IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Extend decompressor framework to handle compression options stored in
the filesystem. These options can be used by the relevant decompressor
at initialisation time to over-ride defaults.
The presence of compression options in the filesystem is indicated by
the COMP_OPT filesystem flag. If present the data is read from the
filesystem and passed to the decompressor init function. The decompressor
init function signature has been extended to take this data.
Also update the init function signature in the glib, lzo and xz
decompressor wrappers.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Fix potential use of uninitialised variable caused by recent
decompressor code optimisations.
In zlib_uncompress (zlib_wrapper.c) we have
int zlib_err, zlib_init = 0;
...
do {
...
if (avail == 0) {
offset = 0;
put_bh(bh[k++]);
continue;
}
...
zlib_err = zlib_inflate(stream, Z_SYNC_FLUSH);
...
} while (zlib_err == Z_OK);
If continue is executed (avail == 0) then the while condition will be
evaluated testing zlib_err, which is uninitialised first time around the
loop.
Fix this by getting rid of the 'if (avail == 0)' condition test, this
edge condition should not be being handled in the decompressor code, and
instead handle it generically in the caller code.
Similarly for xz_wrapper.c.
Incidentally, on most architectures (bar Mips and Parisc), no
uninitialised variable warning is generated by gcc, this is because the
while condition test on continue is optimised out and not performed
(when executing continue zlib_err has not been changed since entering
the loop, and logically if the while condition was true previously, then
it's still true).
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Reported-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move squashfs_i() definition out of squashfs.h, this eliminates
the need to #include squashfs_fs_i.h from numerous files.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
As pointed out by Geert Uytterhoeven, "default n" is the default,
no reason to specify it.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
On file system corruption zlib can return Z_STREAM_OK with
input buffers remaining, which will not be released.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Add support for reading file systems compressed with the
XZ compression algorithm.
This patch adds the XZ decompressor wrapper code.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
RCU free the struct inode. This will allow:
- Subsequent store-free path walking patch. The inode must be consulted for
permissions when walking, so an RCU inode reference is a must.
- sb_inode_list_lock to be moved inside i_lock because sb list walkers who want
to take i_lock no longer need to take sb_inode_list_lock to walk the list in
the first place. This will simplify and optimize locking.
- Could remove some nested trylock loops in dcache code
- Could potentially simplify things a bit in VM land. Do not need to take the
page lock to follow page->mapping.
The downsides of this is the performance cost of using RCU. In a simple
creat/unlink microbenchmark, performance drops by about 10% due to inability to
reuse cache-hot slab objects. As iterations increase and RCU freeing starts
kicking over, this increases to about 20%.
In cases where inode lifetimes are longer (ie. many inodes may be allocated
during the average life span of a single inode), a lot of this cache reuse is
not applicable, so the regression caused by this patch is smaller.
The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU,
however this adds some complexity to list walking and store-free path walking,
so I prefer to implement this at a later date, if it is shown to be a win in
real situations. I haven't found a regression in any non-micro benchmark so I
doubt it will be a problem.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
The fourth argument should be unsigned. Also add missing include
so that the function prototype is defined in xattr_id.c
This fixes a couple of sparse warnings.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
The BKL is only used in put_super and fill_super, which are both protected
by the superblocks s_umount rw_semaphore. Therefore it is safe to remove
the BKL entirely.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Phillip Lougher <phillip@lougher.demon.co.uk>
This patch is a preparation necessary to remove the BKL from do_new_mount().
It explicitly adds calls to lock_kernel()/unlock_kernel() around
get_sb/fill_super operations for filesystems that still uses the BKL.
I've read through all the code formerly covered by the BKL inside
do_kern_mount() and have satisfied myself that it doesn't need the BKL
any more.
do_kern_mount() is already called without the BKL when mounting the rootfs
and in nfsctl. do_kern_mount() calls vfs_kern_mount(), which is called
from various places without BKL: simple_pin_fs(), nfs_do_clone_mount()
through nfs_follow_mountpoint(), afs_mntpt_do_automount() through
afs_mntpt_follow_link(). Both later functions are actually the filesystems
follow_link inode operation. vfs_kern_mount() is calling the specified
get_sb function and lets the filesystem do its job by calling the given
fill_super function.
Therefore I think it is safe to push down the BKL from the VFS to the
low-level filesystems get_sb/fill_super operation.
[arnd: do not add the BKL to those file systems that already
don't use it elsewhere]
Signed-off-by: Jan Blunck <jblunck@infradead.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Christoph Hellwig <hch@infradead.org>
Update compression types supported and add some help text for
the LZO Kconfig option.
Also add missing "default n" line and make some trivial whitespace
cleanups too.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Sizing the buffer using block size alone is incorrect leading
to a potential buffer over-run on 4K block size file systems
(because the metadata block size is always 8K). Srclength is
set to the maximum expected size of the decompressed block and
it is block_size or 8K depending on whether a data or metadata
block is being decompressed.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Only read potentially matching names into the target buffer, all
obviously non matching names don't need to be read into the
target buffer.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Sparse does not like inline function declared without body,
because it is not part of the standard kernel practice.
The xattr_handler tables can be declared static.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Sparse detected that unsigned pointer was being passed as int pointer.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
[fixed up to deal with code refactoring]
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Add new extended inode types that store the xattr_id field.
Also add the necessary code changes to make xattrs visibile.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
This patch adds support for mapping xattr ids (stored in inodes)
into the on-disk location of the xattrs themselves.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Sizing the buffer based on block size is incorrect, leading
to a potential buffer over-run on 4K block size file systems
(because the metadata block size is always 8K). This bug
doesn't seem have triggered because 4K block size file systems
are not default, and also because metadata blocks after
compression tend to be less than 4K.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Fix warn_on triggered by mounting a fsfuzzer corrupted file system, where
the root inode has been corrupted.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Reported-by: Steve Grubb <sgrubb@redhat.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Add knowledge of lzma/lzo compression formats to the decompressor
framework. For now these are added as unsupported. Without
these entries lzma/lzo compressed filesystems will be flagged as
having unknown compression which is undesirable.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
This adds a decompressor framework which allows multiple compression
algorithms to be cleanly supported.
Also update zlib wrapper and other code to use the new framework.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Move zlib buffer init/destroy code into separate wrapper file. Also
make zlib z_stream field a void * removing the need to include zlib.h
for most files.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
* Remove smp_lock.h from files which don't need it (including some headers!)
* Add smp_lock.h to files which do need it
* Make smp_lock.h include conditional in hardirq.h
It's needed only for one kernel_locked() usage which is under CONFIG_PREEMPT
This will make hardirq.h inclusion cheaper for every PREEMPT=n config
(which includes allmodconfig/allyesconfig, BTW)
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move BKL into ->put_super from the only caller. A couple of
filesystems had trivial enough ->put_super (only kfree and NULLing of
s_fs_info + stuff in there) to not get any locking: coda, cramfs, efs,
hugetlbfs, omfs, qnx4, shmem, all others got the full treatment. Most
of them probably don't need it, but I'd rather sort that out individually.
Preferably after all the other BKL pushdowns in that area.
[AV: original used to move lock_super() down as well; these changes are
removed since we don't do lock_super() at all in generic_shutdown_super()
now]
[AV: fuse, btrfs and xfs are known to need no damn BKL, exempt]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Normally the block size (by default 128K) will be larger than the
page size, unless a non-standard block size has been specified in
Mksquashfs, and the page size is larger than 4K.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Squashfs is broken on any system where the page size is larger than
the metadata size (8192). This is easily fixed by ensuring cache->pages
is always > 0.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Doug Chapman <doug.chapman@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
* 'kmemtrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
kmemtrace: trace kfree() calls with NULL or zero-length objects
kmemtrace: small cleanups
kmemtrace: restore original tracing data binary format, improve ABI
kmemtrace: kmemtrace_alloc() must fill type_id
kmemtrace: use tracepoints
kmemtrace, rcu: don't include unnecessary headers, allow kmemtrace w/ tracepoints
kmemtrace, rcu: fix rcupreempt.c data structure dependencies
kmemtrace, rcu: fix rcu_tree_trace.c data structure dependencies
kmemtrace, rcu: fix linux/rcutree.h and linux/rcuclassic.h dependencies
kmemtrace, mm: fix slab.h dependency problem in mm/failslab.c
kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_unlzma.c
kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_bunzip2.c
kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_inflate.c
kmemtrace, squashfs: fix slab.h dependency problem in squasfs
kmemtrace, befs: fix slab.h dependency problem
kmemtrace, security: fix linux/key.h header file dependencies
kmemtrace, fs: fix linux/fdtable.h header file dependencies
kmemtrace, fs: uninline simple_transaction_set()
kmemtrace, fs, security: move alloc_secdata() and free_secdata() to linux/security.h
Impact: cleanup
fs/squashfs/export.c depends on slab.h without including it:
CC fs/squashfs/export.o
fs/squashfs/export.c: In function ‘squashfs_read_inode_lookup_table’:
fs/squashfs/export.c:133: error: implicit declaration of function ‘kmalloc’
fs/squashfs/export.c:133: warning: assignment makes pointer from integer without a cast
fs/squashfs/export.c:143: error: implicit declaration of function ‘kfree’
make[1]: *** [fs/squashfs/export.o] Error 1
make: *** [fs/squashfs/] Error 2
It gets included implicitly currently - but this will not be the
case with upcoming kmemtrace changes.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
LKML-Reference: <1237884999.25315.41.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Make squashfs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Phillip Lougher <phillip@lougher.demon.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The corrupted filesystem patch added a check against zlib trying to
output too much data in the presence of data corruption. This check
triggered if zlib_inflate asked to be called again (Z_OK) with
avail_out == 0 and no more output buffers available. This check proves
to be rather dumb, as it incorrectly catches the case where zlib has
generated all the output, but there are still input bytes to be processed.
This patch does a number of things. It removes the original check and
replaces it with code to not move to the next output buffer if there
are no more output buffers available, relying on zlib to error if it
wants an extra output buffer in the case of data corruption. It
also replaces the Z_NO_FLUSH flag with the more correct Z_SYNC_FLUSH
flag, and makes the error messages more understandable to
non-technical users.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Reported-by: Stefan Lippers-Hollmann <s.L-H@gmx.de>
This fixes a code regression caused by the recent mainlining changes.
The recent code changes call zlib_inflate repeatedly, decompressing into
separate 4K buffers, this code didn't check for the possibility that
zlib_inflate might ask for too many buffers when decompressing corrupted
data.
Signed-off-by: Phillip Lougher <phillip@lougher.demon.co.uk>
Use the standard magic.h for btrfs and squashfs.
Signed-off-by: Qinghuang Feng <qhfeng.kernel@gmail.com>
Cc: Phillip Lougher <phillip@lougher.demon.co.uk>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>