30578 Commits

Author SHA1 Message Date
Dave Hansen
c40a56a781 x86/mm/init: Remove freed kernel image areas from alias mapping
The kernel image is mapped into two places in the virtual address space
(addresses without KASLR, of course):

	1. The kernel direct map (0xffff880000000000)
	2. The "high kernel map" (0xffffffff81000000)

We actually execute out of #2.  If we get the address of a kernel symbol,
it points to #2, but almost all physical-to-virtual translations point to

Parts of the "high kernel map" alias are mapped in the userspace page
tables with the Global bit for performance reasons.  The parts that we map
to userspace do not (er, should not) have secrets. When PTI is enabled then
the global bit is usually not set in the high mapping and just used to
compensate for poor performance on systems which lack PCID.

This is fine, except that some areas in the kernel image that are adjacent
to the non-secret-containing areas are unused holes.  We free these holes
back into the normal page allocator and reuse them as normal kernel memory.
The memory will, of course, get *used* via the normal map, but the alias
mapping is kept.

This otherwise unused alias mapping of the holes will, by default keep the
Global bit, be mapped out to userspace, and be vulnerable to Meltdown.

Remove the alias mapping of these pages entirely.  This is likely to
fracture the 2M page mapping the kernel image near these areas, but this
should affect a minority of the area.

The pageattr code changes *all* aliases mapping the physical pages that it
operates on (by default).  We only want to modify a single alias, so we
need to tweak its behavior.

This unmapping behavior is currently dependent on PTI being in place.
Going forward, we should at least consider doing this for all
configurations.  Having an extra read-write alias for memory is not exactly
ideal for debugging things like random memory corruption and this does
undercut features like DEBUG_PAGEALLOC or future work like eXclusive Page
Frame Ownership (XPFO).

Before this patch:

current_kernel:---[ High Kernel Mapping ]---
current_kernel-0xffffffff80000000-0xffffffff81000000          16M                               pmd
current_kernel-0xffffffff81000000-0xffffffff81e00000          14M     ro         PSE     GLB x  pmd
current_kernel-0xffffffff81e00000-0xffffffff81e11000          68K     ro                 GLB x  pte
current_kernel-0xffffffff81e11000-0xffffffff82000000        1980K     RW                     NX pte
current_kernel-0xffffffff82000000-0xffffffff82600000           6M     ro         PSE     GLB NX pmd
current_kernel-0xffffffff82600000-0xffffffff82c00000           6M     RW         PSE         NX pmd
current_kernel-0xffffffff82c00000-0xffffffff82e00000           2M     RW                     NX pte
current_kernel-0xffffffff82e00000-0xffffffff83200000           4M     RW         PSE         NX pmd
current_kernel-0xffffffff83200000-0xffffffffa0000000         462M                               pmd

  current_user:---[ High Kernel Mapping ]---
  current_user-0xffffffff80000000-0xffffffff81000000          16M                               pmd
  current_user-0xffffffff81000000-0xffffffff81e00000          14M     ro         PSE     GLB x  pmd
  current_user-0xffffffff81e00000-0xffffffff81e11000          68K     ro                 GLB x  pte
  current_user-0xffffffff81e11000-0xffffffff82000000        1980K     RW                     NX pte
  current_user-0xffffffff82000000-0xffffffff82600000           6M     ro         PSE     GLB NX pmd
  current_user-0xffffffff82600000-0xffffffffa0000000         474M                               pmd

After this patch:

current_kernel:---[ High Kernel Mapping ]---
current_kernel-0xffffffff80000000-0xffffffff81000000          16M                               pmd
current_kernel-0xffffffff81000000-0xffffffff81e00000          14M     ro         PSE     GLB x  pmd
current_kernel-0xffffffff81e00000-0xffffffff81e11000          68K     ro                 GLB x  pte
current_kernel-0xffffffff81e11000-0xffffffff82000000        1980K                               pte
current_kernel-0xffffffff82000000-0xffffffff82400000           4M     ro         PSE     GLB NX pmd
current_kernel-0xffffffff82400000-0xffffffff82488000         544K     ro                     NX pte
current_kernel-0xffffffff82488000-0xffffffff82600000        1504K                               pte
current_kernel-0xffffffff82600000-0xffffffff82c00000           6M     RW         PSE         NX pmd
current_kernel-0xffffffff82c00000-0xffffffff82c0d000          52K     RW                     NX pte
current_kernel-0xffffffff82c0d000-0xffffffff82dc0000        1740K                               pte

  current_user:---[ High Kernel Mapping ]---
  current_user-0xffffffff80000000-0xffffffff81000000          16M                               pmd
  current_user-0xffffffff81000000-0xffffffff81e00000          14M     ro         PSE     GLB x  pmd
  current_user-0xffffffff81e00000-0xffffffff81e11000          68K     ro                 GLB x  pte
  current_user-0xffffffff81e11000-0xffffffff82000000        1980K                               pte
  current_user-0xffffffff82000000-0xffffffff82400000           4M     ro         PSE     GLB NX pmd
  current_user-0xffffffff82400000-0xffffffff82488000         544K     ro                     NX pte
  current_user-0xffffffff82488000-0xffffffff82600000        1504K                               pte
  current_user-0xffffffff82600000-0xffffffffa0000000         474M                               pmd

[ tglx: Do not unmap on 32bit as there is only one mapping ]

Fixes: 0f561fce4d69 ("x86/pti: Enable global pages for shared areas")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20180802225831.5F6A2BFC@viggo.jf.intel.com
2018-08-06 20:54:16 +02:00
Uros Bizjak
fd8ca6dac9 KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
Remove open-coded uses of set instructions to use CC_SET()/CC_OUT() in
arch/x86/kvm/vmx.c.

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[Mark error paths as unlikely while touching this. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 18:18:41 +02:00
Wanpeng Li
aaffcfd1e8 KVM: X86: Implement PV IPIs in linux guest
Implement paravirtual apic hooks to enable PV IPIs for KVM if the "send IPI"
hypercall is available.  The hypercall lets a guest send IPIs, with
at most 128 destinations per hypercall in 64-bit mode and 64 vCPUs per
hypercall in 32-bit mode.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:22 +02:00
Wanpeng Li
d63bae079b KVM: X86: Add kvm hypervisor init time platform setup callback
Add kvm hypervisor init time platform setup callback which
will be used to replace native apic hooks by pararvirtual
hooks.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:21 +02:00
Wanpeng Li
4180bf1b65 KVM: X86: Implement "send IPI" hypercall
Using hypercall to send IPIs by one vmexit instead of one by one for
xAPIC/x2APIC physical mode and one vmexit per-cluster for x2APIC cluster
mode. Intel guest can enter x2apic cluster mode when interrupt remmaping
is enabled in qemu, however, latest AMD EPYC still just supports xapic
mode which can get great improvement by Exit-less IPIs. This patchset
lets a guest send multicast IPIs, with at most 128 destinations per
hypercall in 64-bit mode and 64 vCPUs per hypercall in 32-bit mode.

Hardware: Xeon Skylake 2.5GHz, 2 sockets, 40 cores, 80 threads, the VM
is 80 vCPUs, IPI microbenchmark(https://lkml.org/lkml/2017/12/19/141):

x2apic cluster mode, vanilla

 Dry-run:                         0,            2392199 ns
 Self-IPI:                  6907514,           15027589 ns
 Normal IPI:              223910476,          251301666 ns
 Broadcast IPI:                   0,         9282161150 ns
 Broadcast lock:                  0,         8812934104 ns

x2apic cluster mode, pv-ipi

 Dry-run:                         0,            2449341 ns
 Self-IPI:                  6720360,           15028732 ns
 Normal IPI:              228643307,          255708477 ns
 Broadcast IPI:                   0,         7572293590 ns  => 22% performance boost
 Broadcast lock:                  0,         8316124651 ns

x2apic physical mode, vanilla

 Dry-run:                         0,            3135933 ns
 Self-IPI:                  8572670,           17901757 ns
 Normal IPI:              226444334,          255421709 ns
 Broadcast IPI:                   0,        19845070887 ns
 Broadcast lock:                  0,        19827383656 ns

x2apic physical mode, pv-ipi

 Dry-run:                         0,            2446381 ns
 Self-IPI:                  6788217,           15021056 ns
 Normal IPI:              219454441,          249583458 ns
 Broadcast IPI:                   0,         7806540019 ns  => 154% performance boost
 Broadcast lock:                  0,         9143618799 ns

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:20 +02:00
Tianyu Lan
74fec5b9db KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
X86_CR4_OSXSAVE check belongs to sregs check and so move into
kvm_valid_sregs().

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:19 +02:00
Liang Chen
ee6268ba3a KVM: x86: Skip pae_root shadow allocation if tdp enabled
Considering the fact that the pae_root shadow is not needed when
tdp is in use, skip the pae_root shadow page allocation to allow
mmu creation even not being able to obtain memory from DMA32
zone when particular cgroup cpuset.mems or mempolicy control is
applied.

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:19 +02:00
Tianyu Lan
c2a4eadf77 KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
mmu_set_spte() flushes remote tlbs for drop_parent_pte/drop_spte()
and set_spte() separately. This may introduce redundant flush. This
patch is to combine these flushes and check flush request after
calling set_spte().

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Reviewed-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:18 +02:00
Sean Christopherson
5e079c7ece KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
The host's FS.base and GS.base rarely change, e.g. ~0.1% of host/guest
swaps on my system.  Cache the last value written to the VMCS and skip
the VMWRITE to the associated VMCS fields when loading host state if
the value hasn't changed since the last VMWRITE.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:17 +02:00
Sean Christopherson
8f21a0bbf3 KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
On a 64-bit host, FS.sel and GS.sel are all but guaranteed to be 0,
which in turn means they'll rarely change.  Skip the VMWRITE for the
associated VMCS fields when loading host state if the selector hasn't
changed since the last VMWRITE.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:16 +02:00
Sean Christopherson
f3bbc0dced KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
The HOST_{FS,GS}_BASE fields are guaranteed to be written prior to
VMENTER, by way of vmx_prepare_switch_to_guest().  Initialize the
fields to zero for 64-bit kernels instead of pulling the base values
from their respective MSRs.  In addition to eliminating two RDMSRs,
vmx_prepare_switch_to_guest() can safely assume the initial value of
the fields is zero in all cases.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:16 +02:00
Sean Christopherson
d7ee039e2b KVM: vmx: move struct host_state usage to struct loaded_vmcs
Make host_state a property of a loaded_vmcs so that it can be
used as a cache of the VMCS fields, e.g. to lazily VMWRITE the
corresponding VMCS field.  Treating host_state as a cache does
not work if it's not VMCS specific as the cache would become
incoherent when switching between vmcs01 and vmcs02.

Move vmcs_host_cr3 and vmcs_host_cr4 into host_state.

Explicitly zero out host_state when allocating a new VMCS for a
loaded_vmcs.  Unlike the pre-existing vmcs_host_cr{3,4} usage,
the segment information is not guaranteed to be (re)initialized
when running a new nested VMCS, e.g. HOST_FS_BASE is not written
in vmx_set_constant_host_state().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:15 +02:00
Sean Christopherson
e920de8507 KVM: vmx: compute need to reload FS/GS/LDT on demand
Remove fs_reload_needed and gs_ldt_reload_needed from host_state
and instead compute whether we need to reload various state at
the time we actually do the reload.  The state that is tracked
by the *_reload_needed variables is not any more volatile than
the trackers themselves.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:14 +02:00
Sean Christopherson
fd1ec7723f KVM: nVMX: remove a misleading comment regarding vmcs02 fields
prepare_vmcs02() has an odd comment that says certain fields are
"not in vmcs02".  AFAICT the intent of the comment is to document
that various VMCS fields are not handled by prepare_vmcs02(),
e.g. HOST_{FS,GS}_{BASE,SELECTOR}.  While technically true, the
comment is misleading, e.g. it can lead the reader to think that
KVM never writes those fields to vmcs02.

Remove the comment altogether as the handling of FS and GS is
not specific to nested VMX, and GUEST_PML_INDEX has been written
by prepare_vmcs02() since commit "4e59516a12a6 (kvm: vmx: ensure
VMCS is current while enabling PML)"

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:13 +02:00
Sean Christopherson
6d6095bd2c KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
Now that the vmx_load_host_state() wrapper is gone, i.e. the only
time we call the core functions is when we're actually about to
switch between guest/host, rename the functions that handle lazy
state switching to vmx_prepare_switch_to_{guest,host}_state() to
better document the full extent of their functionality.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:12 +02:00
Sean Christopherson
678e315e78 KVM: vmx: add dedicated utility to access guest's kernel_gs_base
When lazy save/restore of MSR_KERNEL_GS_BASE was introduced[1], the
MSR was intercepted in all modes and was only restored for the host
when the guest is in 64-bit mode.  So at the time, going through the
full host restore prior to accessing MSR_KERNEL_GS_BASE was necessary
to load host state and was not a significant waste of cycles.

Later, MSR_KERNEL_GS_BASE interception was disabled for a 64-bit
guest[2], and then unconditionally saved/restored for the host[3].
As a result, loading full host state is overkill for accesses to
MSR_KERNEL_GS_BASE, and completely unnecessary when the guest is
not in 64-bit mode.

Add a dedicated utility to read/write the guest's MSR_KERNEL_GS_BASE
(outside of the save/restore flow) to minimize the overhead incurred
when accessing the MSR.  When setting EFER, only decache the MSR if
the new EFER will disable long mode.

Removing out-of-band usage of vmx_load_host_state() also eliminates,
or at least reduces, potential corner cases in its usage, which in
turn will (hopefuly) make it easier to reason about future changes
to the save/restore flow, e.g. optimization of saving host state.

[1] commit 44ea2b1758d8 ("KVM: VMX: Move MSR_KERNEL_GS_BASE out of the vmx
                                    autoload msr area")
[2] commit 5897297bc228 ("KVM: VMX: Don't intercept MSR_KERNEL_GS_BASE")
[3] commit c8770e7ba63b ("KVM: VMX: Fix host userspace gsbase corruption")

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:12 +02:00
Sean Christopherson
bd9966de4e KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
Using 'struct loaded_vmcs*' to track whether the CPU registers
contain host or guest state kills two birds with one stone.

  1. The (effective) boolean host_state.loaded is poorly named.
     It does not track whether or not host state is loaded into
     the CPU registers (which most readers would expect), but
     rather tracks if host state has been saved AND guest state
     is loaded.

  2. Using a loaded_vmcs pointer provides a more robust framework
     for the optimized guest/host state switching, especially when
     consideration per-VMCS enhancements.  To that end, WARN_ONCE
     if we try to switch to host state with a different VMCS than
     was last used to save host state.

Resolve an occurrence of the new WARN by setting loaded_vmcs after
the call to vmx_vcpu_put() in vmx_switch_vmcs().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:11 +02:00
Sean Christopherson
e368b875a8 KVM: vmx: refactor segmentation code in vmx_save_host_state()
Use local variables in vmx_save_host_state() to temporarily track
the selector and base values for FS and GS, and reorganize the
code so that the 64-bit vs 32-bit portions are contained within
a single #ifdef.  This refactoring paves the way for future patches
to modify the updating of VMCS state with minimal changes to the
code, and (hopefully) simplifies resolving a likely conflict with
another in-flight patch[1] by being the whipping boy for future
patches.

[1] https://www.spinics.net/lists/kvm/msg171647.html

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:10 +02:00
Jim Mattson
e49fcb8b9e kvm: nVMX: Fix fault priority for VMX operations
When checking emulated VMX instructions for faults, the #UD for "IF
(not in VMX operation)" should take precedence over the #GP for "ELSIF
CPL > 0."

Suggested-by: Eric Northup <digitaleric@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:09 +02:00
Jim Mattson
36090bf43a kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
The fault that should be raised for a privilege level violation is #GP
rather than #UD.

Fixes: 727ba748e110b4 ("kvm: nVMX: Enforce cpl=0 for VMX instructions")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:08 +02:00
Tianyu Lan
877ad952be KVM: vmx: Add tlb_remote_flush callback support
Register tlb_remote_flush callback for vmx when hyperv capability of
nested guest mapping flush is detected. The interface can help to
reduce overhead when flush ept table among vcpus for nested VM. The
tradition way is to send IPIs to all affected vcpus and executes
INVEPT on each vcpus. It will trigger several vmexits for IPI
and INVEPT emulation. Hyper-V provides such hypercall to do
flush for all vcpus and call the hypercall when all ept table
pointers of single VM are same.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:07 +02:00
Tianyu Lan
b08660e59d KVM: x86: Add tlb remote flush callback in kvm_x86_ops.
This patch is to provide a way for platforms to register hv tlb remote
flush callback and this helps to optimize operation of tlb flush
among vcpus for nested virtualization case.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:06 +02:00
Tianyu Lan
60cfce4c4f X86/Hyper-V: Add hyperv_nested_flush_guest_mapping ftrace support
This patch is to add hyperv_nested_flush_guest_mapping support to trace
hvFlushGuestPhysicalAddressSpace hypercall.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:05 +02:00
Tianyu Lan
eb914cfe72 X86/Hyper-V: Add flush HvFlushGuestPhysicalAddressSpace hypercall support
Hyper-V supports a pv hypercall HvFlushGuestPhysicalAddressSpace to
flush nested VM address space mapping in l1 hypervisor and it's to
reduce overhead of flushing ept tlb among vcpus. This patch is to
implement it.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:04 +02:00
Waiman Long
3553ae5690 x86/kvm: Don't use pvqspinlock code if only 1 vCPU
On a VM with only 1 vCPU, the locking fast path will always be
successful. In this case, there is no need to use the the PV qspinlock
code which has higher overhead on the unlock side than the native
qspinlock code.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:04 +02:00
Tianyu Lan
450917b654 KVM/MMU: Simplify __kvm_sync_page() function
Merge check of "sp->role.cr4_pae != !!is_pae(vcpu))" and "vcpu->
arch.mmu.sync_page(vcpu, sp) == 0". kvm_mmu_prepare_zap_page()
is called under both these conditions.

Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:03 +02:00
Junaid Shahid
208320ba10 kvm: x86: Remove CR3_PCID_INVD flag
It is a duplicate of X86_CR3_PCID_NOFLUSH. So just use that instead.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:02 +02:00
Junaid Shahid
b94742c958 kvm: x86: Add multi-entry LRU cache for previous CR3s
Adds support for storing multiple previous CR3/root_hpa pairs maintained
as an LRU cache, so that the lockless CR3 switch path can be used when
switching back to any of them.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:02 +02:00
Junaid Shahid
faff87588d kvm: x86: Flush only affected TLB entries in kvm_mmu_invlpg*
This needs a minor bug fix. The updated patch is as follows.

Thanks,
Junaid

------------------------------------------------------------------------------

kvm_mmu_invlpg() and kvm_mmu_invpcid_gva() only need to flush the TLB
entries for the specific guest virtual address, instead of flushing all
TLB entries associated with the VM.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:01 +02:00
Junaid Shahid
956bf3531f kvm: x86: Skip shadow page resync on CR3 switch when indicated by guest
When the guest indicates that the TLB doesn't need to be flushed in a
CR3 switch, we can also skip resyncing the shadow page tables since an
out-of-sync shadow page table is equivalent to an out-of-sync TLB.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:59:00 +02:00
Junaid Shahid
08fb59d8a4 kvm: x86: Support selectively freeing either current or previous MMU root
kvm_mmu_free_roots() now takes a mask specifying which roots to free, so
that either one of the roots (active/previous) can be individually freed
when needed.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:59 +02:00
Junaid Shahid
7eb77e9f5f kvm: x86: Add a root_hpa parameter to kvm_mmu->invlpg()
This allows invlpg() to be called using either the active root_hpa
or the prev_root_hpa.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:58 +02:00
Junaid Shahid
ade61e2824 kvm: x86: Skip TLB flush on fast CR3 switch when indicated by guest
When PCIDs are enabled, the MSb of the source operand for a MOV-to-CR3
instruction indicates that the TLB doesn't need to be flushed.

This change enables this optimization for MOV-to-CR3s in the guest
that have been intercepted by KVM for shadow paging and are handled
within the fast CR3 switch path.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:58 +02:00
Junaid Shahid
eb4b248e15 kvm: vmx: Support INVPCID in shadow paging mode
Implement support for INVPCID in shadow paging mode as well.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:57 +02:00
Junaid Shahid
c9470a2e28 kvm: x86: Propagate guest PCIDs to host PCIDs
When using shadow paging mode, propagate the guest's PCID value to
the shadow CR3 in the host instead of always using PCID 0.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:56 +02:00
Junaid Shahid
afe828d1de kvm: x86: Add ability to skip TLB flush when switching CR3
Remove the implicit flush from the set_cr3 handlers, so that the
callers are able to decide whether to flush the TLB or not.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:55 +02:00
Junaid Shahid
50c28f21d0 kvm: x86: Use fast CR3 switch for nested VMX
Use the fast CR3 switch mechanism to locklessly change the MMU root
page when switching between L1 and L2. The switch from L2 to L1 should
always go through the fast path, while the switch from L1 to L2 should
go through the fast path if L1's CR3/EPTP for L2 hasn't changed
since the last time.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:54 +02:00
Junaid Shahid
1c53da3fa3 kvm: x86: Support resetting the MMU context without resetting roots
This adds support for re-initializing the MMU context in a different
mode while preserving the active root_hpa and the prev_root.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:54 +02:00
Junaid Shahid
0aab33e4f9 kvm: x86: Add support for fast CR3 switch across different MMU modes
This generalizes the lockless CR3 switch path to be able to work
across different MMU modes (e.g. nested vs non-nested) by checking
that the expected page role of the new root page matches the page role
of the previously stored root page in addition to checking that the new
CR3 matches the previous CR3. Furthermore, instead of loading the
hardware CR3 in fast_cr3_switch(), it is now done in vcpu_enter_guest(),
as by that time the MMU context would be up-to-date with the VCPU mode.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:53 +02:00
Junaid Shahid
6e42782f51 kvm: x86: Introduce KVM_REQ_LOAD_CR3
The KVM_REQ_LOAD_CR3 request loads the hardware CR3 using the
current root_hpa.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:52 +02:00
Junaid Shahid
9fa72119b2 kvm: x86: Introduce kvm_mmu_calc_root_page_role()
These functions factor out the base role calculation from the
corresponding kvm_init_*_mmu() functions. The new functions return
what would be the role assigned to a root page in the current VCPU
state. This can be masked with mmu_base_role_mask to derive the base
role.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:51 +02:00
Junaid Shahid
7c390d350f kvm: x86: Add fast CR3 switch code path
When using shadow paging, a CR3 switch in the guest results in a VM Exit.
In the common case, that VM exit doesn't require much processing by KVM.
However, it does acquire the MMU lock, which can start showing signs of
contention under some workloads even on a 2 VCPU VM when the guest is
using KPTI. Therefore, we add a fast path that avoids acquiring the MMU
lock in the most common cases e.g. when switching back and forth between
the kernel and user mode CR3s used by KPTI with no guest page table
changes in between.

For now, this fast path is implemented only for 64-bit guests and hosts
to avoid the handling of PDPTEs, but it can be extended later to 32-bit
guests and/or hosts as well.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:51 +02:00
Junaid Shahid
578e1c4db2 kvm: x86: Avoid taking MMU lock in kvm_mmu_sync_roots if no sync is needed
kvm_mmu_sync_roots() can locklessly check whether a sync is needed and just
bail out if it isn't.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:50 +02:00
Junaid Shahid
5ce4786f75 kvm: x86: Make sync_page() flush remote TLBs once only
sync_page() calls set_spte() from a loop across a page table. It would
work better if set_spte() left the TLB flushing to its callers, so that
sync_page() can aggregate into a single call.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:49 +02:00
Peter Xu
42522d08cd KVM: MMU: drop vcpu param in gpte_access
It's never used.  Drop it.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:48 +02:00
Liran Alon
abfc52c612 KVM: nVMX: Separate logic allocating shadow vmcs to a function
No functionality change.
This is done as a preparation for VMCS shadowing virtualization.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:48 +02:00
Liran Alon
491a603845 KVM: VMX: Mark vmcs header as shadow in case alloc_vmcs_cpu() allocate shadow vmcs
No functionality change.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:47 +02:00
Liran Alon
32c7acf044 KVM: nVMX: Expose VMCS shadowing to L1 guest
Expose VMCS shadowing to L1 as a VMX capability of the virtual CPU,
whether or not VMCS shadowing is supported by the physical CPU.
(VMCS shadowing emulation)

Shadowed VMREADs and VMWRITEs from L2 are handled by L0, without a
VM-exit to L1.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:46 +02:00
Liran Alon
a7cde481b6 KVM: nVMX: Do not forward VMREAD/VMWRITE VMExits to L1 if required so by vmcs12 vmread/vmwrite bitmaps
This is done as a preparation for VMCS shadowing emulation.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:45 +02:00
Liran Alon
6d894f498f KVM: nVMX: vmread/vmwrite: Use shadow vmcs12 if running L2
This is done as a preparation to VMCS shadowing emulation.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:44 +02:00