IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Root task group bandwidth replenishment must service all CPUs, regardless of
where the timer was last started, and regardless of the isolation mechanism,
lest 'Quoth the Raven, "Nevermore"' become rt scheduling policy.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1344326558.6968.25.camel@marge.simpson.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Roland Dreier reported spurious, hard to trigger lockdep warnings
within the scheduler - without any real lockup.
This bit gives us the right clue:
> [89945.640512] [<ffffffff8103fa1a>] double_lock_balance+0x5a/0x90
> [89945.640568] [<ffffffff8104c546>] push_rt_task+0xc6/0x290
if you look at that code you'll find the double_lock_balance() in
question is the one in find_lock_lowest_rq() [yay for inlining].
Now find_lock_lowest_rq() has a bug.. it fails to use
double_unlock_balance() in one exit path, if this results in a retry in
push_rt_task() we'll call double_lock_balance() again, at which point
we'll run into said lockdep confusion.
Reported-by: Roland Dreier <roland@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1337282386.4281.77.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_tick_rt() has an optimization to only reschedule SCHED_RR tasks
if they were the only element on their rq. However, with cgroups
a SCHED_RR task could be the only element on its per-cgroup rq but
still be competing with other SCHED_RR tasks in its parent's
cgroup. In this case, the SCHED_RR task in the child cgroup would
never yield at the end of its timeslice. If the child cgroup
rt_runtime_us was the same as the parent cgroup rt_runtime_us,
the task in the parent cgroup would starve completely.
Modify task_tick_rt() to check that the task is the only task on its
rq, and that the each of the scheduling entities of its ancestors
is also the only entity on its rq.
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1337229266-15798-1-git-send-email-ccross@android.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since nr_cpus_allowed is used outside of sched/rt.c and wants to be
used outside of there more, move it to a more natural site.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-kr61f02y9brwzkh6x53pdptm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Migration status depends on a difference of weight from 0 and 1.
If weight > 1 (<= 1) and old weight <= 1 (> 1) then task becomes
pushable (or not pushable). We are not insterested in its exact
values, is it 3 or 4, for example.
Now if we are changing affinity from a set of 3 cpus to a set of 4, the-
task will be dequeued and enqueued sequentially without important
difference in comparison with initial state. The only difference is in
internal representation of plist queue of pushable tasks and the fact
that the task may won't be the first in a sequence of the same priority
tasks. But it seems to me it gives nothing.
Link: http://lkml.kernel.org/r/273741334120764@web83.yandex.ru
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Tkhai Kirill <tkhai@yandex.ru>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Avoid extra work by continuing on to the next rt_rq if the highest
prio task in current rt_rq is the same priority as our candidate
task.
More detailed explanation: if next is not NULL, then we have found a
candidate task, and its priority is next->prio. Now we are looking
for an even higher priority task in the other rt_rq's. idx is the
highest priority in the current candidate rt_rq. In the current 3.3
code, if idx is equal to next->prio, we would start scanning the tasks
in that rt_rq and replace the current candidate task with a task from
that rt_rq. But the new task would only have a priority that is equal
to our previous candidate task, so we have not advanced our goal of
finding a higher prio task. So we should avoid the extra work by
continuing on to the next rt_rq if idx is equal to next->prio.
Signed-off-by: Michael J Wang <mjwang@broadcom.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/2EF88150C0EF2C43A218742ED384C1BC0FC83D6B@IRVEXCHMB08.corp.ad.broadcom.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's a few awkward printk()s inside of scheduler guts that people
prefer to keep but really are rather deadlock prone. Fudge around it
by storing the text in a per-cpu buffer and poll it using the existing
printk_tick() handler.
This will drop output when its more frequent than once a tick, however
only the affinity thing could possible go that fast and for that just
one should suffice to notify the admin he's done something silly..
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-wua3lmkt3dg8nfts66o6brne@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a runqueue has rt_runtime_us = 0 then the only way it can
accumulate rt_time is via PI boosting. That causes the runqueue
to be throttled and replenishing does not change anything due to
rt_runtime_us = 0. So avoid that situation by clearing rt_time and
skip the throttling alltogether.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
[ Changelog ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-7x70cypsotjb4jvcor3edctk@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a runqueue is throttled we cannot disable the period timer
because that timer is the only way to undo the throttling.
We got stale throttling entries when a rq was throttled and then the
global sysctl was disabled, which stopped the timer.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[ Added changelog ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-nuj34q52p6ro7szapuz84i0v@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Current the initial SCHED_RR timeslice of init_task is HZ, which means
1s, and is not same as the default SCHED_RR timeslice DEF_TIMESLICE.
Change that initial timeslice to the DEF_TIMESLICE.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
[ s/DEF_TIMESLICE/RR_TIMESLICE/g ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4F3C9995.3010800@ct.jp.nec.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This issue happens under the following conditions:
1. preemption is off
2. __ARCH_WANT_INTERRUPTS_ON_CTXSW is defined
3. RT scheduling class
4. SMP system
Sequence is as follows:
1.suppose current task is A. start schedule()
2.task A is enqueued pushable task at the entry of schedule()
__schedule
prev = rq->curr;
...
put_prev_task
put_prev_task_rt
enqueue_pushable_task
4.pick the task B as next task.
next = pick_next_task(rq);
3.rq->curr set to task B and context_switch is started.
rq->curr = next;
4.At the entry of context_swtich, release this cpu's rq->lock.
context_switch
prepare_task_switch
prepare_lock_switch
raw_spin_unlock_irq(&rq->lock);
5.Shortly after rq->lock is released, interrupt is occurred and start IRQ context
6.try_to_wake_up() which called by ISR acquires rq->lock
try_to_wake_up
ttwu_remote
rq = __task_rq_lock(p)
ttwu_do_wakeup(rq, p, wake_flags);
task_woken_rt
7.push_rt_task picks the task A which is enqueued before.
task_woken_rt
push_rt_tasks(rq)
next_task = pick_next_pushable_task(rq)
8.At find_lock_lowest_rq(), If double_lock_balance() returns 0,
lowest_rq can be the remote rq.
(But,If preemption is on, double_lock_balance always return 1 and it
does't happen.)
push_rt_task
find_lock_lowest_rq
if (double_lock_balance(rq, lowest_rq))..
9.find_lock_lowest_rq return the available rq. task A is migrated to
the remote cpu/rq.
push_rt_task
...
deactivate_task(rq, next_task, 0);
set_task_cpu(next_task, lowest_rq->cpu);
activate_task(lowest_rq, next_task, 0);
10. But, task A is on irq context at this cpu.
So, task A is scheduled by two cpus at the same time until restore from IRQ.
Task A's stack is corrupted.
To fix it, don't migrate an RT task if it's still running.
Signed-off-by: Chanho Min <chanho.min@lge.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/CAOAMb1BHA=5fm7KTewYyke6u-8DP0iUuJMpgQw54vNeXFsGpoQ@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The second call to sched_rt_period() is redundant, because the value of the
rt_runtime was already read and it was protected by the ->rt_runtime_lock.
Signed-off-by: Shan Hai <haishan.bai@gmail.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1322535836-13590-2-git-send-email-haishan.bai@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There's too many sched*.[ch] files in kernel/, give them their own
directory.
(No code changed, other than Makefile glue added.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>