by adding useless
nops
A simple benchmark on an 8xx calling 100000x a memchr() that
matches the first byte runs in 41668 TB ticks before this patch
and in 35986 TB ticks after this patch. So this gives an
improvement of approx 10%
Another benchmark doing the same with a memchr() matching the 128th
byte runs in 1011365 TB ticks before this patch and 1005682 TB ticks
after this patch, so regardless on the number of loops, removing
those useless nops improves the test by 5683 TB ticks.
Fixes: 87a156fb18fe1 ("Align hot loops of some string functions")
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
emulate_step() tests are failing if VSX is not supported or disabled.
emulate_step_test: lxvd2x : FAIL
emulate_step_test: stxvd2x : FAIL
If !CPU_FTR_VSX, emulate_step() failure is expected and testcase should
PASS with a valid justification. After patch:
emulate_step_test: lxvd2x : PASS (!CPU_FTR_VSX)
emulate_step_test: stxvd2x : PASS (!CPU_FTR_VSX)
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
emulate_step() is not checking runtime VSX feature flag before
emulating an instruction. This is causing kernel crash when kernel
is compiled with CONFIG_VSX=y but running on a machine where VSX
is not supported or disabled. Ex, while running emulate_step tests
on P6 machine:
Oops: Exception in kernel mode, sig: 4 [#1]
NIP [c000000000095c24] .load_vsrn+0x28/0x54
LR [c000000000094bdc] .emulate_loadstore+0x167c/0x17b0
Call Trace:
0x40fe240c7ae147ae (unreliable)
.emulate_loadstore+0x167c/0x17b0
.emulate_step+0x25c/0x5bc
.test_lxvd2x_stxvd2x+0x64/0x154
.test_emulate_step+0x38/0x4c
.do_one_initcall+0x5c/0x2c0
.kernel_init_freeable+0x314/0x4cc
.kernel_init+0x24/0x160
.ret_from_kernel_thread+0x58/0xb4
With fix:
emulate_step_test: lxvd2x : FAIL
emulate_step_test: stxvd2x : FAIL
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Note that unlike RFI which is patched only in kernel the nospec state
reflects settings at the time the module was loaded.
Iterating all modules and re-patching every time the settings change
is not implemented.
Based on lwsync patching.
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Based on the RFI patching. This is required to be able to disable the
speculation barrier.
Only one barrier type is supported and it does nothing when the
firmware does not enable it. Also re-patching modules is not supported
So the only meaningful thing that can be done is patching out the
speculation barrier at boot when the user says it is not wanted.
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Some functions prototypes were missing for the non-altivec code. Add the
missing prototypes in a new header file, fix warnings treated as errors
with W=1:
arch/powerpc/lib/xor_vmx_glue.c:18:6: error: no previous prototype for ‘xor_altivec_2’ [-Werror=missing-prototypes]
arch/powerpc/lib/xor_vmx_glue.c:29:6: error: no previous prototype for ‘xor_altivec_3’ [-Werror=missing-prototypes]
arch/powerpc/lib/xor_vmx_glue.c:40:6: error: no previous prototype for ‘xor_altivec_4’ [-Werror=missing-prototypes]
arch/powerpc/lib/xor_vmx_glue.c:52:6: error: no previous prototype for ‘xor_altivec_5’ [-Werror=missing-prototypes]
The prototypes were already present in <asm/xor.h> but this header file is
meant to be included after <include/linux/raid/xor.h>. Trying to re-use
<asm/xor.h> directly would lead to warnings such as:
arch/powerpc/include/asm/xor.h:39:15: error: variable ‘xor_block_altivec’ has initializer but incomplete type
Trying to re-use <asm/xor.h> after <include/linux/raid/xor.h> in
xor_vmx_glue.c would in turn trigger the following warnings:
include/asm-generic/xor.h:688:34: error: ‘xor_block_32regs’ defined but not used [-Werror=unused-variable]
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On some CPUs we can prevent a vulnerability related to store-to-load
forwarding by preventing store forwarding between privilege domains,
by inserting a barrier in kernel entry and exit paths.
This is known to be the case on at least Power7, Power8 and Power9
powerpc CPUs.
Barriers must be inserted generally before the first load after moving
to a higher privilege, and after the last store before moving to a
lower privilege, HV and PR privilege transitions must be protected.
Barriers are added as patch sections, with all kernel/hypervisor entry
points patched, and the exit points to lower privilge levels patched
similarly to the RFI flush patching.
Firmware advertisement is not implemented yet, so CPU flush types
are hard coded.
Thanks to Michal Suchánek for bug fixes and review.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michal Suchánek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
My powerpc-linux-gnu-gcc v4.4.5 compiler can't build a 32-bit kernel
any more:
arch/powerpc/lib/sstep.c: In function 'do_popcnt':
arch/powerpc/lib/sstep.c:1068: error: integer constant is too large for 'long' type
arch/powerpc/lib/sstep.c:1069: error: integer constant is too large for 'long' type
arch/powerpc/lib/sstep.c:1069: error: integer constant is too large for 'long' type
arch/powerpc/lib/sstep.c:1070: error: integer constant is too large for 'long' type
arch/powerpc/lib/sstep.c:1079: error: integer constant is too large for 'long' type
arch/powerpc/lib/sstep.c: In function 'do_prty':
arch/powerpc/lib/sstep.c:1117: error: integer constant is too large for 'long' type
This file gets compiled with -std=gnu89 which means a constant can be
given the type 'long' even if it won't fit. Fix the errors with a 'ULL'
suffix on the relevant constants.
Fixes: 2c979c489fee ("powerpc/lib/sstep: Add prty instruction emulation")
Fixes: dcbd19b48d31 ("powerpc/lib/sstep: Add popcnt instruction emulation")
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add a test of the relative branch patching logic in the alternate
section feature fixup code. This tests that if we branch past the last
instruction of the alternate section, the branch is not patched.
That's because the assembler will have created a branch that already
points to the first instruction after the patched section, which is
correct and needs no further patching.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We want this to remain the last test (because it's disabled by
default), so give it a non-numbered name so we don't have to renumber
it when adding new tests before it.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The code patching code has always been a bit confused about whether
it's best to use void *, unsigned int *, char *, etc. to point to
instructions. In fact in the feature fixups tests we use both unsigned
int[] and u8[] in different places.
Unfortunately the tests that use unsigned int[] calculate the size of
the code blocks using subtraction of those unsigned int pointers, and
then pass the result to memcmp(). This means we're only comparing 1/4
of the bytes we need to, because we need to multiply by
sizeof(unsigned int) to get the number of *bytes*.
The result is that the tests do all the patching and then only compare
some of the resulting code, so patching bugs that only effect that
last 3/4 of the code could slip through undetected. It turns out that
hasn't been happening, although one test had a bad expected case (see
previous commit).
Fix it for now by multiplying the size by 4 in the affected functions.
Fixes: 362e7701fd18 ("powerpc: Add self-tests of the feature fixup code")
Epic-brown-paper-bag-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The expected case for this test was wrong, the source of the alternate
code sequence is:
FTR_SECTION_ELSE
2: or 2,2,2
PPC_LCMPI r3,1
beq 3f
blt 2b
b 3f
b 1b
ALT_FTR_SECTION_END(0, 1)
3: or 1,1,1
or 2,2,2
4: or 3,3,3
So when it's patched the '3' label should still be on the 'or 1,1,1',
and the 4 label is irrelevant and can be removed.
Fixes: 362e7701fd18 ("powerpc: Add self-tests of the feature fixup code")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When we patch an alternate feature section, we have to adjust any
relative branches that branch out of the alternate section.
But currently we have a bug if we have a branch that points to past
the last instruction of the alternate section, eg:
FTR_SECTION_ELSE
1: b 2f
or 6,6,6
2:
ALT_FTR_SECTION_END(...)
nop
This will result in a relative branch at 1 with a target that equals
the end of the alternate section.
That branch does not need adjusting when it's moved to the non-else
location. Currently we do adjust it, resulting in a branch that goes
off into the link-time location of the else section, which is junk.
The fix is to not patch branches that have a target == end of the
alternate section.
Fixes: d20fe50a7b3c ("KVM: PPC: Book3S HV: Branch inside feature section")
Fixes: 9b1a735de64c ("powerpc: Add logic to patch alternative feature sections")
Cc: stable@vger.kernel.org # v2.6.27+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rather than override the machine type in .S code (which can hide wrong
or ambiguous code generation for the target), set the type to power4
for all assembly.
This also means we need to be careful not to build power4-only code
when we're not building for Book3S, such as the "power7" versions of
copyuser/page/memcpy.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fix Book3E build, don't build the "power7" variants for non-Book3S]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently the rfi-flush messages print 'Using <type> flush' for all
enabled_flush_types, but that is not necessarily true -- as now the
fallback flush is always enabled on pseries, but the fixup function
overwrites its nop/branch slot with other flush types, if available.
So, replace the 'Using <type> flush' messages with '<type> flush is
available'.
Also, print the patched flush types in the fixup function, so users
can know what is (not) being used (e.g., the slower, fallback flush,
or no flush type at all if flush is disabled via the debugfs switch).
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The inline keyword was not at the beginning of the function declaration.
Fix the following warning (treated as error in W=1):
arch/powerpc/lib/sstep.c:283:1: error: ‘inline’ is not at beginning of declaration
static int nokprobe_inline copy_mem_in(u8 *dest, unsigned long ea, int nb,
arch/powerpc/lib/sstep.c:388:1: error: ‘inline’ is not at beginning of declaration
static int nokprobe_inline copy_mem_out(u8 *dest, unsigned long ea, int nb,
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Merge our fixes branch from the 4.15 cycle.
Unusually the fixes branch saw some significant features merged,
notably the RFI flush patches, so we want the code in next to be
tested against that, to avoid any surprises when the two are merged.
There's also some other work on the panic handling that was reverted
in fixes and we now want to do properly in next, which would conflict.
And we also fix a few other minor merge conflicts.
feature fixups need to use patch_instruction() early in the boot,
even before the code is relocated to its final address, requiring
patch_instruction() to use PTRRELOC() in order to address data.
But feature fixups applies on code before it is set to read only,
even for modules. Therefore, feature fixups can use
raw_patch_instruction() instead.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
patch_instruction() uses almost the same sequence as
__patch_instruction()
This patch refactor it so that patch_instruction() uses
__patch_instruction() instead of duplicating code.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On some CPUs we can prevent the Meltdown vulnerability by flushing the
L1-D cache on exit from kernel to user mode, and from hypervisor to
guest.
This is known to be the case on at least Power7, Power8 and Power9. At
this time we do not know the status of the vulnerability on other CPUs
such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale
CPUs. As more information comes to light we can enable this, or other
mechanisms on those CPUs.
The vulnerability occurs when the load of an architecturally
inaccessible memory region (eg. userspace load of kernel memory) is
speculatively executed to the point where its result can influence the
address of a subsequent speculatively executed load.
In order for that to happen, the first load must hit in the L1,
because before the load is sent to the L2 the permission check is
performed. Therefore if no kernel addresses hit in the L1 the
vulnerability can not occur. We can ensure that is the case by
flushing the L1 whenever we return to userspace. Similarly for
hypervisor vs guest.
In order to flush the L1-D cache on exit, we add a section of nops at
each (h)rfi location that returns to a lower privileged context, and
patch that with some sequence. Newer firmwares are able to advertise
to us that there is a special nop instruction that flushes the L1-D.
If we do not see that advertised, we fall back to doing a displacement
flush in software.
For guest kernels we support migration between some CPU versions, and
different CPUs may use different flush instructions. So that we are
prepared to migrate to a machine with a different flush instruction
activated, we may have to patch more than one flush instruction at
boot if the hypervisor tells us to.
In the end this patch is mostly the work of Nicholas Piggin and
Michael Ellerman. However a cast of thousands contributed to analysis
of the issue, earlier versions of the patch, back ports testing etc.
Many thanks to all of them.
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>