IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
cmpxchg_gpte() calls get_user_pages_fast() to retrieve the number of
pages and the respective struct page to map in the kernel virtual
address space.
This doesn't work if get_user_pages_fast() is invoked with a userspace
virtual address that's backed by PFNs outside of kernel reach (e.g., when
limiting the kernel memory with mem= in the command line and using
/dev/mem to map memory).
If get_user_pages_fast() fails, look up the VMA that back the userspace
virtual address, compute the PFN and the physical address, and map it in
the kernel virtual address space with memremap().
Signed-off-by: Filippo Sironi <sironi@amazon.de>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update the PML table without mapping and unmapping the page. This also
avoids using kvm_vcpu_gpa_to_page(..) which assumes that there is a "struct
page" for guest memory.
As a side-effect of using kvm_write_guest_page the page is also properly
marked as dirty.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Read the data directly from guest memory instead of the map->read->unmap
sequence. This also avoids using kvm_vcpu_gpa_to_page() and kmap() which
assumes that there is a "struct page" for guest memory.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hardware configuration register has some useful bits which can be
used by guests. Implement McStatusWrEn which can be used by guests when
injecting MCEs with the in-kernel mce-inject module.
For that, we need to set bit 18 - McStatusWrEn - first, before writing
the MCi_STATUS registers (otherwise we #GP).
Add the required machinery to do so.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: KVM <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The capabilities header depends on asm/vmx.h but doesn't explicitly
include said file. This currently doesn't cause problems as all users
of capbilities.h first include asm/vmx.h, but the issue often results in
build errors if someone starts moving things around the VMX files.
Fixes: 3077c1910882 ("KVM: VMX: Move capabilities structs and helpers to dedicated file")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Smatch complains about this:
arch/x86/kvm/vmx/vmx.c:5730 dump_vmcs()
warn: KERN_* level not at start of string
The code should be using pr_cont() instead of pr_err().
Fixes: 9d609649bb29 ("KVM: vmx: print more APICv fields in dump_vmcs")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ten percent of nothin' is... let me do the math here. Nothin' into
nothin', carry the nothin'...
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Checking for a pending non-periodic interrupt in start_hv_timer() leads
to restart_apic_timer() making an unnecessary call to start_sw_timer()
due to start_hv_timer() returning false.
Alternatively, start_hv_timer() could return %true when there is a
pending non-periodic interrupt, but that approach is less intuitive,
i.e. would require a beefy comment to explain an otherwise simple check.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Suggested-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor kvm_x86_ops->set_hv_timer to use an explicit parameter for
stating that the timer has expired. Overloading the return value is
unnecessarily clever, e.g. can lead to confusion over the proper return
value from start_hv_timer() when r==1.
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly call cancel_hv_timer() instead of returning %false to coerce
restart_apic_timer() into canceling it by way of start_sw_timer().
Functionally, the existing code is correct in the sense that it doesn't
doing anything visibily wrong, e.g. generate spurious interrupts or miss
an interrupt. But it's extremely confusing and inefficient, e.g. there
are multiple extraneous calls to apic_timer_expired() that effectively
get dropped due to @timer_pending being %true.
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that VMX's preemption timer, i.e. the hv_timer, also adjusts its
programmed time based on lapic_timer_advance_ns. Without the delay, a
guest can see a timer interrupt arrive before the requested time when
KVM is using the hv_timer to emulate the guest's interrupt.
Fixes: c5ce8235cffa0 ("KVM: VMX: Optimize tscdeadline timer latency")
Cc: <stable@vger.kernel.org>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commits 668fffa3f838 ("kvm: better MWAIT emulation for guestsâ€)
and 4d5422cea3b6 ("KVM: X86: Provide a capability to disable MWAIT interceptsâ€),
KVM was modified to allow an admin to configure certain guests to execute
MONITOR/MWAIT inside guest without being intercepted by host.
This is useful in case admin wishes to allocate a dedicated logical
processor for each vCPU thread. Thus, making it safe for guest to
completely control the power-state of the logical processor.
The ability to use this new KVM capability was introduced to QEMU by
commits 6f131f13e68d ("kvm: support -overcommit cpu-pm=on|offâ€) and
2266d4431132 ("i386/cpu: make -cpu host support monitor/mwaitâ€).
However, exposing MONITOR/MWAIT to a Linux guest may cause it's intel_idle
kernel module to execute c1e_promotion_disable() which will attempt to
RDMSR/WRMSR from/to MSR_IA32_POWER_CTL to manipulate the "C1E Enable"
bit. This behaviour was introduced by commit
32e9518005c8 ("intel_idle: export both C1 and C1Eâ€).
Becuase KVM doesn't emulate this MSR, running KVM with ignore_msrs=0
will cause the above guest behaviour to raise a #GP which will cause
guest to kernel panic.
Therefore, add support for nop emulation of MSR_IA32_POWER_CTL to
avoid #GP in guest in this scenario.
Future commits can optimise emulation further by reflecting guest
MSR changes to host MSR to provide guest with the ability to
fine-tune the dedicated logical processor power-state.
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let guests clear the Intel PT ToPA PMI status (bit 55 of
MSR_CORE_PERF_GLOBAL_OVF_CTRL).
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject a PMI for KVM guest when Intel PT working
in Host-Guest mode and Guest ToPA entry memory buffer
was completely filled.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 47c42e6b4192 ("KVM: x86: fix handling of role.cr4_pae and rename it
to 'gpte_size'") introduced a regression: 32-bit PAE guests stopped
working. The issue appears to be: when guest switches (enables) PAE we need
to re-initialize MMU context (set context->root_level, do
reset_rsvds_bits_mask(), ...) but init_kvm_tdp_mmu() doesn't do that
because we threw away is_pae(vcpu) flag from mmu role. Restore it to
kvm_mmu_extended_role (as we now don't need it in base role) to fix
the issue.
Fixes: 47c42e6b4192 ("KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM's recent bug fix to update %rip after emulating I/O broke userspace
that relied on the previous behavior of incrementing %rip prior to
exiting to userspace. When running a Windows XP guest on AMD hardware,
Qemu may patch "OUT 0x7E" instructions in reaction to the OUT itself.
Because KVM's old behavior was to increment %rip before exiting to
userspace to handle the I/O, Qemu manually adjusted %rip to account for
the OUT instruction.
Arguably this is a userspace bug as KVM requires userspace to re-enter
the kernel to complete instruction emulation before taking any other
actions. That being said, this is a bit of a grey area and breaking
userspace that has worked for many years is bad.
Pre-increment %rip on OUT to port 0x7e before exiting to userspace to
hack around the issue.
Fixes: 45def77ebf79e ("KVM: x86: update %rip after emulating IO")
Reported-by: Simon Becherer <simon@becherer.de>
Reported-and-tested-by: Iakov Karpov <srid@rkmail.ru>
Reported-by: Gabriele Balducci <balducci@units.it>
Reported-by: Antti Antinoja <reader@fennosys.fi>
Cc: stable@vger.kernel.org
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The not-so-recent change to move VMX's VM-Exit handing to a dedicated
"function" unintentionally exposed KVM to a speculative attack from the
guest by executing a RET prior to stuffing the RSB. Make RSB stuffing
happen immediately after VM-Exit, before any unpaired returns.
Alternatively, the VM-Exit path could postpone full RSB stuffing until
its current location by stuffing the RSB only as needed, or by avoiding
returns in the VM-Exit path entirely, but both alternatives are beyond
ugly since vmx_vmexit() has multiple indirect callers (by way of
vmx_vmenter()). And putting the RSB stuffing immediately after VM-Exit
makes it much less likely to be re-broken in the future.
Note, the cost of PUSH/POP could be avoided in the normal flow by
pairing the PUSH RAX with the POP RAX in __vmx_vcpu_run() and adding an
a POP to nested_vmx_check_vmentry_hw(), but such a weird/subtle
dependency is likely to cause problems in the long run, and PUSH/POP
will take all of a few cycles, which is peanuts compared to the number
of cycles required to fill the RSB.
Fixes: 453eafbe65f7 ("KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines")
Reported-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the anon_inodes facility unconditional so that it can be used by core
VFS code and pidfd code.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[christian@brauner.io: adapt commit message to mention pidfds]
Signed-off-by: Christian Brauner <christian@brauner.io>
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event. In
the event that the adjustments are too aggressive, i.e. the timer fires
earlier than the guest expects, KVM busy waits immediately prior to
entering the guest.
Currently, KVM manually converts the delay from nanoseconds to clock
cycles. But, the conversion is done in the guest's time domain, while
the delay occurs in the host's time domain. This is perfectly ok when
the guest and host are using the same TSC ratio, but if the guest is
using a different ratio then the delay may not be accurate and could
wait too little or too long.
When the guest is not using the host's ratio, convert the delay from
guest clock cycles to host nanoseconds and use ndelay() instead of
__delay() to provide more accurate timing. Because converting to
nanoseconds is relatively expensive, e.g. requires division and more
multiplication ops, continue using __delay() directly when guest and
host TSCs are running at the same ratio.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4dc6 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The introduction of adaptive tuning of lapic timer advancement did not
allow for the scenario where userspace would want to disable adaptive
tuning but still employ timer advancement, e.g. for testing purposes or
to handle a use case where adaptive tuning is unable to settle on a
suitable time. This is epecially pertinent now that KVM places a hard
threshold on the maximum advancment time.
Rework the timer semantics to accept signed values, with a value of '-1'
being interpreted as "use adaptive tuning with KVM's internal default",
and any other value being used as an explicit advancement time, e.g. a
time of '0' effectively disables advancement.
Note, this does not completely restore the original behavior of
lapic_timer_advance_ns. Prior to tracking the advancement per vCPU,
which is necessary to support autotuning, userspace could adjust
lapic_timer_advance_ns for *running* vCPU. With per-vCPU tracking, the
module params are snapshotted at vCPU creation, i.e. applying a new
advancement effectively requires restarting a VM.
Dynamically updating a running vCPU is possible, e.g. a helper could be
added to retrieve the desired delay, choosing between the global module
param and the per-VCPU value depending on whether or not auto-tuning is
(globally) enabled, but introduces a great deal of complexity. The
wrapper itself is not complex, but understanding and documenting the
effects of dynamically toggling auto-tuning and/or adjusting the timer
advancement is nigh impossible since the behavior would be dependent on
KVM's implementation as well as compiler optimizations. In other words,
providing stable behavior would require extremely careful consideration
now and in the future.
Given that the expected use of a manually-tuned timer advancement is to
"tune once, run many", use the vastly simpler approach of recognizing
changes to the module params only when creating a new vCPU.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4dc6 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Automatically adjusting the globally-shared timer advancement could
corrupt the timer, e.g. if multiple vCPUs are concurrently adjusting
the advancement value. That could be partially fixed by using a local
variable for the arithmetic, but it would still be susceptible to a
race when setting timer_advance_adjust_done.
And because virtual_tsc_khz and tsc_scaling_ratio are per-vCPU, the
correct calibration for a given vCPU may not apply to all vCPUs.
Furthermore, lapic_timer_advance_ns is marked __read_mostly, which is
effectively violated when finding a stable advancement takes an extended
amount of timer.
Opportunistically change the definition of lapic_timer_advance_ns to
a u32 so that it matches the style of struct kvm_timer. Explicitly
pass the param to kvm_create_lapic() so that it doesn't have to be
exposed to lapic.c, thus reducing the probability of unintentionally
using the global value instead of the per-vCPU value.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4dc6 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event. Now
that the timer advancement is automatically tuned during runtime, it's
effectively unbounded by default, e.g. if KVM is running as L1 the
advancement can measure in hundreds of milliseconds.
Disable timer advancement if adaptive tuning yields an advancement of
more than 5000ns, as large advancements can break reasonable assumptions
of the guest, e.g. that a timer configured to fire after 1ms won't
arrive on the next instruction. Although KVM busy waits to mitigate the
case of a timer event arriving too early, complications can arise when
shifting the interrupt too far, e.g. kvm-unit-test's vmx.interrupt test
will fail when its "host" exits on interrupts as KVM may inject the INTR
before the guest executes STI+HLT. Arguably the unit test is "broken"
in the sense that delaying a timer interrupt by 1ms doesn't technically
guarantee the interrupt will arrive after STI+HLT, but it's a reasonable
assumption that KVM should support.
Furthermore, an unbounded advancement also effectively unbounds the time
spent busy waiting, e.g. if the guest programs a timer with a very large
delay.
5000ns is a somewhat arbitrary threshold. When running on bare metal,
which is the intended use case, timer advancement is expected to be in
the general vicinity of 1000ns. 5000ns is high enough that false
positives are unlikely, while not being so high as to negatively affect
the host's performance/stability.
Note, a future patch will enable userspace to disable KVM's adaptive
tuning, which will allow priveleged userspace will to specifying an
advancement value in excess of this arbitrary threshold in order to
satisfy an abnormal use case.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4dc6 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was reported that with some special Multi Processor Group configuration,
e.g:
bcdedit.exe /set groupsize 1
bcdedit.exe /set maxgroup on
bcdedit.exe /set groupaware on
for a 16-vCPU guest WS2012 shows BSOD on boot when PV TLB flush mechanism
is in use.
Tracing kvm_hv_flush_tlb immediately reveals the issue:
kvm_hv_flush_tlb: processor_mask 0x0 address_space 0x0 flags 0x2
The only flag set in this request is HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES,
however, processor_mask is 0x0 and no HV_FLUSH_ALL_PROCESSORS is specified.
We don't flush anything and apparently it's not what Windows expects.
TLFS doesn't say anything about such requests and newer Windows versions
seem to be unaffected. This all feels like a WS2012 bug, which is, however,
easy to workaround in KVM: let's flush everything when we see an empty
flush request, over-flushing doesn't hurt.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If guest sets MSR_IA32_TSCDEADLINE to value such that in host
time-domain it's shorter than lapic_timer_advance_ns, we can
reach a case that we call hrtimer_start() with expiration time set at
the past.
Because lapic_timer.timer is init with HRTIMER_MODE_ABS_PINNED, it
is not allowed to run in softirq and therefore will never expire.
To avoid such a scenario, verify that deadline expiration time is set on
host time-domain further than (now + lapic_timer_advance_ns).
A future patch can also consider adding a min_timer_deadline_ns module parameter,
similar to min_timer_period_us to avoid races that amount of ns it takes
to run logic could still call hrtimer_start() with expiration timer set
at the past.
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All architectures except MIPS were defining it in the same way,
and memory slots are handled entirely by common code so there
is no point in keeping the definition per-architecture.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
EFER.LME and EFER.NX are considered reserved if their respective feature
bits are not advertised to the guest.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM allows userspace to violate consistency checks related to the
guest's CPUID model to some degree. Generally speaking, userspace has
carte blanche when it comes to guest state so long as jamming invalid
state won't negatively affect the host.
Currently this is seems to be a non-issue as most of the interesting
EFER checks are missing, e.g. NX and LME, but those will be added
shortly. Proactively exempt userspace from the CPUID checks so as not
to break userspace.
Note, the efer_reserved_bits check still applies to userspace writes as
that mask reflects the host's capabilities, e.g. KVM shouldn't allow a
guest to run with NX=1 if it has been disabled in the host.
Fixes: d80174745ba39 ("KVM: SVM: Only allow setting of EFER_SVME when CPUID SVM is set")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most, but not all, helpers that are related to emulating consistency
checks for nested VM-Entry return -EINVAL when a check fails. Convert
the holdouts to have consistency throughout and to make it clear that
the functions are signaling pass/fail as opposed to "resume guest" vs.
"exit to userspace".
Opportunistically fix bad indentation in nested_vmx_check_guest_state().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert all top-level nested VM-Enter consistency check functions to
return 0/-EINVAL instead of failure codes, since now they can only
ever return one failure code.
This also does not give the false impression that failure information is
always consumed and/or relevant, e.g. vmx_set_nested_state() only
cares whether or not the checks were successful.
nested_check_host_control_regs() can also now be inlined into its caller,
nested_vmx_check_host_state, since the two have effectively become the
same function.
Based on a patch by Sean Christopherson.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the top-level consistency check functions to (loosely) align with
the SDM. Historically, KVM has used the terms "prereq" and "postreq" to
differentiate between consistency checks that lead to VM-Fail and those
that lead to VM-Exit. The terms are vague and potentially misleading,
e.g. "postreq" might be interpreted as occurring after VM-Entry.
Note, while the SDM lumps controls and host state into a single section,
"Checks on VMX Controls and Host-State Area", split them into separate
top-level functions as the two categories of checks result in different
VM instruction errors. This split will allow for additional cleanup.
Note #2, "vmentry" is intentionally dropped from the new function names
to avoid confusion with nested_check_vm_entry_controls(), and to keep
the length of the functions names somewhat manageable.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per Intel's SDM, volume 3, section Checking and Loading Guest State:
Because the checking and the loading occur concurrently, a failure may
be discovered only after some state has been loaded. For this reason,
the logical processor responds to such failures by loading state from
the host-state area, as it would for a VM exit.
In other words, a failed non-register state consistency check results in
a VM-Exit, not VM-Fail. Moving the non-reg state checks also paves the
way for renaming nested_vmx_check_vmentry_postreqs() to align with the
SDM, i.e. nested_vmx_check_vmentry_guest_state().
Fixes: 26539bd0e446a ("KVM: nVMX: check vmcs12 for valid activity state")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checking and Loading Guest State" in Intel SDM vol
3C, the following check is performed on vmentry:
If the "load IA32_PAT" VM-entry control is 1, the value of the field
for the IA32_PAT MSR must be one that could be written by WRMSR
without fault at CPL 0. Specifically, each of the 8 bytes in the
field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
6 (WB), or 7 (UC-).
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on Host Control Registers and MSRs" in Intel
SDM vol 3C, the following check is performed on vmentry:
If the "load IA32_PAT" VM-exit control is 1, the value of the field
for the IA32_PAT MSR must be one that could be written by WRMSR
without fault at CPL 0. Specifically, each of the 8 bytes in the
field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
6 (WB), or 7 (UC-).
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This check will soon be done on every nested vmentry and vmexit,
"parallelize" it using bitwise operations.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is not needed, PAT writes always take an MSR vmexit.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SVI, RVI, virtual-APIC page address and APIC-access page address fields
were left out of dump_vmcs. Add them.
KERN_CONT technically isn't SMP safe, but it's okay to use it here since
the whole of dump_vmcs() is a single huge multi-line piece of output
that isn't SMP-safe.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In __apic_accept_irq() interface trig_mode is int and actually on some code
paths it is set above u8:
kvm_apic_set_irq() extracts it from 'struct kvm_lapic_irq' where trig_mode
is u16. This is done on purpose as e.g. kvm_set_msi_irq() sets it to
(1 << 15) & e->msi.data
kvm_apic_local_deliver sets it to reg & (1 << 15).
Fix the immediate issue by making 'tm' into u16. We may also want to adjust
__apic_accept_irq() interface and use proper sizes for vector, level,
trig_mode but this is not urgent.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Changed passing argument as "0 to NULL" which resolves below sparse warning
arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer
Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.
KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode. But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.
SMM complicates things as 64-bit CPUs use a different SMRAM save state
area. KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).
Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM. If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.
Fixes: 660a5d517aaab ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save
state area, i.e. don't save/restore EFER across SMM transitions. KVM
somewhat models this, e.g. doesn't clear EFER on entry to SMM if the
guest doesn't support long mode. But during RSM, KVM unconditionally
clears EFER so that it can get back to pure 32-bit mode in order to
start loading CRs with their actual non-SMM values.
Clear EFER only when it will be written when loading the non-SMM state
so as to preserve bits that can theoretically be set on 32-bit vCPUs,
e.g. KVM always emulates EFER_SCE.
And because CR4.PAE is cleared only to play nice with EFER, wrap that
code in the long mode check as well. Note, this may result in a
compiler warning about cr4 being consumed uninitialized. Re-read CR4
even though it's technically unnecessary, as doing so allows for more
readable code and RSM emulation is not a performance critical path.
Fixes: 660a5d517aaab ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Stop dancing around the issue of HF_SMM_MASK being set when
loading SMSTATE into architectural state, e.g. by toggling it for
problematic flows, and simply clear HF_SMM_MASK prior to loading
architectural state (from SMRAM save state area).
Reported-by: Jon Doron <arilou@gmail.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: 5bea5123cbf0 ("KVM: VMX: check nested state and CR4.VMXE against SMM")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM
save state map, i.e. kvm_smm_changed() needs to be called after state
has been loaded and so cannot be done automatically when setting
hflags from RSM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.
Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm. Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.
This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Issue was discovered when running kvm-unit-tests on KVM running as L1 on
top of Hyper-V.
When vmx_instruction_intercept unit-test attempts to run RDPMC to test
RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC
handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU.
Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC.
The reason vmx_instruction_intercept unit-test attempts to run RDPMC
even though Hyper-V doesn't support PMU is because L1 expose to L2
support for RDPMC-exiting. Which is reasonable to assume that is
supported only in case CPU supports PMU to being with.
Above issue can easily be simulated by modifying
vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with
"-cpu host,+vmx,-pmu" and run unit-test.
To handle issue, change KVM to expose RDPMC-exiting only when guest
supports PMU.
Reported-by: Saar Amar <saaramar@microsoft.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before this change, reading a VMware pseduo PMC will succeed even when
PMU is not supported by guest. This can easily be seen by running
kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.
For example:
kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
vmx_vcpu_run
vmx_complete_atomic_exit
kvm_machine_check
do_machine_check
do_memory_failure
memory_failure
lock_page
In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).
In __switch_to {
switch_fpu_finish
copy_kernel_to_fpregs
XRSTORS
If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.
Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P,
the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing
shows that we're sometimes able to deliver a few but never all.
When we're trying to inject an NMI we may fail to do so immediately for
various reasons, however, we still need to inject it so enable_nmi_window()
arms nmi_singlestep mode. #DB occurs as expected, but we're not checking
for pending NMIs before entering the guest and unless there's a different
event to process, the NMI will never get delivered.
Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure
pending NMIs are checked and possibly injected.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only clear the valid bit when invalidate logical APIC id entry.
The current logic clear the valid bit, but also set the rest of
the bits (including reserved bits) to 1.
Fixes: 98d90582be2e ('svm: Fix AVIC DFR and LDR handling')
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>