IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The LLVM integrated assembler really does not like us reassigning things
to the same label:
<instantiation>:7:9: error: invalid reassignment of non-absolute variable 'fs_label'
This happens across a bunch of platforms:
https://github.com/ClangBuiltLinux/linux/issues/1043https://github.com/ClangBuiltLinux/linux/issues/1008https://github.com/ClangBuiltLinux/linux/issues/920https://github.com/ClangBuiltLinux/linux/issues/1050
There is no hope of getting this fixed in LLVM (see
https://github.com/ClangBuiltLinux/linux/issues/1043#issuecomment-641571200
and https://bugs.llvm.org/show_bug.cgi?id=47798#c1 )
so if we want to build with LLVM_IAS, we need to hack
around it ourselves.
For us the big problem comes from this:
\#define USE_FIXED_SECTION(sname) \
fs_label = start_##sname; \
fs_start = sname##_start; \
use_ftsec sname;
\#define USE_TEXT_SECTION()
fs_label = start_text; \
fs_start = text_start; \
.text
and in particular fs_label.
This works around it by not setting those 'variables' and requiring
that users of the variables instead track for themselves what section
they are in. This isn't amazing, by any stretch, but it gets us further
in the compilation.
Note that even though users have to keep track of the section, using
a wrong one produces an error with both binutils and llvm which prevents
from using wrong section at the compile time:
llvm error example:
AS arch/powerpc/kernel/head_64.o
<unknown>:0: error: Cannot represent a difference across sections
make[3]: *** [/home/aik/p/kernels-llvm/llvm/scripts/Makefile.build:388: arch/powerpc/kernel/head_64.o] Error 1
binutils error example:
/home/aik/p/kernels-llvm/llvm/arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
/home/aik/p/kernels-llvm/llvm/arch/powerpc/kernel/exceptions-64s.S:1974: Error: can't resolve `system_call_common' {.text section} - `start_r
eal_vectors' {.head.text.real_vectors section}
make[3]: *** [/home/aik/p/kernels-llvm/llvm/scripts/Makefile.build:388: arch/powerpc/kernel/head_64.o] Error 1
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211221055904.555763-5-aik@ozlabs.ru
Reading the CFAR register is quite costly (~20 cycles on POWER9). It is
a good idea to have for most synchronous interrupts, but for async ones
it is much less important.
Doorbell, external, and decrementer interrupts are the important
asynchronous ones. HV interrupts can't skip CFAR if KVM HV is possible,
because it might be a guest exit that requires CFAR preserved. But the
important pseries interrupts can avoid loading CFAR.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210922145452.352571-7-npiggin@gmail.com
The mtmsrd to enable MSR[RI] can be combined with the mtmsrd to enable
MSR[EE] in interrupt entry code, for those interrupts which enable EE.
This helps performance of important synchronous interrupts (e.g., page
faults).
This is similar to what commit dd152f70bdc1 ("powerpc/64s: system call
avoid setting MSR[RI] until we set MSR[EE]") does for system calls.
Do this by enabling EE and RI together at the beginning of the entry
wrapper if PACA_IRQ_HARD_DIS is clear, and only enabling RI if it is
set.
Asynchronous interrupts set PACA_IRQ_HARD_DIS, but synchronous ones
leave it unchanged, so by default they always get EE=1 unless they have
interrupted a caller that is hard disabled. When the sync interrupt
later calls interrupt_cond_local_irq_enable(), it will not require
another mtmsrd because MSR[EE] was already enabled here.
This avoids one mtmsrd L=1 for synchronous interrupts on 64s, which
saves about 20 cycles on POWER9. And for kernel-mode interrupts, both
synchronous and asynchronous, this saves an additional 40 cycles due to
the mtmsrd being moved ahead of mfspr SPRN_AMR, which prevents a SPR
scoreboard stall.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210922145452.352571-3-npiggin@gmail.com
Compiling out hash support code when CONFIG_PPC_64S_HASH_MMU=n saves
128kB kernel image size (90kB text) on powernv_defconfig minus KVM,
350kB on pseries_defconfig minus KVM, 40kB on a tiny config.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fixup defined(ARCH_HAS_MEMREMAP_COMPAT_ALIGN), which needs CONFIG.
Fix radix_enabled() use in setup_initial_memory_limit(). Add some
stubs to reduce number of ifdefs.]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211201144153.2456614-18-npiggin@gmail.com
slb.c is hash-specific SLB management, but do_bad_slb_fault deals with
segment interrupts that occur with radix MMU as well.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211201144153.2456614-5-npiggin@gmail.com
Introduce macros that operate on a (start, end) range of GPRs, which
reduces lines of code and need to do mental arithmetic while reading the
code.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211022061322.2671178-1-npiggin@gmail.com
The machine check handler is not considered NMI on 64s. The early
handler is the true NMI handler, and then it schedules the
machine_check_exception handler to run when interrupts are enabled.
This works fine except the case of an unrecoverable MCE, where the true
NMI is taken when MSR[RI] is clear, it can not recover, so it calls
machine_check_exception directly so something might be done about it.
Calling an async handler from NMI context can result in irq state and
other things getting corrupted. This can also trigger the BUG at
arch/powerpc/include/asm/interrupt.h:168
BUG_ON(!arch_irq_disabled_regs(regs) && !(regs->msr & MSR_EE));
Fix this by making an _async version of the handler which is called
in the normal case, and a NMI version that is called for unrecoverable
interrupts.
Fixes: 2b43dd7653cc ("powerpc/64: enable MSR[EE] in irq replay pt_regs")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Tested-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211004145642.1331214-6-npiggin@gmail.com
The implict soft-mask table addresses get relocated if they use a
relative symbol like a label. This is right for code that runs relocated
but not for unrelocated. The scv interrupt vectors run unrelocated, so
absolute addresses are required for their soft-mask table entry.
This fixes crashing with relocated kernels, usually an asynchronous
interrupt hitting in the scv handler, then hitting the trap that checks
whether r1 is in userspace.
Fixes: 325678fd0522 ("powerpc/64s: add a table of implicit soft-masked addresses")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210820103431.1701240-1-npiggin@gmail.com
Commit 9d1988ca87dd ("powerpc/64: treat low kernel text as irqs
soft-masked") ends up catching too much code, including ret_from_fork,
and parts of interrupt and syscall return that do not expect to be
interrupts to be soft-masked. If an interrupt gets marked pending,
and then the code proceeds out of the implicit soft-masked region it
will fail to deal with the pending interrupt.
Fix this by adding a new table of addresses which explicitly marks
the regions of code that are soft masked. This table is only checked
for interrupts that below __end_soft_masked, so most kernel interrupts
will not have the overhead of the table search.
Fixes: 9d1988ca87dd ("powerpc/64: treat low kernel text as irqs soft-masked")
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210630074621.2109197-5-npiggin@gmail.com
Treat code below __end_soft_masked as soft-masked for the purpose
of alternate return. 64s already mostly does this for scv entry.
This will be used to exit from interrupts without disabling MSR[EE].
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210617155116.2167984-12-npiggin@gmail.com
The exception table fixup adjusts a failed page fault's interrupt return
location if it was taken at an address specified in the exception table,
to a corresponding fixup handler address.
Introduce a variation of that idea which adds a fixup table for NMIs and
soft-masked asynchronous interrupts. This will be used to protect
certain critical sections that are sensitive to being clobbered by
interrupts coming in (due to using the same SPRs and/or irq soft-mask
state).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210617155116.2167984-10-npiggin@gmail.com
This frees up one more register (and takes advantage of that to
clean things up a little bit).
This register will be used in the following patch.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210617155116.2167984-9-npiggin@gmail.com
This extends the MSR[RI]=0 window a little further into the system
call in order to pair RI and EE enabling with a single mtmsrd.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210617155116.2167984-8-npiggin@gmail.com
When an interrupt is taken, the SRR registers are set to return to where
it left off. Unless they are modified in the meantime, or the return
address or MSR are modified, there is no need to reload these registers
when returning from interrupt.
Introduce per-CPU flags that track the validity of SRR and HSRR
registers. These are cleared when returning from interrupt, when
using the registers for something else (e.g., OPAL calls), when
adjusting the return address or MSR of a context, and when context
switching (which changes the return address and MSR).
This improves the performance of interrupt returns.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fold in fixup patch from Nick]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210617155116.2167984-5-npiggin@gmail.com
This makes no real difference yet except that HSRR type interrupts will
use hrfid to return. This is important for the next patch.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210617155116.2167984-4-npiggin@gmail.com
This sets up the same calling convention from interrupt entry to
KVM interrupt handler for system calls as exists for other interrupt
types.
This is a better API, it uses a save area rather than SPR, and it has
more registers free to use. Using a single common API helps maintain
it, and it becomes easier to use in C in a later patch.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-8-npiggin@gmail.com
Like the earlier patch for hcalls, KVM interrupt entry requires a
different calling convention than the Linux interrupt handlers
set up. Move the code that converts from one to the other into KVM.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-6-npiggin@gmail.com
System calls / hcalls have a different calling convention than
other interrupts, so there is code in the KVMTEST to massage these
into the same form as other interrupt handlers.
Move this work into the KVM hcall handler. This means teaching KVM
a little more about the low level interrupt handler setup, PACA save
areas, etc., although that's not obviously worse than the current
approach of coming up with an entirely different interrupt register
/ save convention.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-5-npiggin@gmail.com
Add a separate hcall entry point. This can be used to deal with the
different calling convention.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-4-npiggin@gmail.com
Move the GUEST_MODE_SKIP logic into KVM code. This is quite a KVM
internal detail that has no real need to be in common handlers.
Add a comment explaining the what and why of KVM "skip" interrupts.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-3-npiggin@gmail.com
Rather than bifurcate the call depending on whether or not HV is
possible, and have the HV entry test for PR, just make a single
common point which does the demultiplexing. This makes it simpler
to add another type of exit handler.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210528090752.3542186-2-npiggin@gmail.com
The code being executed in KVM_GUEST_MODE_SKIP is hypervisor code with
MSR[IR]=0, so the faults of concern are the d-side ones caused by access
to guest context by the hypervisor.
Instruction breakpoint interrupts are not a concern here. It's unlikely
any good would come of causing breaks in this code, but skipping the
instruction that caused it won't help matters (e.g., skip the mtmsr that
sets MSR[DR]=0 or clears KVM_GUEST_MODE_SKIP).
[Paul notes: "the 0x1300 interrupt was dropped from the architecture a
long time ago and is not generated by P7, P8, P9 or P10." So add a
comment about this in the handler code while we're here. ]
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210412014845.1517916-11-npiggin@gmail.com
Cell does not support KVM.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210412014845.1517916-10-npiggin@gmail.com
There is no need for this to be in asm, use the new intrrupt entry wrapper.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Tested-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210406025508.821718-1-npiggin@gmail.com
Nick's patch cleaning up the SRR specifiers in exception-64s.S missed
a single instance of EXC_HV_OR_STD. Clean that up.
Caught by clang's integrated assembler.
Fixes: 3f7fbd97d07d ("powerpc/64s/exception: Clean up SRR specifiers")
Signed-off-by: Daniel Axtens <dja@axtens.net>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210225031006.1204774-2-dja@axtens.net
A large series adding wrappers for our interrupt handlers, so that irq/nmi/user
tracking can be isolated in the wrappers rather than spread in each handler.
Conversion of the 32-bit syscall handling into C.
A series from Nick to streamline our TLB flushing when using the Radix MMU.
Switch to using queued spinlocks by default for 64-bit server CPUs.
A rework of our PCI probing so that it happens later in boot, when more generic
infrastructure is available.
Two small fixes to allow 32-bit little-endian processes to run on 64-bit
kernels.
Other smaller features, fixes & cleanups.
Thanks to:
Alexey Kardashevskiy, Ananth N Mavinakayanahalli, Aneesh Kumar K.V, Athira
Rajeev, Bhaskar Chowdhury, Cédric Le Goater, Chengyang Fan, Christophe Leroy,
Christopher M. Riedl, Fabiano Rosas, Florian Fainelli, Frederic Barrat, Ganesh
Goudar, Hari Bathini, Jiapeng Chong, Joseph J Allen, Kajol Jain, Markus
Elfring, Michal Suchanek, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Pingfan Liu, Po-Hsu Lin, Qian Cai, Ram Pai, Randy Dunlap, Sandipan
Das, Stephen Rothwell, Tyrel Datwyler, Will Springer, Yury Norov, Zheng
Yongjun.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAmAzMagTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgAbBD/wMS2g1Q9oAGZPsx2NGd2RoeAauGxUs
Yj6cZVmR+oa6sJyFYgEG7dT7tcwJITQxLBD3HpsHSnJ/rLrMloE33+cZNA9c4STz
0mlzm3R7M5pOgcEqZglsgLP0RQeUuHSSF01g0kf1N3r+HYtmbmPjuUIl8CnAjlbT
iMD2ZN2p8/r3kDDht0iBO534HUpsqhc00duSZgQhsV/PR7ZWVxoPk7PEJeo4vXlJ
77986F7J5NLUTjMiLv5lTx49FcPbRd7a1jubsBtahJrwXj2GVvuy2i86G7HY+a+B
eSxN7zJQgaFeLo0YPo7fZLBI0MAsIQt3nnZhKX0TMglbv/K8Aq64xiJqsVQdJ883
CeEt0HvSJhsSC0C4O595NEINfDhDd+5IeSF9MvsujYXiUKRXtRkm1EPuAzTcZIzW
NwkCLRo33NMXa+khMKaiqF/g7INayPUXoWESx75NXFsuNfcORvstkeUuEoi5GwJo
TSlmosFqwRjghQ8eTLZuWBzmh3EpPGdtC4gm6D+lbzhzjah5c/1whyuLqra275kK
E3Qt0/V0ixKyvlG7MI5yYh3L7+R/hrsflH7xIJJxZp2DW6mwBJzQYmkxDbSS8PzK
nWien2XgpIQhSFat3QqreEFSfNkzdN2MClVi2Y1hpAgi+2Zm9rPdPNGcQI+DSOsB
kpJkjOjWNJU/PQ==
=dB2S
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- A large series adding wrappers for our interrupt handlers, so that
irq/nmi/user tracking can be isolated in the wrappers rather than
spread in each handler.
- Conversion of the 32-bit syscall handling into C.
- A series from Nick to streamline our TLB flushing when using the
Radix MMU.
- Switch to using queued spinlocks by default for 64-bit server CPUs.
- A rework of our PCI probing so that it happens later in boot, when
more generic infrastructure is available.
- Two small fixes to allow 32-bit little-endian processes to run on
64-bit kernels.
- Other smaller features, fixes & cleanups.
Thanks to: Alexey Kardashevskiy, Ananth N Mavinakayanahalli, Aneesh
Kumar K.V, Athira Rajeev, Bhaskar Chowdhury, Cédric Le Goater, Chengyang
Fan, Christophe Leroy, Christopher M. Riedl, Fabiano Rosas, Florian
Fainelli, Frederic Barrat, Ganesh Goudar, Hari Bathini, Jiapeng Chong,
Joseph J Allen, Kajol Jain, Markus Elfring, Michal Suchanek, Nathan
Lynch, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Pingfan Liu,
Po-Hsu Lin, Qian Cai, Ram Pai, Randy Dunlap, Sandipan Das, Stephen
Rothwell, Tyrel Datwyler, Will Springer, Yury Norov, and Zheng Yongjun.
* tag 'powerpc-5.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (188 commits)
powerpc/perf: Adds support for programming of Thresholding in P10
powerpc/pci: Remove unimplemented prototypes
powerpc/uaccess: Merge raw_copy_to_user_allowed() into raw_copy_to_user()
powerpc/uaccess: Merge __put_user_size_allowed() into __put_user_size()
powerpc/uaccess: get rid of small constant size cases in raw_copy_{to,from}_user()
powerpc/64: Fix stack trace not displaying final frame
powerpc/time: Remove get_tbl()
powerpc/time: Avoid using get_tbl()
spi: mpc52xx: Avoid using get_tbl()
powerpc/syscall: Avoid storing 'current' in another pointer
powerpc/32: Handle bookE debugging in C in syscall entry/exit
powerpc/syscall: Do not check unsupported scv vector on PPC32
powerpc/32: Remove the counter in global_dbcr0
powerpc/32: Remove verification of MSR_PR on syscall in the ASM entry
powerpc/syscall: implement system call entry/exit logic in C for PPC32
powerpc/32: Always save non volatile GPRs at syscall entry
powerpc/syscall: Change condition to check MSR_RI
powerpc/syscall: Save r3 in regs->orig_r3
powerpc/syscall: Use is_compat_task()
powerpc/syscall: Make interrupt.c buildable on PPC32
...
SLB faults should not be taken while the PACA save areas are live, all
memory accesses should be fetches from the kernel text, and access to
PACA and the current stack, before C code is called or any other
accesses are made.
All of these have pinned SLBs so will not take a SLB fault. Therefore
EXSLB is not be required.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210208063406.331655-1-npiggin@gmail.com
Have the real mode system call entry handler branch to the kernel
0xc000... address and then use mtmsrd to enable the MMU, rather than use
SRRs and rfid.
Commit 8729c26e675c ("powerpc/64s/exception: Move real to virt switch
into the common handler") implemented this style of real mode entry for
other interrupt handlers, so this brings system calls into line with
them, which is the main motivcation for the change.
This tends to be slightly faster due to avoiding the mtsprs, and it also
does not clobber the SRR registers, which becomes important in a
subsequent change. The real mode entry points don't tend to be too
important for performance these days, but it is possible for a
hypervisor to run guests in AIL=0 mode for certian reasons.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210208063326.331502-1-npiggin@gmail.com
There's a short window during boot where although the kernel is
running little endian, any exceptions will cause the CPU to switch
back to big endian. This situation persists until we call
configure_exceptions(), which calls either the hypervisor or OPAL to
configure the CPU so that exceptions will be taken in little
endian (via HID0[HILE]).
We don't intend to take exceptions during early boot, but one way we
sometimes do is via a WARN/BUG etc. Those all boil down to a trap
instruction, which will cause a program check exception.
The first instruction of the program check handler is an mtsprg, which
when executed in the wrong endian is an lhzu with a ~3GB displacement
from r3. The content of r3 is random, so that becomes a load from some
random location, and depending on the system (installed RAM etc.) can
easily lead to a checkstop, or an infinitely recursive page fault.
That prevents whatever the WARN/BUG was complaining about being
printed to the console, and the user just sees a dead system.
We can fix it by having a trampoline at the beginning of the program
check handler that detects we are in the wrong endian, and flips us
back to the correct endian.
We can't flip MSR[LE] using mtmsr (alas), so we have to use rfid. That
requires backing up SRR0/1 as well as a GPR. To do that we use
SPRG0/2/3 (SPRG1 is already used for the paca). SPRG3 is user
readable, but this trampoline is only active very early in boot, and
SPRG3 will be reinitialised in vdso_getcpu_init() before userspace
starts.
With this trampoline in place we can survive a WARN early in boot and
print a stack trace, which is eventually printed to the console once
the console is up, eg:
[83565.758545] kexec_core: Starting new kernel
[ 0.000000] ------------[ cut here ]------------
[ 0.000000] static_key_enable_cpuslocked(): static key '0xc000000000ea6160' used before call to jump_label_init()
[ 0.000000] WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:166 static_key_enable_cpuslocked+0xfc/0x120
[ 0.000000] Modules linked in:
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.10.0-gcc-8.2.0-dirty #618
[ 0.000000] NIP: c0000000002fd46c LR: c0000000002fd468 CTR: c000000000170660
[ 0.000000] REGS: c000000001227940 TRAP: 0700 Not tainted (5.10.0-gcc-8.2.0-dirty)
[ 0.000000] MSR: 9000000002823003 <SF,HV,VEC,VSX,FP,ME,RI,LE> CR: 24882422 XER: 20040000
[ 0.000000] CFAR: 0000000000000730 IRQMASK: 1
[ 0.000000] GPR00: c0000000002fd468 c000000001227bd0 c000000001228300 0000000000000065
[ 0.000000] GPR04: 0000000000000001 0000000000000065 c0000000010cf970 000000000000000d
[ 0.000000] GPR08: 0000000000000000 0000000000000000 0000000000000000 c00000000122763f
[ 0.000000] GPR12: 0000000000002000 c000000000f8a980 0000000000000000 0000000000000000
[ 0.000000] GPR16: 0000000000000000 0000000000000000 c000000000f88c8e c000000000f88c9a
[ 0.000000] GPR20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
[ 0.000000] GPR24: 0000000000000000 c000000000dea3a8 0000000000000000 c000000000f35114
[ 0.000000] GPR28: 0000002800000000 c000000000f88c9a c000000000f88c8e c000000000ea6160
[ 0.000000] NIP [c0000000002fd46c] static_key_enable_cpuslocked+0xfc/0x120
[ 0.000000] LR [c0000000002fd468] static_key_enable_cpuslocked+0xf8/0x120
[ 0.000000] Call Trace:
[ 0.000000] [c000000001227bd0] [c0000000002fd468] static_key_enable_cpuslocked+0xf8/0x120 (unreliable)
[ 0.000000] [c000000001227c40] [c0000000002fd4c0] static_key_enable+0x30/0x50
[ 0.000000] [c000000001227c70] [c000000000f6629c] early_page_poison_param+0x58/0x9c
[ 0.000000] [c000000001227cb0] [c000000000f351b8] do_early_param+0xa4/0x10c
[ 0.000000] [c000000001227d30] [c00000000011e020] parse_args+0x270/0x5e0
[ 0.000000] [c000000001227e20] [c000000000f35864] parse_early_options+0x48/0x5c
[ 0.000000] [c000000001227e40] [c000000000f358d0] parse_early_param+0x58/0x84
[ 0.000000] [c000000001227e70] [c000000000f3a368] early_init_devtree+0xc4/0x490
[ 0.000000] [c000000001227f10] [c000000000f3bca0] early_setup+0xc8/0x1c8
[ 0.000000] [c000000001227f90] [000000000000c320] 0xc320
[ 0.000000] Instruction dump:
[ 0.000000] 4bfffddd 7c2004ac 39200001 913f0000 4bffffb8 7c651b78 3c82ffac 3c62ffc0
[ 0.000000] 38841b00 3863f310 4bdf03a5 60000000 <0fe00000> 4bffff38 60000000 60000000
[ 0.000000] random: get_random_bytes called from print_oops_end_marker+0x40/0x80 with crng_init=0
[ 0.000000] ---[ end trace 0000000000000000 ]---
[ 0.000000] dt-cpu-ftrs: setup for ISA 3000
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210202130207.1303975-2-mpe@ellerman.id.au
Saving and restoring soft-mask state can now be done in C using the
interrupt handler wrapper functions.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-41-npiggin@gmail.com
This is currently the same as unknown_exception, but it will diverge
after interrupt wrappers are added and code moved out of asm into the
wrappers (e.g., async handlers will check FINISH_NAP).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-22-npiggin@gmail.com
This simplifies code, and it is also useful when introducing
interrupt handler wrappers when introducing wrapper functionality
that doesn't cope with asm entry code calling into more than one
handler function.
32-bit and 64e still have some such cases, which limits some ways
they can use interrupt wrappers.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-15-npiggin@gmail.com
This function acts like an interrupt handler so it needs to follow
the standard interrupt handler function signature which will be
introduced in a future change.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-13-npiggin@gmail.com
Make mm fault handlers all just take the pt_regs * argument and load
DAR/DSISR from that. Make those that return a value return long.
This is done to make the function signatures match other handlers, which
will help with a future patch to add wrappers. Explicit arguments could
be added for performance but that would require more wrapper macro
variants.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-7-npiggin@gmail.com
The fault handling still has some complex logic particularly around
hash table handling, in asm. Implement most of this in C.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-6-npiggin@gmail.com
Similar to the 32/s change, move the test and call to the do_break
handler to the DSI.
Suggested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210130130852.2952424-5-npiggin@gmail.com
The L1D flush fallback functions are not recoverable vs interrupts,
yet the scv entry flush runs with MSR[EE]=1. This can result in a
timer (soft-NMI) or MCE or SRESET interrupt hitting here and overwriting
the EXRFI save area, which ends up corrupting userspace registers for
scv return.
Fix this by disabling RI and EE for the scv entry fallback flush.
Fixes: f79643787e0a0 ("powerpc/64s: flush L1D on kernel entry")
Cc: stable@vger.kernel.org # 5.9+ which also have flush L1D patch backport
Reported-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210111062408.287092-1-npiggin@gmail.com
Exception fixup doesn't require the heady full regs saving,
do it from do_page_fault() directly.
For that, split bad_page_fault() in two parts.
As bad_page_fault() can also be called from other places than
handle_page_fault(), it will still perform exception fixup and
fallback on __bad_page_fault().
handle_page_fault() directly calls __bad_page_fault() as the
exception fixup will now be done by do_page_fault()
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/bd07d6fef9237614cd6d318d8f19faeeadaa816b.1607491748.git.christophe.leroy@csgroup.eu
This prepare kernel to operate with a different value than userspace AMR/IAMR.
For this, AMR/IAMR need to be saved and restored on entry and return from the
kernel.
With KUAP we modify kernel AMR when accessing user address from the kernel
via copy_to/from_user interfaces. We don't need to modify IAMR value in
similar fashion.
If MMU_FTR_PKEY is enabled we need to save AMR/IAMR in pt_regs on entering
kernel from userspace. If not we can assume that AMR/IAMR is not modified
from userspace.
We need to save AMR if we have MMU_FTR_BOOK3S_KUAP feature enabled and we are
interrupted within kernel. This is required so that if we get interrupted
within copy_to/from_user we continue with the right AMR value.
If we hae MMU_FTR_BOOK3S_KUEP enabled we need to restore IAMR on
return to userspace beause kernel will be running with a different
IAMR value.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Sandipan Das <sandipan@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201127044424.40686-11-aneesh.kumar@linux.ibm.com
From Daniel's cover letter:
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern.
This patch series flushes the L1 cache on kernel entry (patch 2) and after the
kernel performs any user accesses (patch 3). It also adds a self-test and
performs some related cleanups.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl+2aqETHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgG+hD/4njSFct2amqWfqDYR9b2OykWmnMQXn
geookk5SbItQF7vh1q2SVA6r43s5ZAxgD5fezx4LgG6p3QU39+Tr0RhzUUHWMPDV
UNGZK6x/N/GSYeq0bqvMHmVwS0FDjPE8nOtA8Hn2T9mUUsu9G0okpgYPLnEu6rb1
gIyS35zlLBh9obi3MfJzyln/AmCE7hdonKRtLAxvGiERJAyfAG757lrdjrwavyHy
mwz+XPl5PF88jfO5cbcZT9gNHmZZPzVsOVwNcstCh2FcwuePv9dWe1pxsBxxKqP5
UXceXPcKM7VlRNmehimq7q/hfbget4RJGGKYPNXeKHOo6yfy7lJPiQV4h+5z2pSs
SPP2fQQPq0aubmcO23CXFtZl4WRHQ4pax6opepnpIfC2vZ0HLXJtPrhMKcbFJNTo
qPis6HWQPpIuI6l4MJfs+YO9ETxCR31Yd28qFAfPFoHlnQZTfx6NPhw8HKxTbSh2
Svr4X6Y14j3UsQgLTCArCXWAG/hlfRwxDZJ4AvR9EU0HJGDyZ45Y+LTD1N8bbsny
zcYfPqWGPIanLcNPNFYIQwDZo7ff08KdmngUvf/Q9om60mP1hsPJMHf6VhPXj4fC
2TZ11fORssSlBSNtIkFkbjEG+aiWtWnz3fN3uSyT50rgGwtDHJzVzLiUWHlZKcxW
X73YdxuT8fqQwg==
=Yibq
-----END PGP SIGNATURE-----
Merge tag 'powerpc-cve-2020-4788' into fixes
From Daniel's cover letter:
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern.
This patch series flushes the L1 cache on kernel entry (patch 2) and after the
kernel performs any user accesses (patch 3). It also adds a self-test and
performs some related cleanups.
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern. This patch flushes the L1 cache after user accesses.
This is part of the fix for CVE-2020-4788.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern. This patch flushes the L1 cache on kernel entry.
This is part of the fix for CVE-2020-4788.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 2284ffea8f0c ("powerpc/64s/exception: Only test KVM in SRR
interrupts when PR KVM is supported") removed KVM guest tests from
interrupts that do not set HV=1, when PR-KVM is not configured.
This is wrong for HV-KVM HPT guest MMIO emulation case which attempts
to load the faulting instruction word with MSR[DR]=1 and MSR[HV]=1 with
the guest MMU context loaded. This can cause host DSI, DSLB interrupts
which must test for KVM guest. Restore this and add a comment.
Fixes: 2284ffea8f0c ("powerpc/64s/exception: Only test KVM in SRR interrupts when PR KVM is supported")
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201117135617.3521127-1-npiggin@gmail.com
pseries guest kernels have a FWNMI handler for SRESET and MCE NMIs,
which is basically the same as the regular handlers for those
interrupts.
The system reset FWNMI handler did not have a KVM guest test in it,
although it probably should have because the guest can itself run
guests.
Commit 4f50541f6703b ("powerpc/64s/exception: Move all interrupt
handlers to new style code gen macros") convert the handler faithfully
to avoid a KVM test with a "clever" trick to modify the IKVM_REAL
setting to 0 when the fwnmi handler is to be generated (PPC_PSERIES=y).
This worked when the KVM test was generated in the interrupt entry
handlers, but a later patch moved the KVM test to the common handler,
and the common handler macro is expanded below the fwnmi entry. This
prevents the KVM test from being generated even for the 0x100 entry
point as well.
The result is NMI IPIs in the host kernel when a guest is running will
use gest registers. This goes particularly badly when an HPT guest is
running and the MMU is set to guest mode.
Remove this trickery and just generate the test always.
Fixes: 9600f261acaa ("powerpc/64s/exception: Move KVM test to common code")
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201114114743.3306283-1-npiggin@gmail.com