420 Commits

Author SHA1 Message Date
Linus Torvalds
fbc90c042c - 875fa64577da ("mm/hugetlb_vmemmap: fix race with speculative PFN
walkers") is known to cause a performance regression
   (https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff).
   Yu has a fix which I'll send along later via the hotfixes branch.
 
 - In the series "mm: Avoid possible overflows in dirty throttling" Jan
   Kara addresses a couple of issues in the writeback throttling code.
   These fixes are also targetted at -stable kernels.
 
 - Ryusuke Konishi's series "nilfs2: fix potential issues related to
   reserved inodes" does that.  This should actually be in the
   mm-nonmm-stable tree, along with the many other nilfs2 patches.  My bad.
 
 - More folio conversions from Kefeng Wang in the series "mm: convert to
   folio_alloc_mpol()"
 
 - Kemeng Shi has sent some cleanups to the writeback code in the series
   "Add helper functions to remove repeated code and improve readability of
   cgroup writeback"
 
 - Kairui Song has made the swap code a little smaller and a little
   faster in the series "mm/swap: clean up and optimize swap cache index".
 
 - In the series "mm/memory: cleanly support zeropage in
   vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
   Hildenbrand has reworked the rather sketchy handling of the use of the
   zeropage in MAP_SHARED mappings.  I don't see any runtime effects here -
   more a cleanup/understandability/maintainablity thing.
 
 - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of
   higher addresses, for aarch64.  The (poorly named) series is
   "Restructure va_high_addr_switch".
 
 - The core TLB handling code gets some cleanups and possible slight
   optimizations in Bang Li's series "Add update_mmu_tlb_range() to
   simplify code".
 
 - Jane Chu has improved the handling of our
   fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the
   series "Enhance soft hwpoison handling and injection".
 
 - Jeff Johnson has sent a billion patches everywhere to add
   MODULE_DESCRIPTION() to everything.  Some landed in this pull.
 
 - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has
   simplified migration's use of hardware-offload memory copying.
 
 - Yosry Ahmed performs more folio API conversions in his series "mm:
   zswap: trivial folio conversions".
 
 - In the series "large folios swap-in: handle refault cases first",
   Chuanhua Han inches us forward in the handling of large pages in the
   swap code.  This is a cleanup and optimization, working toward the end
   objective of full support of large folio swapin/out.
 
 - In the series "mm,swap: cleanup VMA based swap readahead window
   calculation", Huang Ying has contributed some cleanups and a possible
   fixlet to his VMA based swap readahead code.
 
 - In the series "add mTHP support for anonymous shmem" Baolin Wang has
   taught anonymous shmem mappings to use multisize THP.  By default this
   is a no-op - users must opt in vis sysfs controls.  Dramatic
   improvements in pagefault latency are realized.
 
 - David Hildenbrand has some cleanups to our remaining use of
   page_mapcount() in the series "fs/proc: move page_mapcount() to
   fs/proc/internal.h".
 
 - David also has some highmem accounting cleanups in the series
   "mm/highmem: don't track highmem pages manually".
 
 - Build-time fixes and cleanups from John Hubbard in the series
   "cleanups, fixes, and progress towards avoiding "make headers"".
 
 - Cleanups and consolidation of the core pagemap handling from Barry
   Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
   and utilize them".
 
 - Lance Yang's series "Reclaim lazyfree THP without splitting" has
   reduced the latency of the reclaim of pmd-mapped THPs under fairly
   common circumstances.  A 10x speedup is seen in a microbenchmark.
 
   It does this by punting to aother CPU but I guess that's a win unless
   all CPUs are pegged.
 
 - hugetlb_cgroup cleanups from Xiu Jianfeng in the series
   "mm/hugetlb_cgroup: rework on cftypes".
 
 - Miaohe Lin's series "Some cleanups for memory-failure" does just that
   thing.
 
 - Is anyone reading this stuff?  If so, email me!
 
 - Someone other than SeongJae has developed a DAMON feature in Honggyu
   Kim's series "DAMON based tiered memory management for CXL memory".
   This adds DAMON features which may be used to help determine the
   efficiency of our placement of CXL/PCIe attached DRAM.
 
 - DAMON user API centralization and simplificatio work in SeongJae
   Park's series "mm/damon: introduce DAMON parameters online commit
   function".
 
 - In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
   David Hildenbrand does some maintenance work on zsmalloc - partially
   modernizing its use of pageframe fields.
 
 - Kefeng Wang provides more folio conversions in the series "mm: remove
   page_maybe_dma_pinned() and page_mkclean()".
 
 - More cleanup from David Hildenbrand, this time in the series
   "mm/memory_hotplug: use PageOffline() instead of PageReserved() for
   !ZONE_DEVICE".  It "enlightens memory hotplug more about PageOffline()
   pages" and permits the removal of some virtio-mem hacks.
 
 - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
   __folio_add_anon_rmap()" is a cleanup to the anon folio handling in
   preparation for mTHP (multisize THP) swapin.
 
 - Kefeng Wang's series "mm: improve clear and copy user folio"
   implements more folio conversions, this time in the area of large folio
   userspace copying.
 
 - The series "Docs/mm/damon/maintaier-profile: document a mailing tool
   and community meetup series" tells people how to get better involved
   with other DAMON developers.  From SeongJae Park.
 
 - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
   that.
 
 - David Hildenbrand sends along more cleanups, this time against the
   migration code.  The series is "mm/migrate: move NUMA hinting fault
   folio isolation + checks under PTL".
 
 - Jan Kara has found quite a lot of strangenesses and minor errors in
   the readahead code.  He addresses this in the series "mm: Fix various
   readahead quirks".
 
 - SeongJae Park's series "selftests/damon: test DAMOS tried regions and
   {min,max}_nr_regions" adds features and addresses errors in DAMON's self
   testing code.
 
 - Gavin Shan has found a userspace-triggerable WARN in the pagecache
   code.  The series "mm/filemap: Limit page cache size to that supported
   by xarray" addresses this.  The series is marked cc:stable.
 
 - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
   and cleanup" cleans up and slightly optimizes KSM.
 
 - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
   code motion.  The series (which also makes the memcg-v1 code
   Kconfigurable) are
 
   "mm: memcg: separate legacy cgroup v1 code and put under config
   option" and
   "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1"
 
 - Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
   adds an additional feature to this cgroup-v2 control file.
 
 - The series "Userspace controls soft-offline pages" from Jiaqi Yan
   permits userspace to stop the kernel's automatic treatment of excessive
   correctable memory errors.  In order to permit userspace to monitor and
   handle this situation.
 
 - Kefeng Wang's series "mm: migrate: support poison recover from migrate
   folio" teaches the kernel to appropriately handle migration from
   poisoned source folios rather than simply panicing.
 
 - SeongJae Park's series "Docs/damon: minor fixups and improvements"
   does those things.
 
 - In the series "mm/zsmalloc: change back to per-size_class lock"
   Chengming Zhou improves zsmalloc's scalability and memory utilization.
 
 - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
   pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare
   refcount increments.  So these paes can first be moved aside if they
   reside in the movable zone or a CMA block.
 
 - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps
   for much faster reading of vma information.  The series is "query VMAs
   from /proc/<pid>/maps".
 
 - In the series "mm: introduce per-order mTHP split counters" Lance Yang
   improves the kernel's presentation of developer information related to
   multisize THP splitting.
 
 - Michael Ellerman has developed the series "Reimplement huge pages
   without hugepd on powerpc (8xx, e500, book3s/64)".  This permits
   userspace to use all available huge page sizes.
 
 - In the series "revert unconditional slab and page allocator fault
   injection calls" Vlastimil Babka removes a performance-affecting and not
   very useful feature from slab fault injection.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA
 joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3
 xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8=
 =z0Lf
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - In the series "mm: Avoid possible overflows in dirty throttling" Jan
   Kara addresses a couple of issues in the writeback throttling code.
   These fixes are also targetted at -stable kernels.

 - Ryusuke Konishi's series "nilfs2: fix potential issues related to
   reserved inodes" does that. This should actually be in the
   mm-nonmm-stable tree, along with the many other nilfs2 patches. My
   bad.

 - More folio conversions from Kefeng Wang in the series "mm: convert to
   folio_alloc_mpol()"

 - Kemeng Shi has sent some cleanups to the writeback code in the series
   "Add helper functions to remove repeated code and improve readability
   of cgroup writeback"

 - Kairui Song has made the swap code a little smaller and a little
   faster in the series "mm/swap: clean up and optimize swap cache
   index".

 - In the series "mm/memory: cleanly support zeropage in
   vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
   Hildenbrand has reworked the rather sketchy handling of the use of
   the zeropage in MAP_SHARED mappings. I don't see any runtime effects
   here - more a cleanup/understandability/maintainablity thing.

 - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling
   of higher addresses, for aarch64. The (poorly named) series is
   "Restructure va_high_addr_switch".

 - The core TLB handling code gets some cleanups and possible slight
   optimizations in Bang Li's series "Add update_mmu_tlb_range() to
   simplify code".

 - Jane Chu has improved the handling of our
   fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in
   the series "Enhance soft hwpoison handling and injection".

 - Jeff Johnson has sent a billion patches everywhere to add
   MODULE_DESCRIPTION() to everything. Some landed in this pull.

 - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang
   has simplified migration's use of hardware-offload memory copying.

 - Yosry Ahmed performs more folio API conversions in his series "mm:
   zswap: trivial folio conversions".

 - In the series "large folios swap-in: handle refault cases first",
   Chuanhua Han inches us forward in the handling of large pages in the
   swap code. This is a cleanup and optimization, working toward the end
   objective of full support of large folio swapin/out.

 - In the series "mm,swap: cleanup VMA based swap readahead window
   calculation", Huang Ying has contributed some cleanups and a possible
   fixlet to his VMA based swap readahead code.

 - In the series "add mTHP support for anonymous shmem" Baolin Wang has
   taught anonymous shmem mappings to use multisize THP. By default this
   is a no-op - users must opt in vis sysfs controls. Dramatic
   improvements in pagefault latency are realized.

 - David Hildenbrand has some cleanups to our remaining use of
   page_mapcount() in the series "fs/proc: move page_mapcount() to
   fs/proc/internal.h".

 - David also has some highmem accounting cleanups in the series
   "mm/highmem: don't track highmem pages manually".

 - Build-time fixes and cleanups from John Hubbard in the series
   "cleanups, fixes, and progress towards avoiding "make headers"".

 - Cleanups and consolidation of the core pagemap handling from Barry
   Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
   and utilize them".

 - Lance Yang's series "Reclaim lazyfree THP without splitting" has
   reduced the latency of the reclaim of pmd-mapped THPs under fairly
   common circumstances. A 10x speedup is seen in a microbenchmark.

   It does this by punting to aother CPU but I guess that's a win unless
   all CPUs are pegged.

 - hugetlb_cgroup cleanups from Xiu Jianfeng in the series
   "mm/hugetlb_cgroup: rework on cftypes".

 - Miaohe Lin's series "Some cleanups for memory-failure" does just that
   thing.

 - Someone other than SeongJae has developed a DAMON feature in Honggyu
   Kim's series "DAMON based tiered memory management for CXL memory".
   This adds DAMON features which may be used to help determine the
   efficiency of our placement of CXL/PCIe attached DRAM.

 - DAMON user API centralization and simplificatio work in SeongJae
   Park's series "mm/damon: introduce DAMON parameters online commit
   function".

 - In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
   David Hildenbrand does some maintenance work on zsmalloc - partially
   modernizing its use of pageframe fields.

 - Kefeng Wang provides more folio conversions in the series "mm: remove
   page_maybe_dma_pinned() and page_mkclean()".

 - More cleanup from David Hildenbrand, this time in the series
   "mm/memory_hotplug: use PageOffline() instead of PageReserved() for
   !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
   pages" and permits the removal of some virtio-mem hacks.

 - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
   __folio_add_anon_rmap()" is a cleanup to the anon folio handling in
   preparation for mTHP (multisize THP) swapin.

 - Kefeng Wang's series "mm: improve clear and copy user folio"
   implements more folio conversions, this time in the area of large
   folio userspace copying.

 - The series "Docs/mm/damon/maintaier-profile: document a mailing tool
   and community meetup series" tells people how to get better involved
   with other DAMON developers. From SeongJae Park.

 - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
   that.

 - David Hildenbrand sends along more cleanups, this time against the
   migration code. The series is "mm/migrate: move NUMA hinting fault
   folio isolation + checks under PTL".

 - Jan Kara has found quite a lot of strangenesses and minor errors in
   the readahead code. He addresses this in the series "mm: Fix various
   readahead quirks".

 - SeongJae Park's series "selftests/damon: test DAMOS tried regions and
   {min,max}_nr_regions" adds features and addresses errors in DAMON's
   self testing code.

 - Gavin Shan has found a userspace-triggerable WARN in the pagecache
   code. The series "mm/filemap: Limit page cache size to that supported
   by xarray" addresses this. The series is marked cc:stable.

 - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
   and cleanup" cleans up and slightly optimizes KSM.

 - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
   code motion. The series (which also makes the memcg-v1 code
   Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put
   under config option" and "mm: memcg: put cgroup v1-specific memcg
   data under CONFIG_MEMCG_V1"

 - Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
   adds an additional feature to this cgroup-v2 control file.

 - The series "Userspace controls soft-offline pages" from Jiaqi Yan
   permits userspace to stop the kernel's automatic treatment of
   excessive correctable memory errors. In order to permit userspace to
   monitor and handle this situation.

 - Kefeng Wang's series "mm: migrate: support poison recover from
   migrate folio" teaches the kernel to appropriately handle migration
   from poisoned source folios rather than simply panicing.

 - SeongJae Park's series "Docs/damon: minor fixups and improvements"
   does those things.

 - In the series "mm/zsmalloc: change back to per-size_class lock"
   Chengming Zhou improves zsmalloc's scalability and memory
   utilization.

 - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
   pinning memfd folios" makes the GUP code use FOLL_PIN rather than
   bare refcount increments. So these paes can first be moved aside if
   they reside in the movable zone or a CMA block.

 - Andrii Nakryiko has added a binary ioctl()-based API to
   /proc/pid/maps for much faster reading of vma information. The series
   is "query VMAs from /proc/<pid>/maps".

 - In the series "mm: introduce per-order mTHP split counters" Lance
   Yang improves the kernel's presentation of developer information
   related to multisize THP splitting.

 - Michael Ellerman has developed the series "Reimplement huge pages
   without hugepd on powerpc (8xx, e500, book3s/64)". This permits
   userspace to use all available huge page sizes.

 - In the series "revert unconditional slab and page allocator fault
   injection calls" Vlastimil Babka removes a performance-affecting and
   not very useful feature from slab fault injection.

* tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits)
  mm/mglru: fix ineffective protection calculation
  mm/zswap: fix a white space issue
  mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio
  mm/hugetlb: fix possible recursive locking detected warning
  mm/gup: clear the LRU flag of a page before adding to LRU batch
  mm/numa_balancing: teach mpol_to_str about the balancing mode
  mm: memcg1: convert charge move flags to unsigned long long
  alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting
  lib: reuse page_ext_data() to obtain codetag_ref
  lib: add missing newline character in the warning message
  mm/mglru: fix overshooting shrinker memory
  mm/mglru: fix div-by-zero in vmpressure_calc_level()
  mm/kmemleak: replace strncpy() with strscpy()
  mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
  mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB
  mm: ignore data-race in __swap_writepage
  hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr
  mm: shmem: rename mTHP shmem counters
  mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async()
  mm/migrate: putback split folios when numa hint migration fails
  ...
2024-07-21 17:15:46 -07:00
Christophe Leroy
8268614b40 mm: remove CONFIG_ARCH_HAS_HUGEPD
powerpc was the only user of CONFIG_ARCH_HAS_HUGEPD and doesn't use it
anymore, so remove all related code.

Link: https://lkml.kernel.org/r/4b10c54c794780b955f3ad6c657d0199dd792146.1719928057.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-12 15:52:19 -07:00
Ilya Leoshkevich
854fa98d1d kmsan: disable KMSAN when DEFERRED_STRUCT_PAGE_INIT is enabled
KMSAN relies on memblock returning all available pages to it (see
kmsan_memblock_free_pages()).  It partitions these pages into 3
categories: pages available to the buddy allocator, shadow pages and
origin pages.  This partitioning is static.

If new pages appear after kmsan_init_runtime(), it is considered an error.
DEFERRED_STRUCT_PAGE_INIT causes this, so mark it as incompatible with
KMSAN.

Link: https://lkml.kernel.org/r/20240621113706.315500-4-iii@linux.ibm.com
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <kasan-dev@googlegroups.com>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:21 -07:00
Javier Martinez Canillas
34f7c5288a mm/Kconfig: mention arm64 in DEFAULT_MMAP_MIN_ADDR symbol help text
Currently ppc64 and x86 are mentioned as architectures where a 65536 value
is reasonable but arm64 isn't listed and it is also a 64-bit architecture.

The help text says that for "arm" the value should be no higher than 32768
but it's only talking about 32-bit ARM.  Adding arm64 to the above list
can make this more clear and avoid confusing users who may think that the
32k limit would also apply to 64-bit ARM.

Link: https://lkml.kernel.org/r/20240619083047.114613-1-javierm@redhat.com
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Cc: Brian Masney <bmasney@redhat.com>
Cc: Javier Martinez Canillas <javierm@redhat.com>
Cc: Maxime Ripard <mripard@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:19 -07:00
David Hildenbrand
43d746dc49 mm/zsmalloc: use a proper page type
Let's clean it up: use a proper page type and store our data (offset into
a page) in the lower 16 bit as documented.

We won't be able to support 256 KiB base pages, which is acceptable. 
Teach Kconfig to handle that cleanly using a new CONFIG_HAVE_ZSMALLOC.

Based on this, we should do a proper "struct zsdesc" conversion, as
proposed in [1].

This removes the last _mapcount/page_type offender.

[1] https://lore.kernel.org/all/20231130101242.2590384-1-42.hyeyoo@gmail.com/

Link: https://lkml.kernel.org/r/20240529111904.2069608-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Sergey Senozhatsky <senozhatsky@chromium.org>	[zram/zsmalloc workloads]
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:16 -07:00
Kees Cook
67f2df3b82 mm/slab: Plumb kmem_buckets into __do_kmalloc_node()
Introduce CONFIG_SLAB_BUCKETS which provides the infrastructure to
support separated kmalloc buckets (in the following kmem_buckets_create()
patches and future codetag-based separation). Since this will provide
a mitigation for a very common case of exploits, it is recommended to
enable this feature for general purpose distros. By default, the new
Kconfig will be enabled if CONFIG_SLAB_FREELIST_HARDENED is enabled (and
it is added to the hardening.config Kconfig fragment).

To be able to choose which buckets to allocate from, make the buckets
available to the internal kmalloc interfaces by adding them as the
second argument, rather than depending on the buckets being chosen from
the fixed set of global buckets. Where the bucket is not available,
pass NULL, which means "use the default system kmalloc bucket set"
(the prior existing behavior), as implemented in kmalloc_slab().

To avoid adding the extra argument when !CONFIG_SLAB_BUCKETS, only the
top-level macros and static inlines use the buckets argument (where
they are stripped out and compiled out respectively). The actual extern
functions can then be built without the argument, and the internals
fall back to the global kmalloc buckets unconditionally.

Co-developed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Kees Cook <kees@kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2024-07-03 12:24:19 +02:00
Linus Torvalds
61307b7be4 The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.  Notable
 series include:
 
 - Lucas Stach has provided some page-mapping
   cleanup/consolidation/maintainability work in the series "mm/treewide:
   Remove pXd_huge() API".
 
 - In the series "Allow migrate on protnone reference with
   MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
   MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
   test.
 
 - In their series "Memory allocation profiling" Kent Overstreet and
   Suren Baghdasaryan have contributed a means of determining (via
   /proc/allocinfo) whereabouts in the kernel memory is being allocated:
   number of calls and amount of memory.
 
 - Matthew Wilcox has provided the series "Various significant MM
   patches" which does a number of rather unrelated things, but in largely
   similar code sites.
 
 - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
   Weiner has fixed the page allocator's handling of migratetype requests,
   with resulting improvements in compaction efficiency.
 
 - In the series "make the hugetlb migration strategy consistent" Baolin
   Wang has fixed a hugetlb migration issue, which should improve hugetlb
   allocation reliability.
 
 - Liu Shixin has hit an I/O meltdown caused by readahead in a
   memory-tight memcg.  Addressed in the series "Fix I/O high when memory
   almost met memcg limit".
 
 - In the series "mm/filemap: optimize folio adding and splitting" Kairui
   Song has optimized pagecache insertion, yielding ~10% performance
   improvement in one test.
 
 - Baoquan He has cleaned up and consolidated the early zone
   initialization code in the series "mm/mm_init.c: refactor
   free_area_init_core()".
 
 - Baoquan has also redone some MM initializatio code in the series
   "mm/init: minor clean up and improvement".
 
 - MM helper cleanups from Christoph Hellwig in his series "remove
   follow_pfn".
 
 - More cleanups from Matthew Wilcox in the series "Various page->flags
   cleanups".
 
 - Vlastimil Babka has contributed maintainability improvements in the
   series "memcg_kmem hooks refactoring".
 
 - More folio conversions and cleanups in Matthew Wilcox's series
 
 	"Convert huge_zero_page to huge_zero_folio"
 	"khugepaged folio conversions"
 	"Remove page_idle and page_young wrappers"
 	"Use folio APIs in procfs"
 	"Clean up __folio_put()"
 	"Some cleanups for memory-failure"
 	"Remove page_mapping()"
 	"More folio compat code removal"
 
 - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
   functions to work on folis".
 
 - Code consolidation and cleanup work related to GUP's handling of
   hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
 
 - Rick Edgecombe has developed some fixes to stack guard gaps in the
   series "Cover a guard gap corner case".
 
 - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
   "mm/ksm: fix ksm exec support for prctl".
 
 - Baolin Wang has implemented NUMA balancing for multi-size THPs.  This
   is a simple first-cut implementation for now.  The series is "support
   multi-size THP numa balancing".
 
 - Cleanups to vma handling helper functions from Matthew Wilcox in the
   series "Unify vma_address and vma_pgoff_address".
 
 - Some selftests maintenance work from Dev Jain in the series
   "selftests/mm: mremap_test: Optimizations and style fixes".
 
 - Improvements to the swapping of multi-size THPs from Ryan Roberts in
   the series "Swap-out mTHP without splitting".
 
 - Kefeng Wang has significantly optimized the handling of arm64's
   permission page faults in the series
 
 	"arch/mm/fault: accelerate pagefault when badaccess"
 	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
 
 - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
   GUP-fast".
 
 - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
   use struct vm_fault".
 
 - selftests build fixes from John Hubbard in the series "Fix
   selftests/mm build without requiring "make headers"".
 
 - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
   series "Improved Memory Tier Creation for CPUless NUMA Nodes".  Fixes
   the initialization code so that migration between different memory types
   works as intended.
 
 - David Hildenbrand has improved follow_pte() and fixed an errant driver
   in the series "mm: follow_pte() improvements and acrn follow_pte()
   fixes".
 
 - David also did some cleanup work on large folio mapcounts in his
   series "mm: mapcount for large folios + page_mapcount() cleanups".
 
 - Folio conversions in KSM in Alex Shi's series "transfer page to folio
   in KSM".
 
 - Barry Song has added some sysfs stats for monitoring multi-size THP's
   in the series "mm: add per-order mTHP alloc and swpout counters".
 
 - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
   and limit checking cleanups".
 
 - Matthew Wilcox has been looking at buffer_head code and found the
   documentation to be lacking.  The series is "Improve buffer head
   documentation".
 
 - Multi-size THPs get more work, this time from Lance Yang.  His series
   "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
   the freeing of these things.
 
 - Kemeng Shi has added more userspace-visible writeback instrumentation
   in the series "Improve visibility of writeback".
 
 - Kemeng Shi then sent some maintenance work on top in the series "Fix
   and cleanups to page-writeback".
 
 - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
   series "Improve anon_vma scalability for anon VMAs".  Intel's test bot
   reported an improbable 3x improvement in one test.
 
 - SeongJae Park adds some DAMON feature work in the series
 
 	"mm/damon: add a DAMOS filter type for page granularity access recheck"
 	"selftests/damon: add DAMOS quota goal test"
 
 - Also some maintenance work in the series
 
 	"mm/damon/paddr: simplify page level access re-check for pageout"
 	"mm/damon: misc fixes and improvements"
 
 - David Hildenbrand has disabled some known-to-fail selftests ni the
   series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
 
 - memcg metadata storage optimizations from Shakeel Butt in "memcg:
   reduce memory consumption by memcg stats".
 
 - DAX fixes and maintenance work from Vishal Verma in the series
   "dax/bus.c: Fixups for dax-bus locking".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
 jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
 nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
 =V3R/
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull mm updates from Andrew Morton:
 "The usual shower of singleton fixes and minor series all over MM,
  documented (hopefully adequately) in the respective changelogs.
  Notable series include:

   - Lucas Stach has provided some page-mapping cleanup/consolidation/
     maintainability work in the series "mm/treewide: Remove pXd_huge()
     API".

   - In the series "Allow migrate on protnone reference with
     MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
     MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
     one test.

   - In their series "Memory allocation profiling" Kent Overstreet and
     Suren Baghdasaryan have contributed a means of determining (via
     /proc/allocinfo) whereabouts in the kernel memory is being
     allocated: number of calls and amount of memory.

   - Matthew Wilcox has provided the series "Various significant MM
     patches" which does a number of rather unrelated things, but in
     largely similar code sites.

   - In his series "mm: page_alloc: freelist migratetype hygiene"
     Johannes Weiner has fixed the page allocator's handling of
     migratetype requests, with resulting improvements in compaction
     efficiency.

   - In the series "make the hugetlb migration strategy consistent"
     Baolin Wang has fixed a hugetlb migration issue, which should
     improve hugetlb allocation reliability.

   - Liu Shixin has hit an I/O meltdown caused by readahead in a
     memory-tight memcg. Addressed in the series "Fix I/O high when
     memory almost met memcg limit".

   - In the series "mm/filemap: optimize folio adding and splitting"
     Kairui Song has optimized pagecache insertion, yielding ~10%
     performance improvement in one test.

   - Baoquan He has cleaned up and consolidated the early zone
     initialization code in the series "mm/mm_init.c: refactor
     free_area_init_core()".

   - Baoquan has also redone some MM initializatio code in the series
     "mm/init: minor clean up and improvement".

   - MM helper cleanups from Christoph Hellwig in his series "remove
     follow_pfn".

   - More cleanups from Matthew Wilcox in the series "Various
     page->flags cleanups".

   - Vlastimil Babka has contributed maintainability improvements in the
     series "memcg_kmem hooks refactoring".

   - More folio conversions and cleanups in Matthew Wilcox's series:
	"Convert huge_zero_page to huge_zero_folio"
	"khugepaged folio conversions"
	"Remove page_idle and page_young wrappers"
	"Use folio APIs in procfs"
	"Clean up __folio_put()"
	"Some cleanups for memory-failure"
	"Remove page_mapping()"
	"More folio compat code removal"

   - David Hildenbrand chipped in with "fs/proc/task_mmu: convert
     hugetlb functions to work on folis".

   - Code consolidation and cleanup work related to GUP's handling of
     hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".

   - Rick Edgecombe has developed some fixes to stack guard gaps in the
     series "Cover a guard gap corner case".

   - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
     series "mm/ksm: fix ksm exec support for prctl".

   - Baolin Wang has implemented NUMA balancing for multi-size THPs.
     This is a simple first-cut implementation for now. The series is
     "support multi-size THP numa balancing".

   - Cleanups to vma handling helper functions from Matthew Wilcox in
     the series "Unify vma_address and vma_pgoff_address".

   - Some selftests maintenance work from Dev Jain in the series
     "selftests/mm: mremap_test: Optimizations and style fixes".

   - Improvements to the swapping of multi-size THPs from Ryan Roberts
     in the series "Swap-out mTHP without splitting".

   - Kefeng Wang has significantly optimized the handling of arm64's
     permission page faults in the series
	"arch/mm/fault: accelerate pagefault when badaccess"
	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"

   - GUP cleanups from David Hildenbrand in "mm/gup: consistently call
     it GUP-fast".

   - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
     path to use struct vm_fault".

   - selftests build fixes from John Hubbard in the series "Fix
     selftests/mm build without requiring "make headers"".

   - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
     series "Improved Memory Tier Creation for CPUless NUMA Nodes".
     Fixes the initialization code so that migration between different
     memory types works as intended.

   - David Hildenbrand has improved follow_pte() and fixed an errant
     driver in the series "mm: follow_pte() improvements and acrn
     follow_pte() fixes".

   - David also did some cleanup work on large folio mapcounts in his
     series "mm: mapcount for large folios + page_mapcount() cleanups".

   - Folio conversions in KSM in Alex Shi's series "transfer page to
     folio in KSM".

   - Barry Song has added some sysfs stats for monitoring multi-size
     THP's in the series "mm: add per-order mTHP alloc and swpout
     counters".

   - Some zswap cleanups from Yosry Ahmed in the series "zswap
     same-filled and limit checking cleanups".

   - Matthew Wilcox has been looking at buffer_head code and found the
     documentation to be lacking. The series is "Improve buffer head
     documentation".

   - Multi-size THPs get more work, this time from Lance Yang. His
     series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
     optimizes the freeing of these things.

   - Kemeng Shi has added more userspace-visible writeback
     instrumentation in the series "Improve visibility of writeback".

   - Kemeng Shi then sent some maintenance work on top in the series
     "Fix and cleanups to page-writeback".

   - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
     the series "Improve anon_vma scalability for anon VMAs". Intel's
     test bot reported an improbable 3x improvement in one test.

   - SeongJae Park adds some DAMON feature work in the series
	"mm/damon: add a DAMOS filter type for page granularity access recheck"
	"selftests/damon: add DAMOS quota goal test"

   - Also some maintenance work in the series
	"mm/damon/paddr: simplify page level access re-check for pageout"
	"mm/damon: misc fixes and improvements"

   - David Hildenbrand has disabled some known-to-fail selftests ni the
     series "selftests: mm: cow: flag vmsplice() hugetlb tests as
     XFAIL".

   - memcg metadata storage optimizations from Shakeel Butt in "memcg:
     reduce memory consumption by memcg stats".

   - DAX fixes and maintenance work from Vishal Verma in the series
     "dax/bus.c: Fixups for dax-bus locking""

* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
  memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
  selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
  selftests: cgroup: add tests to verify the zswap writeback path
  mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
  mm/damon/core: fix return value from damos_wmark_metric_value
  mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
  selftests: cgroup: remove redundant enabling of memory controller
  Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
  Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
  Docs/mm/damon/design: use a list for supported filters
  Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
  Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
  selftests/damon: classify tests for functionalities and regressions
  selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
  selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
  selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
  mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
  selftests/damon: add a test for DAMOS quota goal
  ...
2024-05-19 09:21:03 -07:00
Mike Rapoport (IBM)
12af2b83d0 mm: introduce execmem_alloc() and execmem_free()
module_alloc() is used everywhere as a mean to allocate memory for code.

Beside being semantically wrong, this unnecessarily ties all subsystems
that need to allocate code, such as ftrace, kprobes and BPF to modules and
puts the burden of code allocation to the modules code.

Several architectures override module_alloc() because of various
constraints where the executable memory can be located and this causes
additional obstacles for improvements of code allocation.

Start splitting code allocation from modules by introducing execmem_alloc()
and execmem_free() APIs.

Initially, execmem_alloc() is a wrapper for module_alloc() and
execmem_free() is a replacement of module_memfree() to allow updating all
call sites to use the new APIs.

Since architectures define different restrictions on placement,
permissions, alignment and other parameters for memory that can be used by
different subsystems that allocate executable memory, execmem_alloc() takes
a type argument, that will be used to identify the calling subsystem and to
allow architectures define parameters for ranges suitable for that
subsystem.

No functional changes.

Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2024-05-14 00:31:43 -07:00
David Hildenbrand
25176ad09c mm/treewide: rename CONFIG_HAVE_FAST_GUP to CONFIG_HAVE_GUP_FAST
Nowadays, we call it "GUP-fast", the external interface includes functions
like "get_user_pages_fast()", and we renamed all internal functions to
reflect that as well.

Let's make the config option reflect that.

Link: https://lkml.kernel.org/r/20240402125516.223131-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:41 -07:00
Peter Xu
ac3830c3b2 mm/Kconfig: CONFIG_PGTABLE_HAS_HUGE_LEAVES
Patch series "mm/gup: Unify hugetlb, part 2", v4.

The series removes the hugetlb slow gup path after a previous refactor
work [1], so that slow gup now uses the exact same path to process all
kinds of memory including hugetlb.

For the long term, we may want to remove most, if not all, call sites of
huge_pte_offset().  It'll be ideal if that API can be completely dropped
from arch hugetlb API.  This series is one small step towards merging
hugetlb specific codes into generic mm paths.  From that POV, this series
removes one reference to huge_pte_offset() out of many others.

One goal of such a route is that we can reconsider merging hugetlb
features like High Granularity Mapping (HGM).  It was not accepted in the
past because it may add lots of hugetlb specific codes and make the mm
code even harder to maintain.  With a merged codeset, features like HGM
can hopefully share some code with THP, legacy (PMD+) or modern
(continuous PTEs).

To make it work, the generic slow gup code will need to at least
understand hugepd, which is already done like so in fast-gup.  Due to the
specialty of hugepd to be software-only solution (no hardware recognizes
the hugepd format, so it's purely artificial structures), there's chance
we can merge some or all hugepd formats with cont_pte in the future.  That
question is yet unsettled from Power side to have an acknowledgement.  As
of now for this series, I kept the hugepd handling because we may still
need to do so before getting a clearer picture of the future of hugepd. 
The other reason is simply that we did it already for fast-gup and most
codes are still around to be reused.  It'll make more sense to keep
slow/fast gup behave the same before a decision is made to remove hugepd.

There's one major difference for slow-gup on cont_pte / cont_pmd handling,
currently supported on three architectures (aarch64, riscv, ppc).  Before
the series, slow gup will be able to recognize e.g.  cont_pte entries with
the help of huge_pte_offset() when hstate is around.  Now it's gone but
still working, by looking up pgtable entries one by one.

It's not ideal, but hopefully this change should not affect yet on major
workloads.  There's some more information in the commit message of the
last patch.  If this would be a concern, we can consider teaching slow gup
to recognize cont pte/pmd entries, and that should recover the lost
performance.  But I doubt its necessity for now, so I kept it as simple as
it can be.

Patch layout
=============

Patch 1-8:    Preparation works, or cleanups in relevant code paths
Patch 9-11:   Teach slow gup with all kinds of huge entries (pXd, hugepd)
Patch 12:     Drop hugetlb_follow_page_mask()

More information can be found in the commit messages of each patch.

[1] https://lore.kernel.org/all/20230628215310.73782-1-peterx@redhat.com
[2] https://lore.kernel.org/r/20240321215047.678172-1-peterx@redhat.com




Introduce a config option that will be selected as long as huge leaves are
involved in pgtable (thp or hugetlbfs).  It would be useful to mark any
code with this new config that can process either hugetlb or thp pages in
any level that is higher than pte level.

Link: https://lkml.kernel.org/r/20240327152332.950956-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20240327152332.950956-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:20 -07:00
Maíra Canal
b413f9cd4c mm: Update shuffle documentation to match its current state
Commit 839195352d82 ("mm/shuffle: remove dynamic reconfiguration")
removed the dynamic reconfiguration capabilities from the shuffle page
allocator. This means that, now, we don't have any perspective of an
"autodetection of memory-side-cache" that triggers the enablement of the
shuffle page allocator.

Therefore, let the documentation reflect that the only way to enable
the shuffle page allocator is by setting `page_alloc.shuffle=1`.

Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20240422142007.1062231-1-mcanal@igalia.com
2024-04-24 13:05:01 -06:00
Linus Torvalds
1d35aae78f Kbuild updates for v6.9
- Generate a list of built DTB files (arch/*/boot/dts/dtbs-list)
 
  - Use more threads when building Debian packages in parallel
 
  - Fix warnings shown during the RPM kernel package uninstallation
 
  - Change OBJECT_FILES_NON_STANDARD_*.o etc. to take a relative path to
    Makefile
 
  - Support GCC's -fmin-function-alignment flag
 
  - Fix a null pointer dereference bug in modpost
 
  - Add the DTB support to the RPM package
 
  - Various fixes and cleanups in Kconfig
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmX8HGIVHG1hc2FoaXJv
 eUBrZXJuZWwub3JnAAoJED2LAQed4NsGYfIQAIl/zEFoNVSHGR4TIvO7SIwkT4MM
 VAm0W6XRFaXfIGw8HL/MXe+U9jAyeQ9yL9uUVv8PqFTO+LzBbW1X1X97tlmrlQsC
 7mdxbA1KJXwkwt4wH/8/EZQMwHr327vtVH4AilSm+gAaWMXaSKAye3ulKQQ2gevz
 vP6aOcfbHIWOPdxA53cLdSl9LOGrYNczKySHXKV9O39T81F+ko7wPpdkiMWw5LWG
 ISRCV8bdXli8j10Pmg8jlbevSKl4Z5FG2BVw/Cl8rQ5tBBoCzFsUPnnp9A29G8QP
 OqRhbwxtkSm67BMJAYdHnhjp/l0AOEbmetTGpna+R06hirOuXhR3vc6YXZxhQjff
 LmKaqfG5YchRALS1fNDsRUNIkQxVJade+tOUG+V4WbxHQKWX7Ghu5EDlt2/x7P0p
 +XLPE48HoNQLQOJ+pgIOkaEDl7WLfGhoEtEgprZBuEP2h39xcdbYJyF10ZAAR4UZ
 FF6J9lDHbf7v1uqD2YnAQJQ6jJ06CvN6/s6SdiJnCWSs5cYRW0fnYigSIuwAgGHZ
 c/QFECoGEflXGGuqZDl5iXiIjhWKzH2nADSVEs7maP47vapcMWb9gA7VBNoOr5M0
 IXuFo1khChF4V2pxqlDj3H5TkDlFENYT/Wjh+vvjx8XplKCRKaSh+LaZ39hja61V
 dWH7BPecS44h4KXx
 =tFdl
 -----END PGP SIGNATURE-----

Merge tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild

Pull Kbuild updates from Masahiro Yamada:

 - Generate a list of built DTB files (arch/*/boot/dts/dtbs-list)

 - Use more threads when building Debian packages in parallel

 - Fix warnings shown during the RPM kernel package uninstallation

 - Change OBJECT_FILES_NON_STANDARD_*.o etc. to take a relative path to
   Makefile

 - Support GCC's -fmin-function-alignment flag

 - Fix a null pointer dereference bug in modpost

 - Add the DTB support to the RPM package

 - Various fixes and cleanups in Kconfig

* tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (67 commits)
  kconfig: tests: test dependency after shuffling choices
  kconfig: tests: add a test for randconfig with dependent choices
  kconfig: tests: support KCONFIG_SEED for the randconfig runner
  kbuild: rpm-pkg: add dtb files in kernel rpm
  kconfig: remove unneeded menu_is_visible() call in conf_write_defconfig()
  kconfig: check prompt for choice while parsing
  kconfig: lxdialog: remove unused dialog colors
  kconfig: lxdialog: fix button color for blackbg theme
  modpost: fix null pointer dereference
  kbuild: remove GCC's default -Wpacked-bitfield-compat flag
  kbuild: unexport abs_srctree and abs_objtree
  kbuild: Move -Wenum-{compare-conditional,enum-conversion} into W=1
  kconfig: remove named choice support
  kconfig: use linked list in get_symbol_str() to iterate over menus
  kconfig: link menus to a symbol
  kbuild: fix inconsistent indentation in top Makefile
  kbuild: Use -fmin-function-alignment when available
  alpha: merge two entries for CONFIG_ALPHA_GAMMA
  alpha: merge two entries for CONFIG_ALPHA_EV4
  kbuild: change DTC_FLAGS_<basetarget>.o to take the path relative to $(obj)
  ...
2024-03-21 14:41:00 -07:00
Mathieu Desnoyers
8690bbcf3b Introduce cpu_dcache_is_aliasing() across all architectures
Introduce a generic way to query whether the data cache is virtually
aliased on all architectures. Its purpose is to ensure that subsystems
which are incompatible with virtually aliased data caches (e.g. FS_DAX)
can reliably query this.

For data cache aliasing, there are three scenarios dependending on the
architecture. Here is a breakdown based on my understanding:

A) The data cache is always aliasing:

* arc
* csky
* m68k (note: shared memory mappings are incoherent ? SHMLBA is missing there.)
* sh
* parisc

B) The data cache aliasing is statically known or depends on querying CPU
   state at runtime:

* arm (cache_is_vivt() || cache_is_vipt_aliasing())
* mips (cpu_has_dc_aliases)
* nios2 (NIOS2_DCACHE_SIZE > PAGE_SIZE)
* sparc32 (vac_cache_size > PAGE_SIZE)
* sparc64 (L1DCACHE_SIZE > PAGE_SIZE)
* xtensa (DCACHE_WAY_SIZE > PAGE_SIZE)

C) The data cache is never aliasing:

* alpha
* arm64 (aarch64)
* hexagon
* loongarch (but with incoherent write buffers, which are disabled since
             commit d23b7795 ("LoongArch: Change SHMLBA from SZ_64K to PAGE_SIZE"))
* microblaze
* openrisc
* powerpc
* riscv
* s390
* um
* x86

Require architectures in A) and B) to select ARCH_HAS_CPU_CACHE_ALIASING and
implement "cpu_dcache_is_aliasing()".

Architectures in C) don't select ARCH_HAS_CPU_CACHE_ALIASING, and thus
cpu_dcache_is_aliasing() simply evaluates to "false".

Note that this leaves "cpu_icache_is_aliasing()" to be implemented as future
work. This would be useful to gate features like XIP on architectures
which have aliasing CPU dcache-icache but not CPU dcache-dcache.

Use "cpu_dcache" and "cpu_cache" rather than just "dcache" and "cache"
to clarify that we really mean "CPU data cache" and "CPU cache" to
eliminate any possible confusion with VFS "dentry cache" and "page
cache".

Link: https://lore.kernel.org/lkml/20030910210416.GA24258@mail.jlokier.co.uk/
Link: https://lkml.kernel.org/r/20240215144633.96437-9-mathieu.desnoyers@efficios.com
Fixes: d92576f1167c ("dax: does not work correctly with virtual aliasing caches")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Michael Sclafani <dm-devel@lists.linux.dev>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:19 -08:00
Chengming Zhou
c2e2ba7702 mm/zswap: only support zswap_exclusive_loads_enabled
The !zswap_exclusive_loads_enabled mode will leave compressed copy in
the zswap tree and lru list after the folio swapin.

There are some disadvantages in this mode:
1. It's a waste of memory since there are two copies of data, one is
   folio, the other one is compressed data in zswap. And it's unlikely
   the compressed data is useful in the near future.

2. If that folio is dirtied, the compressed data must be not useful,
   but we don't know and don't invalidate the trashy memory in zswap.

3. It's not reclaimable from zswap shrinker since zswap_writeback_entry()
   will always return -EEXIST and terminate the shrinking process.

On the other hand, the only downside of zswap_exclusive_loads_enabled
is a little more cpu usage/latency when compression, and the same if
the folio is removed from swapcache or dirtied.

More explanation by Johannes on why we should consider exclusive load
as the default for zswap:

  Caching "swapout work" is helpful when the system is thrashing. Then
  recently swapped in pages might get swapped out again very soon. It
  certainly makes sense with conventional swap, because keeping a clean
  copy on the disk saves IO work and doesn't cost any additional memory.

  But with zswap, it's different. It saves some compression work on a
  thrashing page. But the act of keeping compressed memory contributes
  to a higher rate of thrashing. And that can cause IO in other places
  like zswap writeback and file memory.

And the A/B test results of the kernel build in tmpfs with limited memory
can support this theory:

			!exclusive	exclusive
real                       63.80         63.01
user                       1063.83       1061.32
sys                        290.31        266.15

workingset_refault_anon    2383084.40    1976397.40
workingset_refault_file    44134.00      45689.40
workingset_activate_anon   837878.00     728441.20
workingset_activate_file   4710.00       4085.20
workingset_restore_anon    732622.60     639428.40
workingset_restore_file    1007.00       926.80
workingset_nodereclaim     0.00          0.00
pgscan                     14343003.40   12409570.20
pgscan_kswapd              0.00          0.00
pgscan_direct              14343003.40   12409570.20
pgscan_khugepaged          0.00          0.00

Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-5-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:54 -08:00
Anshuman Khandual
73307523c9 mm/cma: make MAX_CMA_AREAS = CONFIG_CMA_AREAS
There is no real difference between the global area, and other
additionally configured CMA areas via CONFIG_CMA_AREAS that always
defaults without user input.  This makes MAX_CMA_AREAS same as
CONFIG_CMA_AREAS, also incrementing its default values, thus maintaining
current default for MAX_CMA_AREAS both for UMA and NUMA systems.

Link: https://lkml.kernel.org/r/20240205051929.298559-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:53 -08:00
Anshuman Khandual
fe58582c0e mm/cma: drop CONFIG_CMA_DEBUG
All pr_debug() prints in (mm/cma.c) could be enabled via standard Makefile
based method.  Besides cma_debug_show_areas() should always be called
during cma_alloc() failure path.  This seemingly redundant config,
CONFIG_CMA_DEBUG can be dropped without any problem.

[lukas.bulwahn@gmail.com: remove debug code to removed CONFIG_CMA_DEBUG]
  Link: https://lkml.kernel.org/r/20240207143825.986-1-lukas.bulwahn@gmail.com
Link: https://lkml.kernel.org/r/20240205031647.283510-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:53 -08:00
Masahiro Yamada
cd14b01846 treewide: replace or remove redundant def_bool in Kconfig files
'def_bool X' is a shorthand for 'bool' plus 'default X'.

'def_bool' is redundant where 'bool' is already present, so 'def_bool X'
can be replaced with 'default X', or removed if X is 'n'.

Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2024-02-20 20:47:45 +09:00
Linus Torvalds
0dde2bf67b IOMMU Updates for Linux v6.8
Including:
 
 	- Core changes:
 	  - Fix race conditions in device probe path
 	  - Retire IOMMU bus_ops
 	  - Support for passing custom allocators to page table drivers
 	  - Clean up Kconfig around IOMMU_SVA
 	  - Support for sharing SVA domains with all devices bound to
 	    a mm
 	  - Firmware data parsing cleanup
 	  - Tracing improvements for iommu-dma code
 	  - Some smaller fixes and cleanups
 
 	- ARM-SMMU drivers:
 	  - Device-tree binding updates:
 	     - Add additional compatible strings for Qualcomm SoCs
 	     - Document Adreno clocks for Qualcomm's SM8350 SoC
 	  - SMMUv2:
 	    - Implement support for the ->domain_alloc_paging() callback
 	    - Ensure Secure context is restored following suspend of Qualcomm SMMU
 	      implementation
 	  - SMMUv3:
 	    - Disable stalling mode for the "quiet" context descriptor
 	    - Minor refactoring and driver cleanups
 
 	 - Intel VT-d driver:
 	   - Cleanup and refactoring
 
 	 - AMD IOMMU driver:
 	   - Improve IO TLB invalidation logic
 	   - Small cleanups and improvements
 
 	 - Rockchip IOMMU driver:
 	   - DT binding update to add Rockchip RK3588
 
 	 - Apple DART driver:
 	   - Apple M1 USB4/Thunderbolt DART support
 	   - Cleanups
 
 	 - Virtio IOMMU driver:
 	   - Add support for iotlb_sync_map
 	   - Enable deferred IO TLB flushes
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmWecQoACgkQK/BELZcB
 GuN5ZxAAzC5QUKAzANx0puk7QhPpKKlbSvj6Q7iRgCLk00KJO1+VQh9v4ouCmXqF
 kn3Ko8gddjhtrgwN0OQ54F39cLUrp1SBemy71K5YOR+vu8VKtwtmawZGeeRZ+k+B
 Eohw58oaXTiR1maYvoLixLYczLrjklqyJOQ1vZ0GxFGxDqrFByAryHDgG/3OCpJx
 C9e6PsLbbfhfqA8Kv97iKcBqniGbXxAMuodqSUG0buQ3oZgfpIP6Bt3EgUzFGPGk
 3BTlYxowS/gkjUWd3fgjQFIFLTA01u9FhpA2Jb0a4v67pUCR64YxHN7rBQ6ZChtG
 kB9laQfU9re79RsHhqQzr0JT9x/eyq7pzGzjp5TV5TPW6IW+sqjMIPhzd9P08Ef7
 BclkCVobx0jSAHOhnnG4QJiKANr2Y2oM3HfsAJccMMY45RRhUKmVqM7jxMPfGn3A
 i+inlee73xTjZXJse1EWG1fmKKMLvX9LDEp4DyOfn9CqVT+7hpZvzPjfbGr937Rm
 JlwXhF3rQXEpOCagEsbt1vOf+V0e9QiCLf1Y2KpkIkDbE5wwSD/2qLm3tFhJG3oF
 fkW+J14Cid0pj+hY0afGe0kOUOIYlimu0nFmSf0pzMH+UktZdKogSfyb1gSDsy+S
 rsZRGPFhMJ832ExqhlDfxqBebqh+jsfKynlskui6Td5C9ZULaHA=
 =q751
 -----END PGP SIGNATURE-----

Merge tag 'iommu-updates-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu

Pull iommu updates from Joerg Roedel:
 "Core changes:
   - Fix race conditions in device probe path
   - Retire IOMMU bus_ops
   - Support for passing custom allocators to page table drivers
   - Clean up Kconfig around IOMMU_SVA
   - Support for sharing SVA domains with all devices bound to a mm
   - Firmware data parsing cleanup
   - Tracing improvements for iommu-dma code
   - Some smaller fixes and cleanups

  ARM-SMMU drivers:
   - Device-tree binding updates:
      - Add additional compatible strings for Qualcomm SoCs
      - Document Adreno clocks for Qualcomm's SM8350 SoC
   - SMMUv2:
      - Implement support for the ->domain_alloc_paging() callback
      - Ensure Secure context is restored following suspend of Qualcomm
        SMMU implementation
   - SMMUv3:
      - Disable stalling mode for the "quiet" context descriptor
      - Minor refactoring and driver cleanups

  Intel VT-d driver:
   - Cleanup and refactoring

  AMD IOMMU driver:
   - Improve IO TLB invalidation logic
   - Small cleanups and improvements

  Rockchip IOMMU driver:
   - DT binding update to add Rockchip RK3588

  Apple DART driver:
   - Apple M1 USB4/Thunderbolt DART support
   - Cleanups

  Virtio IOMMU driver:
   - Add support for iotlb_sync_map
   - Enable deferred IO TLB flushes"

* tag 'iommu-updates-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (66 commits)
  iommu: Don't reserve 0-length IOVA region
  iommu/vt-d: Move inline helpers to header files
  iommu/vt-d: Remove unused vcmd interfaces
  iommu/vt-d: Remove unused parameter of intel_pasid_setup_pass_through()
  iommu/vt-d: Refactor device_to_iommu() to retrieve iommu directly
  iommu/sva: Fix memory leak in iommu_sva_bind_device()
  dt-bindings: iommu: rockchip: Add Rockchip RK3588
  iommu/dma: Trace bounce buffer usage when mapping buffers
  iommu/arm-smmu: Convert to domain_alloc_paging()
  iommu/arm-smmu: Pass arm_smmu_domain to internal functions
  iommu/arm-smmu: Implement IOMMU_DOMAIN_BLOCKED
  iommu/arm-smmu: Convert to a global static identity domain
  iommu/arm-smmu: Reorganize arm_smmu_domain_add_master()
  iommu/arm-smmu-v3: Remove ARM_SMMU_DOMAIN_NESTED
  iommu/arm-smmu-v3: Master cannot be NULL in arm_smmu_write_strtab_ent()
  iommu/arm-smmu-v3: Add a type for the STE
  iommu/arm-smmu-v3: disable stall for quiet_cd
  iommu/qcom: restore IOMMU state if needed
  iommu/arm-smmu-qcom: Add QCM2290 MDSS compatible
  iommu/arm-smmu-qcom: Add missing GMU entry to match table
  ...
2024-01-18 15:16:57 -08:00
Linus Torvalds
fb46e22a9e Many singleton patches against the MM code. The patch series which
are included in this merge do the following:
 
 - Peng Zhang has done some mapletree maintainance work in the
   series
 
 	"maple_tree: add mt_free_one() and mt_attr() helpers"
 	"Some cleanups of maple tree"
 
 - In the series "mm: use memmap_on_memory semantics for dax/kmem"
   Vishal Verma has altered the interworking between memory-hotplug
   and dax/kmem so that newly added 'device memory' can more easily
   have its memmap placed within that newly added memory.
 
 - Matthew Wilcox continues folio-related work (including a few
   fixes) in the patch series
 
 	"Add folio_zero_tail() and folio_fill_tail()"
 	"Make folio_start_writeback return void"
 	"Fix fault handler's handling of poisoned tail pages"
 	"Convert aops->error_remove_page to ->error_remove_folio"
 	"Finish two folio conversions"
 	"More swap folio conversions"
 
 - Kefeng Wang has also contributed folio-related work in the series
 
 	"mm: cleanup and use more folio in page fault"
 
 - Jim Cromie has improved the kmemleak reporting output in the
   series "tweak kmemleak report format".
 
 - In the series "stackdepot: allow evicting stack traces" Andrey
   Konovalov to permits clients (in this case KASAN) to cause
   eviction of no longer needed stack traces.
 
 - Charan Teja Kalla has fixed some accounting issues in the page
   allocator's atomic reserve calculations in the series "mm:
   page_alloc: fixes for high atomic reserve caluculations".
 
 - Dmitry Rokosov has added to the samples/ dorectory some sample
   code for a userspace memcg event listener application.  See the
   series "samples: introduce cgroup events listeners".
 
 - Some mapletree maintanance work from Liam Howlett in the series
   "maple_tree: iterator state changes".
 
 - Nhat Pham has improved zswap's approach to writeback in the
   series "workload-specific and memory pressure-driven zswap
   writeback".
 
 - DAMON/DAMOS feature and maintenance work from SeongJae Park in
   the series
 
 	"mm/damon: let users feed and tame/auto-tune DAMOS"
 	"selftests/damon: add Python-written DAMON functionality tests"
 	"mm/damon: misc updates for 6.8"
 
 - Yosry Ahmed has improved memcg's stats flushing in the series
   "mm: memcg: subtree stats flushing and thresholds".
 
 - In the series "Multi-size THP for anonymous memory" Ryan Roberts
   has added a runtime opt-in feature to transparent hugepages which
   improves performance by allocating larger chunks of memory during
   anonymous page faults.
 
 - Matthew Wilcox has also contributed some cleanup and maintenance
   work against eh buffer_head code int he series "More buffer_head
   cleanups".
 
 - Suren Baghdasaryan has done work on Andrea Arcangeli's series
   "userfaultfd move option".  UFFDIO_MOVE permits userspace heap
   compaction algorithms to move userspace's pages around rather than
   UFFDIO_COPY'a alloc/copy/free.
 
 - Stefan Roesch has developed a "KSM Advisor", in the series
   "mm/ksm: Add ksm advisor".  This is a governor which tunes KSM's
   scanning aggressiveness in response to userspace's current needs.
 
 - Chengming Zhou has optimized zswap's temporary working memory
   use in the series "mm/zswap: dstmem reuse optimizations and
   cleanups".
 
 - Matthew Wilcox has performed some maintenance work on the
   writeback code, both code and within filesystems.  The series is
   "Clean up the writeback paths".
 
 - Andrey Konovalov has optimized KASAN's handling of alloc and
   free stack traces for secondary-level allocators, in the series
   "kasan: save mempool stack traces".
 
 - Andrey also performed some KASAN maintenance work in the series
   "kasan: assorted clean-ups".
 
 - David Hildenbrand has gone to town on the rmap code.  Cleanups,
   more pte batching, folio conversions and more.  See the series
   "mm/rmap: interface overhaul".
 
 - Kinsey Ho has contributed some maintenance work on the MGLRU
   code in the series "mm/mglru: Kconfig cleanup".
 
 - Matthew Wilcox has contributed lruvec page accounting code
   cleanups in the series "Remove some lruvec page accounting
   functions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA
 jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27
 Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU=
 =0NHs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Peng Zhang has done some mapletree maintainance work in the series

	'maple_tree: add mt_free_one() and mt_attr() helpers'
	'Some cleanups of maple tree'

   - In the series 'mm: use memmap_on_memory semantics for dax/kmem'
     Vishal Verma has altered the interworking between memory-hotplug
     and dax/kmem so that newly added 'device memory' can more easily
     have its memmap placed within that newly added memory.

   - Matthew Wilcox continues folio-related work (including a few fixes)
     in the patch series

	'Add folio_zero_tail() and folio_fill_tail()'
	'Make folio_start_writeback return void'
	'Fix fault handler's handling of poisoned tail pages'
	'Convert aops->error_remove_page to ->error_remove_folio'
	'Finish two folio conversions'
	'More swap folio conversions'

   - Kefeng Wang has also contributed folio-related work in the series

	'mm: cleanup and use more folio in page fault'

   - Jim Cromie has improved the kmemleak reporting output in the series
     'tweak kmemleak report format'.

   - In the series 'stackdepot: allow evicting stack traces' Andrey
     Konovalov to permits clients (in this case KASAN) to cause eviction
     of no longer needed stack traces.

   - Charan Teja Kalla has fixed some accounting issues in the page
     allocator's atomic reserve calculations in the series 'mm:
     page_alloc: fixes for high atomic reserve caluculations'.

   - Dmitry Rokosov has added to the samples/ dorectory some sample code
     for a userspace memcg event listener application. See the series
     'samples: introduce cgroup events listeners'.

   - Some mapletree maintanance work from Liam Howlett in the series
     'maple_tree: iterator state changes'.

   - Nhat Pham has improved zswap's approach to writeback in the series
     'workload-specific and memory pressure-driven zswap writeback'.

   - DAMON/DAMOS feature and maintenance work from SeongJae Park in the
     series

	'mm/damon: let users feed and tame/auto-tune DAMOS'
	'selftests/damon: add Python-written DAMON functionality tests'
	'mm/damon: misc updates for 6.8'

   - Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
     memcg: subtree stats flushing and thresholds'.

   - In the series 'Multi-size THP for anonymous memory' Ryan Roberts
     has added a runtime opt-in feature to transparent hugepages which
     improves performance by allocating larger chunks of memory during
     anonymous page faults.

   - Matthew Wilcox has also contributed some cleanup and maintenance
     work against eh buffer_head code int he series 'More buffer_head
     cleanups'.

   - Suren Baghdasaryan has done work on Andrea Arcangeli's series
     'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
     compaction algorithms to move userspace's pages around rather than
     UFFDIO_COPY'a alloc/copy/free.

   - Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
     Add ksm advisor'. This is a governor which tunes KSM's scanning
     aggressiveness in response to userspace's current needs.

   - Chengming Zhou has optimized zswap's temporary working memory use
     in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.

   - Matthew Wilcox has performed some maintenance work on the writeback
     code, both code and within filesystems. The series is 'Clean up the
     writeback paths'.

   - Andrey Konovalov has optimized KASAN's handling of alloc and free
     stack traces for secondary-level allocators, in the series 'kasan:
     save mempool stack traces'.

   - Andrey also performed some KASAN maintenance work in the series
     'kasan: assorted clean-ups'.

   - David Hildenbrand has gone to town on the rmap code. Cleanups, more
     pte batching, folio conversions and more. See the series 'mm/rmap:
     interface overhaul'.

   - Kinsey Ho has contributed some maintenance work on the MGLRU code
     in the series 'mm/mglru: Kconfig cleanup'.

   - Matthew Wilcox has contributed lruvec page accounting code cleanups
     in the series 'Remove some lruvec page accounting functions'"

* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
  mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
  mm, treewide: introduce NR_PAGE_ORDERS
  selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
  selftests/mm: skip test if application doesn't has root privileges
  selftests/mm: conform test to TAP format output
  selftests: mm: hugepage-mmap: conform to TAP format output
  selftests/mm: gup_test: conform test to TAP format output
  mm/selftests: hugepage-mremap: conform test to TAP format output
  mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
  mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
  mm/memcontrol: remove __mod_lruvec_page_state()
  mm/khugepaged: use a folio more in collapse_file()
  slub: use a folio in __kmalloc_large_node
  slub: use folio APIs in free_large_kmalloc()
  slub: use alloc_pages_node() in alloc_slab_page()
  mm: remove inc/dec lruvec page state functions
  mm: ratelimit stat flush from workingset shrinker
  kasan: stop leaking stack trace handles
  mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
  mm/mglru: add dummy pmd_dirty()
  ...
2024-01-09 11:18:47 -08:00
Linus Torvalds
d30e51aa7b slab updates for 6.8
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmWWu9EACgkQu+CwddJF
 iJpXvQf/aGL7uEY57VpTm0t4gPwoZ9r2P89HxI/nQs9XgVzDcBmVp/cC0LDvSdcm
 t91kJO538KeGjMgvlhLMTEuoShH5FlPs6cOwrGAYUoAGa4NwiOpGvliGky+nNHqY
 w887ZgSzVLq0UOuSvn86N6enumMvewt4V+872+OWo6O1HWOJhC0SgHTIa8QPQtwb
 yZ9BghO5IqMRXiZEsSIwyO+tQHcaU6l2G5huFXzgMFUhkQqAB9KTFc3h6rYI+i80
 L4ppNXo2KNPGTDRb9dA8LNMWgvmfjhCb7chs8o1zSY2PwZlkzOix7EUBLCAIbc/2
 EIaFC8AsZjfT47D1t72r8QpHB+C14Q==
 =J+E7
 -----END PGP SIGNATURE-----

Merge tag 'slab-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab

Pull slab updates from Vlastimil Babka:

 - SLUB: delayed freezing of CPU partial slabs (Chengming Zhou)

   Freezing is an operation involving double_cmpxchg() that makes a slab
   exclusive for a particular CPU. Chengming noticed that we use it also
   in situations where we are not yet installing the slab as the CPU
   slab, because freezing also indicates that the slab is not on the
   shared list. This results in redundant freeze/unfreeze operation and
   can be avoided by marking separately the shared list presence by
   reusing the PG_workingset flag.

   This approach neatly avoids the issues described in 9b1ea29bc0d7
   ("Revert "mm, slub: consider rest of partial list if acquire_slab()
   fails"") as we can now grab a slab from the shared list in a quick
   and guaranteed way without the cmpxchg_double() operation that
   amplifies the lock contention and can fail.

   As a result, lkp has reported 34.2% improvement of
   stress-ng.rawudp.ops_per_sec

 - SLAB removal and SLUB cleanups (Vlastimil Babka)

   The SLAB allocator has been deprecated since 6.5 and nobody has
   objected so far. We agreed at LSF/MM to wait until the next LTS,
   which is 6.6, so we should be good to go now.

   This doesn't yet erase all traces of SLAB outside of mm/ so some dead
   code, comments or documentation remain, and will be cleaned up
   gradually (some series are already in the works).

   Removing the choice of allocators has already allowed to simplify and
   optimize the code wiring up the kmalloc APIs to the SLUB
   implementation.

* tag 'slab-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (34 commits)
  mm/slub: free KFENCE objects in slab_free_hook()
  mm/slub: handle bulk and single object freeing separately
  mm/slub: introduce __kmem_cache_free_bulk() without free hooks
  mm/slub: fix bulk alloc and free stats
  mm/slub: optimize free fast path code layout
  mm/slub: optimize alloc fastpath code layout
  mm/slub: remove slab_alloc() and __kmem_cache_alloc_lru() wrappers
  mm/slab: move kmalloc() functions from slab_common.c to slub.c
  mm/slab: move kmalloc_slab() to mm/slab.h
  mm/slab: move kfree() from slab_common.c to slub.c
  mm/slab: move struct kmem_cache_node from slab.h to slub.c
  mm/slab: move memcg related functions from slab.h to slub.c
  mm/slab: move pre/post-alloc hooks from slab.h to slub.c
  mm/slab: consolidate includes in the internal mm/slab.h
  mm/slab: move the rest of slub_def.h to mm/slab.h
  mm/slab: move struct kmem_cache_cpu declaration to slub.c
  mm/slab: remove mm/slab.c and slab_def.h
  mm/mempool/dmapool: remove CONFIG_DEBUG_SLAB ifdefs
  mm/slab: remove CONFIG_SLAB code from slab common code
  cpu/hotplug: remove CPUHP_SLAB_PREPARE hooks
  ...
2024-01-09 10:36:07 -08:00
Kirill A. Shutemov
5e0a760b44 mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive.  This has caused
issues with code that was not yet upstream and depended on the previous
definition.

To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.

Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-08 15:27:15 -08:00
Kinsey Ho
61dd3f246b mm/mglru: add CONFIG_LRU_GEN_WALKS_MMU
Add CONFIG_LRU_GEN_WALKS_MMU such that if disabled, the code that
walks page tables to promote pages into the youngest generation will
not be built.

Also improves code readability by adding two helper functions
get_mm_state() and get_next_mm().

Link: https://lkml.kernel.org/r/20231227141205.2200125-3-kinseyho@google.com
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Co-developed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Tested-by: Donet Tom <donettom@linux.vnet.ibm.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-05 10:17:44 -08:00
Joerg Roedel
75f74f85a4 Merge branches 'apple/dart', 'arm/rockchip', 'arm/smmu', 'virtio', 'x86/vt-d', 'x86/amd' and 'core' into next 2024-01-03 09:59:32 +01:00
Kefeng Wang
e99fb98d47 mm: remove unnecessary ia64 code and comment
IA64 has gone with commit cf8e8658100d ("arch: Remove Itanium (IA-64)
architecture"), remove unnecessary ia64 special mm code and comment too.

Link: https://lkml.kernel.org/r/20231222070203.2966980-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:57 -08:00
Dmytro Maluka
683ec99f12 mm/thp: add CONFIG_TRANSPARENT_HUGEPAGE_NEVER option
Currently enabling THP support (CONFIG_TRANSPARENT_HUGEPAGE) requires
enabling either CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS or
CONFIG_TRANSPARENT_HUGEPAGE_MADVISE, which both cause khugepaged starting
by default at kernel bootup.  Add the third choice
CONFIG_TRANSPARENT_HUGEPAGE_NEVER, in line with the existing kernel
command line setting transparent_hugepage=never, to disable THP by default
(in particular, to prevent starting khugepaged by default) but still allow
enabling it at runtime via sysfs.

Rationale: khugepaged has its own non-negligible memory cost even if it is
not used by any applications, since it bumps up vm.min_free_kbytes to its
own required minimum in set_recommended_min_free_kbytes().  For example,
on a machine with 4GB RAM, with 3 mm zones and pageblock_order ==
MAX_ORDER, starting khugepaged causes vm.min_free_kbytes increase from 8MB
to 132MB.

So if we use THP on machines with e.g.  >=8GB of memory for better
performance, but avoid using it on lower-memory machines to avoid its
memory overhead, then for the same reason we also want to avoid even
starting khugepaged on those <8GB machines.  So with
CONFIG_TRANSPARENT_HUGEPAGE_NEVER we can use the same kernel image on both
>=8GB and <8GB machines, with THP support enabled but khugepaged not
started by default.  The userspace can then decide to enable THP via sysfs
if needed, based on the total amount of memory.

This could also be achieved with the existing transparent_hugepage=never
setting in the kernel command line instead.  But it seems cleaner to avoid
tweaking the command line for such a basic setting.

P.S. I see that CONFIG_TRANSPARENT_HUGEPAGE_NEVER was already proposed
in the past [1] but without an explanation of the purpose.

[1] https://lore.kernel.org/all/202211301651462590168@zte.com.cn/

Link: https://lkml.kernel.org/r/20231205170244.2746210-1-dmaluka@chromium.org
Link: https://lore.kernel.org/all/20231204163254.2636289-1-dmaluka@chromium.org/
Signed-off-by: Dmytro Maluka <dmaluka@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12 10:57:07 -08:00
Nhat Pham
b5ba474f3f zswap: shrink zswap pool based on memory pressure
Currently, we only shrink the zswap pool when the user-defined limit is
hit.  This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory.  It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).

This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure.  The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.

Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:

* Estimate the number of warm pages residing in zswap, and attempt to
  protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
  saving factor. The better zswap compresses the data, the fewer pages
  we will evict to swap (as we will otherwise incur IO for relatively
  small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
  brought into memory, the shrinker will cautiously terminate its
  shrinking action, as this is a sign that it is touching the warmer
  region of the zswap LRU.

As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance.  Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.

[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
  Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12 10:57:02 -08:00
Jason Gunthorpe
8f23f5dba6 iommu: Change kconfig around IOMMU_SVA
Linus suggested that the kconfig here is confusing:

https://lore.kernel.org/all/CAHk-=wgUiAtiszwseM1p2fCJ+sC4XWQ+YN4TanFhUgvUqjr9Xw@mail.gmail.com/

Let's break it into three kconfigs controlling distinct things:

 - CONFIG_IOMMU_MM_DATA controls if the mm_struct has the additional
   fields for the IOMMU. Currently only PASID, but later patches store
   a struct iommu_mm_data *

 - CONFIG_ARCH_HAS_CPU_PASID controls if the arch needs the scheduling bit
   for keeping track of the ENQCMD instruction. x86 will select this if
   IOMMU_SVA is enabled

 - IOMMU_SVA controls if the IOMMU core compiles in the SVA support code
   for iommu driver use and the IOMMU exported API

This way ARM will not enable CONFIG_ARCH_HAS_CPU_PASID

Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20231027000525.1278806-2-tina.zhang@intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2023-12-12 10:11:27 +01:00
Peter Xu
97219cc358 mm/Kconfig: make userfaultfd a menuconfig
PTE_MARKER_UFFD_WP is a subconfig for userfaultfd.  To make it clear,
switch to use menuconfig for userfaultfd.

Link: https://lkml.kernel.org/r/20231123224204.1060152-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-06 16:12:47 -08:00
Vlastimil Babka
2a19be61a6 mm/slab: remove CONFIG_SLAB from all Kconfig and Makefile
Remove CONFIG_SLAB, CONFIG_DEBUG_SLAB, CONFIG_SLAB_DEPRECATED and
everything in Kconfig files and mm/Makefile that depends on those. Since
SLUB is the only remaining allocator, remove the allocator choice, make
CONFIG_SLUB a "def_bool y" for now and remove all explicit dependencies
on SLUB or SLAB as it's now always enabled. Make every option's verbose
name and description refer to "the slab allocator" without refering to
the specific implementation. Do not rename the CONFIG_ option names yet.

Everything under #ifdef CONFIG_SLAB, and mm/slab.c is now dead code, all
code under #ifdef CONFIG_SLUB is now always compiled.

Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2023-12-05 11:14:40 +01:00
Huang Ying
52166607ec mm: restrict the pcp batch scale factor to avoid too long latency
In page allocator, PCP (Per-CPU Pageset) is refilled and drained in
batches to increase page allocation throughput, reduce page
allocation/freeing latency per page, and reduce zone lock contention.  But
too large batch size will cause too long maximal allocation/freeing
latency, which may punish arbitrary users.  So the default batch size is
chosen carefully (in zone_batchsize(), the value is 63 for zone > 1GB) to
avoid that.

In commit 3b12e7e97938 ("mm/page_alloc: scale the number of pages that are
batch freed"), the batch size will be scaled for large number of page
freeing to improve page freeing performance and reduce zone lock
contention.  Similar optimization can be used for large number of pages
allocation too.

To find out a suitable max batch scale factor (that is, max effective
batch size), some tests and measurement on some machines were done as
follows.

A set of debug patches are implemented as follows,

- Set PCP high to be 2 * batch to reduce the effect of PCP high

- Disable free batch size scaling to get the raw performance.

- The code with zone lock held is extracted from rmqueue_bulk() and
  free_pcppages_bulk() to 2 separate functions to make it easy to
  measure the function run time with ftrace function_graph tracer.

- The batch size is hard coded to be 63 (default), 127, 255, 511,
  1023, 2047, 4095.

Then will-it-scale/page_fault1 is used to generate the page
allocation/freeing workload.  The page allocation/freeing throughput
(page/s) is measured via will-it-scale.  The page allocation/freeing
average latency (alloc/free latency avg, in us) and allocation/freeing
latency at 99 percentile (alloc/free latency 99%, in us) are measured with
ftrace function_graph tracer.

The test results are as follows,

Sapphire Rapids Server
======================
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------
  63	513633.4	 2.33		 3.57		 2.67		  6.83
 127	517616.7	 4.35		 6.65		 4.22		 13.03
 255	520822.8	 8.29		13.32		 7.52		 25.24
 511	524122.0	15.79		23.42		14.02		 49.35
1023	525980.5	30.25		44.19		25.36		 94.88
2047	526793.6	59.39		84.50		45.22		140.81

Ice Lake Server
===============
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------
  63	620210.3	 2.21		 3.68		 2.02		 4.35
 127	627003.0	 4.09		 6.86		 3.51		 8.28
 255	630777.5	 7.70		13.50		 6.17		15.97
 511	633651.5	14.85		22.62		11.66		31.08
1023	637071.1	28.55		42.02		20.81		54.36
2047	638089.7	56.54		84.06		39.28		91.68

Cascade Lake Server
===================
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------
  63	404706.7	 3.29		  5.03		 3.53		  4.75
 127	422475.2	 6.12		  9.09		 6.36		  8.76
 255	411522.2	11.68		 16.97		10.90		 16.39
 511	428124.1	22.54		 31.28		19.86		 32.25
1023	414718.4	43.39		 62.52		40.00		 66.33
2047	429848.7	86.64		120.34		71.14		106.08

Commet Lake Desktop
===================
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------

  63	795183.13	 2.18		 3.55		 2.03		 3.05
 127	803067.85	 3.91		 6.56		 3.85		 5.52
 255	812771.10	 7.35		10.80		 7.14		10.20
 511	817723.48	14.17		27.54		13.43		30.31
1023	818870.19	27.72		40.10		27.89		46.28

Coffee Lake Desktop
===================
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------
  63	510542.8	 3.13		  4.40		 2.48		 3.43
 127	514288.6	 5.97		  7.89		 4.65		 6.04
 255	516889.7	11.86		 15.58		 8.96		12.55
 511	519802.4	23.10		 28.81		16.95		26.19
1023	520802.7	45.30		 52.51		33.19		45.95
2047	519997.1	90.63		104.00		65.26		81.74

From the above data, to restrict the allocation/freeing latency to be less
than 100 us in most times, the max batch scale factor needs to be less
than or equal to 5.

Although it is reasonable to use 5 as max batch scale factor for the
systems tested, there are also slower systems.  Where smaller value should
be used to constrain the page allocation/freeing latency.

So, in this patch, a new kconfig option (PCP_BATCH_SCALE_MAX) is added to
set the max batch scale factor.  Whose default value is 5, and users can
reduce it when necessary.

Link: https://lkml.kernel.org/r/20231016053002.756205-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Nhat Pham
64d4d49c5f zswap: change zswap's default allocator to zsmalloc
Out of zswap's 3 allocators, zsmalloc is the clear superior in terms of
memory utilization, both in theory and as observed in practice, with its
high storage density and low internal fragmentation.  zsmalloc is also
more actively developed and maintained, since it is the allocator of
choice for zswap for many users, as well as the only allocator for zram.

A historical objection to the selection of zsmalloc as the default
allocator for zswap is its lack of writeback capability.  However, this
has changed, with the zsmalloc writeback patchset, and the subsequent
zswap LRU refactor.  With this, there is not a lot of good reasons to keep
zbud, an otherwise inferior allocator, as the default instead of zswap.

This patch changes the default allocator to zsmalloc.  The only exception
is on settings without MMU, in which case zbud will remain as the default.

Link: https://lkml.kernel.org/r/20230908235115.2943486-1-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:20 -07:00
Linus Torvalds
b96a3e9142 - Some swap cleanups from Ma Wupeng ("fix WARN_ON in add_to_avail_list")
- Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which
   reduces the special-case code for handling hugetlb pages in GUP.  It
   also speeds up GUP handling of transparent hugepages.
 
 - Peng Zhang provides some maple tree speedups ("Optimize the fast path
   of mas_store()").
 
 - Sergey Senozhatsky has improved te performance of zsmalloc during
   compaction (zsmalloc: small compaction improvements").
 
 - Domenico Cerasuolo has developed additional selftest code for zswap
   ("selftests: cgroup: add zswap test program").
 
 - xu xin has doe some work on KSM's handling of zero pages.  These
   changes are mainly to enable the user to better understand the
   effectiveness of KSM's treatment of zero pages ("ksm: support tracking
   KSM-placed zero-pages").
 
 - Jeff Xu has fixes the behaviour of memfd's
   MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl
   MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED").
 
 - David Howells has fixed an fscache optimization ("mm, netfs, fscache:
   Stop read optimisation when folio removed from pagecache").
 
 - Axel Rasmussen has given userfaultfd the ability to simulate memory
   poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD").
 
 - Miaohe Lin has contributed some routine maintenance work on the
   memory-failure code ("mm: memory-failure: remove unneeded PageHuge()
   check").
 
 - Peng Zhang has contributed some maintenance work on the maple tree
   code ("Improve the validation for maple tree and some cleanup").
 
 - Hugh Dickins has optimized the collapsing of shmem or file pages into
   THPs ("mm: free retracted page table by RCU").
 
 - Jiaqi Yan has a patch series which permits us to use the healthy
   subpages within a hardware poisoned huge page for general purposes
   ("Improve hugetlbfs read on HWPOISON hugepages").
 
 - Kemeng Shi has done some maintenance work on the pagetable-check code
   ("Remove unused parameters in page_table_check").
 
 - More folioification work from Matthew Wilcox ("More filesystem folio
   conversions for 6.6"), ("Followup folio conversions for zswap").  And
   from ZhangPeng ("Convert several functions in page_io.c to use a
   folio").
 
 - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext").
 
 - Baoquan He has converted some architectures to use the GENERIC_IOREMAP
   ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take
   GENERIC_IOREMAP way").
 
 - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support
   batched/deferred tlb shootdown during page reclamation/migration").
 
 - Better maple tree lockdep checking from Liam Howlett ("More strict
   maple tree lockdep").  Liam also developed some efficiency improvements
   ("Reduce preallocations for maple tree").
 
 - Cleanup and optimization to the secondary IOMMU TLB invalidation, from
   Alistair Popple ("Invalidate secondary IOMMU TLB on permission
   upgrade").
 
 - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes
   for arm64").
 
 - Kemeng Shi provides some maintenance work on the compaction code ("Two
   minor cleanups for compaction").
 
 - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most
   file-backed faults under the VMA lock").
 
 - Aneesh Kumar contributes code to use the vmemmap optimization for DAX
   on ppc64, under some circumstances ("Add support for DAX vmemmap
   optimization for ppc64").
 
 - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client
   data in page_ext"), ("minor cleanups to page_ext header").
 
 - Some zswap cleanups from Johannes Weiner ("mm: zswap: three
   cleanups").
 
 - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan").
 
 - VMA handling cleanups from Kefeng Wang ("mm: convert to
   vma_is_initial_heap/stack()").
 
 - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes:
   implement DAMOS tried total bytes file"), ("Extend DAMOS filters for
   address ranges and DAMON monitoring targets").
 
 - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction").
 
 - Liam Howlett has improved the maple tree node replacement code
   ("maple_tree: Change replacement strategy").
 
 - ZhangPeng has a general code cleanup - use the K() macro more widely
   ("cleanup with helper macro K()").
 
 - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap
   on memory feature on ppc64").
 
 - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list
   in page_alloc"), ("Two minor cleanups for get pageblock migratetype").
 
 - Vishal Moola introduces a memory descriptor for page table tracking,
   "struct ptdesc" ("Split ptdesc from struct page").
 
 - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups
   for vm.memfd_noexec").
 
 - MM include file rationalization from Hugh Dickins ("arch: include
   asm/cacheflush.h in asm/hugetlb.h").
 
 - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text
   output").
 
 - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use
   object_cache instead of kmemleak_initialized").
 
 - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor
   and _folio_order").
 
 - A VMA locking scalability improvement from Suren Baghdasaryan
   ("Per-VMA lock support for swap and userfaults").
 
 - pagetable handling cleanups from Matthew Wilcox ("New page table range
   API").
 
 - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop
   using page->private on tail pages for THP_SWAP + cleanups").
 
 - Cleanups and speedups to the hugetlb fault handling from Matthew
   Wilcox ("Change calling convention for ->huge_fault").
 
 - Matthew Wilcox has also done some maintenance work on the MM subsystem
   documentation ("Improve mm documentation").
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZO1JUQAKCRDdBJ7gKXxA
 jrMwAP47r/fS8vAVT3zp/7fXmxaJYTK27CTAM881Gw1SDhFM/wEAv8o84mDenCg6
 Nfio7afS1ncD+hPYT8947UnLxTgn+ww=
 =Afws
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Some swap cleanups from Ma Wupeng ("fix WARN_ON in
   add_to_avail_list")

 - Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which
   reduces the special-case code for handling hugetlb pages in GUP. It
   also speeds up GUP handling of transparent hugepages.

 - Peng Zhang provides some maple tree speedups ("Optimize the fast path
   of mas_store()").

 - Sergey Senozhatsky has improved te performance of zsmalloc during
   compaction (zsmalloc: small compaction improvements").

 - Domenico Cerasuolo has developed additional selftest code for zswap
   ("selftests: cgroup: add zswap test program").

 - xu xin has doe some work on KSM's handling of zero pages. These
   changes are mainly to enable the user to better understand the
   effectiveness of KSM's treatment of zero pages ("ksm: support
   tracking KSM-placed zero-pages").

 - Jeff Xu has fixes the behaviour of memfd's
   MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl
   MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED").

 - David Howells has fixed an fscache optimization ("mm, netfs, fscache:
   Stop read optimisation when folio removed from pagecache").

 - Axel Rasmussen has given userfaultfd the ability to simulate memory
   poisoning ("add UFFDIO_POISON to simulate memory poisoning with
   UFFD").

 - Miaohe Lin has contributed some routine maintenance work on the
   memory-failure code ("mm: memory-failure: remove unneeded PageHuge()
   check").

 - Peng Zhang has contributed some maintenance work on the maple tree
   code ("Improve the validation for maple tree and some cleanup").

 - Hugh Dickins has optimized the collapsing of shmem or file pages into
   THPs ("mm: free retracted page table by RCU").

 - Jiaqi Yan has a patch series which permits us to use the healthy
   subpages within a hardware poisoned huge page for general purposes
   ("Improve hugetlbfs read on HWPOISON hugepages").

 - Kemeng Shi has done some maintenance work on the pagetable-check code
   ("Remove unused parameters in page_table_check").

 - More folioification work from Matthew Wilcox ("More filesystem folio
   conversions for 6.6"), ("Followup folio conversions for zswap"). And
   from ZhangPeng ("Convert several functions in page_io.c to use a
   folio").

 - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext").

 - Baoquan He has converted some architectures to use the
   GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert
   architectures to take GENERIC_IOREMAP way").

 - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support
   batched/deferred tlb shootdown during page reclamation/migration").

 - Better maple tree lockdep checking from Liam Howlett ("More strict
   maple tree lockdep"). Liam also developed some efficiency
   improvements ("Reduce preallocations for maple tree").

 - Cleanup and optimization to the secondary IOMMU TLB invalidation,
   from Alistair Popple ("Invalidate secondary IOMMU TLB on permission
   upgrade").

 - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes
   for arm64").

 - Kemeng Shi provides some maintenance work on the compaction code
   ("Two minor cleanups for compaction").

 - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle
   most file-backed faults under the VMA lock").

 - Aneesh Kumar contributes code to use the vmemmap optimization for DAX
   on ppc64, under some circumstances ("Add support for DAX vmemmap
   optimization for ppc64").

 - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client
   data in page_ext"), ("minor cleanups to page_ext header").

 - Some zswap cleanups from Johannes Weiner ("mm: zswap: three
   cleanups").

 - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan").

 - VMA handling cleanups from Kefeng Wang ("mm: convert to
   vma_is_initial_heap/stack()").

 - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes:
   implement DAMOS tried total bytes file"), ("Extend DAMOS filters for
   address ranges and DAMON monitoring targets").

 - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction").

 - Liam Howlett has improved the maple tree node replacement code
   ("maple_tree: Change replacement strategy").

 - ZhangPeng has a general code cleanup - use the K() macro more widely
   ("cleanup with helper macro K()").

 - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for
   memmap on memory feature on ppc64").

 - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list
   in page_alloc"), ("Two minor cleanups for get pageblock
   migratetype").

 - Vishal Moola introduces a memory descriptor for page table tracking,
   "struct ptdesc" ("Split ptdesc from struct page").

 - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups
   for vm.memfd_noexec").

 - MM include file rationalization from Hugh Dickins ("arch: include
   asm/cacheflush.h in asm/hugetlb.h").

 - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text
   output").

 - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use
   object_cache instead of kmemleak_initialized").

 - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor
   and _folio_order").

 - A VMA locking scalability improvement from Suren Baghdasaryan
   ("Per-VMA lock support for swap and userfaults").

 - pagetable handling cleanups from Matthew Wilcox ("New page table
   range API").

 - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop
   using page->private on tail pages for THP_SWAP + cleanups").

 - Cleanups and speedups to the hugetlb fault handling from Matthew
   Wilcox ("Change calling convention for ->huge_fault").

 - Matthew Wilcox has also done some maintenance work on the MM
   subsystem documentation ("Improve mm documentation").

* tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (489 commits)
  maple_tree: shrink struct maple_tree
  maple_tree: clean up mas_wr_append()
  secretmem: convert page_is_secretmem() to folio_is_secretmem()
  nios2: fix flush_dcache_page() for usage from irq context
  hugetlb: add documentation for vma_kernel_pagesize()
  mm: add orphaned kernel-doc to the rst files.
  mm: fix clean_record_shared_mapping_range kernel-doc
  mm: fix get_mctgt_type() kernel-doc
  mm: fix kernel-doc warning from tlb_flush_rmaps()
  mm: remove enum page_entry_size
  mm: allow ->huge_fault() to be called without the mmap_lock held
  mm: move PMD_ORDER to pgtable.h
  mm: remove checks for pte_index
  memcg: remove duplication detection for mem_cgroup_uncharge_swap
  mm/huge_memory: work on folio->swap instead of page->private when splitting folio
  mm/swap: inline folio_set_swap_entry() and folio_swap_entry()
  mm/swap: use dedicated entry for swap in folio
  mm/swap: stop using page->private on tail pages for THP_SWAP
  selftests/mm: fix WARNING comparing pointer to 0
  selftests: cgroup: fix test_kmem_memcg_deletion kernel mem check
  ...
2023-08-29 14:25:26 -07:00
Aneesh Kumar K.V
04d5ea46a1 mm/memory_hotplug: simplify ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE kconfig
Patch series "Add support for memmap on memory feature on ppc64", v8.

This patch series update memmap on memory feature to fall back to
memmap allocation outside the memory block if the alignment rules are
not met. This makes the feature more useful on architectures like
ppc64 where alignment rules are different with 64K page size.


This patch (of 6):

Instead of adding menu entry with all supported architectures, add
mm/Kconfig variable and select the same from supported architectures.

No functional change in this patch.

Link: https://lkml.kernel.org/r/20230808091501.287660-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20230808091501.287660-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:48 -07:00
Johannes Weiner
42c06a0e8e mm: kill frontswap
The only user of frontswap is zswap, and has been for a long time.  Have
swap call into zswap directly and remove the indirection.

[hannes@cmpxchg.org: remove obsolete comment, per Yosry]
  Link: https://lkml.kernel.org/r/20230719142832.GA932528@cmpxchg.org
[fengwei.yin@intel.com: don't warn if none swapcache folio is passed to zswap_load]
  Link: https://lkml.kernel.org/r/20230810095652.3905184-1-fengwei.yin@intel.com
Link: https://lkml.kernel.org/r/20230717160227.GA867137@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Yin Fengwei <fengwei.yin@intel.com>
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:26 -07:00
Aneesh Kumar K.V
0b6f15824c mm/vmemmap optimization: split hugetlb and devdax vmemmap optimization
Arm disabled hugetlb vmemmap optimization [1] because hugetlb vmemmap
optimization includes an update of both the permissions (writeable to
read-only) and the output address (pfn) of the vmemmap ptes.  That is not
supported without unmapping of pte(marking it invalid) by some
architectures.

With DAX vmemmap optimization we don't require such pte updates and
architectures can enable DAX vmemmap optimization while having hugetlb
vmemmap optimization disabled.  Hence split DAX optimization support into
a different config.

s390, loongarch and riscv don't have devdax support.  So the DAX config is
not enabled for them.  With this change, arm64 should be able to select
DAX optimization

[1] commit 060a2c92d1b6 ("arm64: mm: hugetlb: Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP")

Link: https://lkml.kernel.org/r/20230724190759.483013-8-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:54 -07:00
Thomas Weißschuh
626e98cb03 mm: make MEMFD_CREATE into a selectable config option
The memfd_create() syscall, enabled by CONFIG_MEMFD_CREATE, is useful on
its own even when not required by CONFIG_TMPFS or CONFIG_HUGETLBFS.

Split it into its own proper bool option that can be enabled by users.

Move that option into mm/ where the code itself also lies.  Also add
"select" statements to CONFIG_TMPFS and CONFIG_HUGETLBFS so they
automatically enable CONFIG_MEMFD_CREATE as before.

Link: https://lkml.kernel.org/r/20230630-config-memfd-v1-1-9acc3ae38b5a@weissschuh.net
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Tested-by: Zhangjin Wu <falcon@tinylab.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:01 -07:00
GONG, Ruiqi
3c61529405 Randomized slab caches for kmalloc()
When exploiting memory vulnerabilities, "heap spraying" is a common
technique targeting those related to dynamic memory allocation (i.e. the
"heap"), and it plays an important role in a successful exploitation.
Basically, it is to overwrite the memory area of vulnerable object by
triggering allocation in other subsystems or modules and therefore
getting a reference to the targeted memory location. It's usable on
various types of vulnerablity including use after free (UAF), heap out-
of-bound write and etc.

There are (at least) two reasons why the heap can be sprayed: 1) generic
slab caches are shared among different subsystems and modules, and
2) dedicated slab caches could be merged with the generic ones.
Currently these two factors cannot be prevented at a low cost: the first
one is a widely used memory allocation mechanism, and shutting down slab
merging completely via `slub_nomerge` would be overkill.

To efficiently prevent heap spraying, we propose the following approach:
to create multiple copies of generic slab caches that will never be
merged, and random one of them will be used at allocation. The random
selection is based on the address of code that calls `kmalloc()`, which
means it is static at runtime (rather than dynamically determined at
each time of allocation, which could be bypassed by repeatedly spraying
in brute force). In other words, the randomness of cache selection will
be with respect to the code address rather than time, i.e. allocations
in different code paths would most likely pick different caches,
although kmalloc() at each place would use the same cache copy whenever
it is executed. In this way, the vulnerable object and memory allocated
in other subsystems and modules will (most probably) be on different
slab caches, which prevents the object from being sprayed.

Meanwhile, the static random selection is further enhanced with a
per-boot random seed, which prevents the attacker from finding a usable
kmalloc that happens to pick the same cache with the vulnerable
subsystem/module by analyzing the open source code. In other words, with
the per-boot seed, the random selection is static during each time the
system starts and runs, but not across different system startups.

The overhead of performance has been tested on a 40-core x86 server by
comparing the results of `perf bench all` between the kernels with and
without this patch based on the latest linux-next kernel, which shows
minor difference. A subset of benchmarks are listed below:

                sched/  sched/  syscall/       mem/       mem/
             messaging    pipe     basic     memcpy     memset
                 (sec)   (sec)     (sec)   (GB/sec)   (GB/sec)

control1         0.019   5.459     0.733  15.258789  51.398026
control2         0.019   5.439     0.730  16.009221  48.828125
control3         0.019   5.282     0.735  16.009221  48.828125
control_avg      0.019   5.393     0.733  15.759077  49.684759

experiment1      0.019   5.374     0.741  15.500992  46.502976
experiment2      0.019   5.440     0.746  16.276042  51.398026
experiment3      0.019   5.242     0.752  15.258789  51.398026
experiment_avg   0.019   5.352     0.746  15.678608  49.766343

The overhead of memory usage was measured by executing `free` after boot
on a QEMU VM with 1GB total memory, and as expected, it's positively
correlated with # of cache copies:

           control  4 copies  8 copies  16 copies

total       969.8M    968.2M    968.2M     968.2M
used         20.0M     21.9M     24.1M      26.7M
free        936.9M    933.6M    931.4M     928.6M
available   932.2M    928.8M    926.6M     923.9M

Co-developed-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Signed-off-by: GONG, Ruiqi <gongruiqi@huaweicloud.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Dennis Zhou <dennis@kernel.org> # percpu
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2023-07-18 10:07:47 +02:00
Linus Torvalds
632f54b4d6 slab updates for 6.5
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmSZtjsACgkQu+CwddJF
 iJqCTwf/XVhmAD7zMOj6g1aak5oHNZDRG5jufM5UNXmiWjCWT3w4DpltrJkz0PPm
 mg3Ac5fjNUqesZ1SGtUbvoc363smroBrRudGEFrsUhqBcpR+S4fSneoDk+xqMypf
 VLXP/8kJlFEBGMiR7ouAWnR4+u6JgY4E8E8JIPNzao5KE/L1lD83nY+Usjc/01ek
 oqMyYVFRfncsGjGJXc5fOOTTCj768mRroF0sLmEegIonnwQkSHE7HWJ/nyaVraDV
 bomnTIgMdVIDqharin08ZPIM7qBIWM09Uifaf0lIs6fIA94pQP+5Ko3mum2P/S+U
 ON/qviSrlNgRXoHPJ3hvPHdfEU9cSg==
 =1d0v
 -----END PGP SIGNATURE-----

Merge tag 'slab-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab

Pull slab updates from Vlastimil Babka:

 - SLAB deprecation:

   Following the discussion at LSF/MM 2023 [1] and no objections, the
   SLAB allocator is deprecated by renaming the config option (to make
   its users notice) to CONFIG_SLAB_DEPRECATED with updated help text.
   SLUB should be used instead. Existing defconfigs with CONFIG_SLAB are
   also updated.

 - SLAB_NO_MERGE kmem_cache flag (Jesper Dangaard Brouer):

   There are (very limited) cases where kmem_cache merging is
   undesirable, and existing ways to prevent it are hacky. Introduce a
   new flag to do that cleanly and convert the existing hacky users.
   Btrfs plans to use this for debug kernel builds (that use case is
   always fine), networking for performance reasons (that should be very
   rare).

 - Replace the usage of weak PRNGs (David Keisar Schmidt):

   In addition to using stronger RNGs for the security related features,
   the code is a bit cleaner.

 - Misc code cleanups (SeongJae Parki, Xiongwei Song, Zhen Lei, and
   zhaoxinchao)

Link: https://lwn.net/Articles/932201/ [1]

* tag 'slab-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
  mm/slab_common: use SLAB_NO_MERGE instead of negative refcount
  mm/slab: break up RCU readers on SLAB_TYPESAFE_BY_RCU example code
  mm/slab: add a missing semicolon on SLAB_TYPESAFE_BY_RCU example code
  mm/slab_common: reduce an if statement in create_cache()
  mm/slab: introduce kmem_cache flag SLAB_NO_MERGE
  mm/slab: rename CONFIG_SLAB to CONFIG_SLAB_DEPRECATED
  mm/slab: remove HAVE_HARDENED_USERCOPY_ALLOCATOR
  mm/slab_common: Replace invocation of weak PRNG
  mm/slab: Replace invocation of weak PRNG
  slub: Don't read nr_slabs and total_objects directly
  slub: Remove slabs_node() function
  slub: Remove CONFIG_SMP defined check
  slub: Put objects_show() into CONFIG_SLUB_DEBUG enabled block
  slub: Correct the error code when slab_kset is NULL
  mm/slab: correct return values in comment for _kmem_cache_create()
2023-06-29 16:34:12 -07:00
Linus Torvalds
9471f1f2f5 Merge branch 'expand-stack'
This modifies our user mode stack expansion code to always take the
mmap_lock for writing before modifying the VM layout.

It's actually something we always technically should have done, but
because we didn't strictly need it, we were being lazy ("opportunistic"
sounds so much better, doesn't it?) about things, and had this hack in
place where we would extend the stack vma in-place without doing the
proper locking.

And it worked fine.  We just needed to change vm_start (or, in the case
of grow-up stacks, vm_end) and together with some special ad-hoc locking
using the anon_vma lock and the mm->page_table_lock, it all was fairly
straightforward.

That is, it was all fine until Ruihan Li pointed out that now that the
vma layout uses the maple tree code, we *really* don't just change
vm_start and vm_end any more, and the locking really is broken.  Oops.

It's not actually all _that_ horrible to fix this once and for all, and
do proper locking, but it's a bit painful.  We have basically three
different cases of stack expansion, and they all work just a bit
differently:

 - the common and obvious case is the page fault handling. It's actually
   fairly simple and straightforward, except for the fact that we have
   something like 24 different versions of it, and you end up in a maze
   of twisty little passages, all alike.

 - the simplest case is the execve() code that creates a new stack.
   There are no real locking concerns because it's all in a private new
   VM that hasn't been exposed to anybody, but lockdep still can end up
   unhappy if you get it wrong.

 - and finally, we have GUP and page pinning, which shouldn't really be
   expanding the stack in the first place, but in addition to execve()
   we also use it for ptrace(). And debuggers do want to possibly access
   memory under the stack pointer and thus need to be able to expand the
   stack as a special case.

None of these cases are exactly complicated, but the page fault case in
particular is just repeated slightly differently many many times.  And
ia64 in particular has a fairly complicated situation where you can have
both a regular grow-down stack _and_ a special grow-up stack for the
register backing store.

So to make this slightly more manageable, the bulk of this series is to
first create a helper function for the most common page fault case, and
convert all the straightforward architectures to it.

Thus the new 'lock_mm_and_find_vma()' helper function, which ends up
being used by x86, arm, powerpc, mips, riscv, alpha, arc, csky, hexagon,
loongarch, nios2, sh, sparc32, and xtensa.  So we not only convert more
than half the architectures, we now have more shared code and avoid some
of those twisty little passages.

And largely due to this common helper function, the full diffstat of
this series ends up deleting more lines than it adds.

That still leaves eight architectures (ia64, m68k, microblaze, openrisc,
parisc, s390, sparc64 and um) that end up doing 'expand_stack()'
manually because they are doing something slightly different from the
normal pattern.  Along with the couple of special cases in execve() and
GUP.

So there's a couple of patches that first create 'locked' helper
versions of the stack expansion functions, so that there's a obvious
path forward in the conversion.  The execve() case is then actually
pretty simple, and is a nice cleanup from our old "grow-up stackls are
special, because at execve time even they grow down".

The #ifdef CONFIG_STACK_GROWSUP in that code just goes away, because
it's just more straightforward to write out the stack expansion there
manually, instead od having get_user_pages_remote() do it for us in some
situations but not others and have to worry about locking rules for GUP.

And the final step is then to just convert the remaining odd cases to a
new world order where 'expand_stack()' is called with the mmap_lock held
for reading, but where it might drop it and upgrade it to a write, only
to return with it held for reading (in the success case) or with it
completely dropped (in the failure case).

In the process, we remove all the stack expansion from GUP (where
dropping the lock wouldn't be ok without special rules anyway), and add
it in manually to __access_remote_vm() for ptrace().

Thanks to Adrian Glaubitz and Frank Scheiner who tested the ia64 cases.
Everything else here felt pretty straightforward, but the ia64 rules for
stack expansion are really quite odd and very different from everything
else.  Also thanks to Vegard Nossum who caught me getting one of those
odd conditions entirely the wrong way around.

Anyway, I think I want to actually move all the stack expansion code to
a whole new file of its own, rather than have it split up between
mm/mmap.c and mm/memory.c, but since this will have to be backported to
the initial maple tree vma introduction anyway, I tried to keep the
patches _fairly_ minimal.

Also, while I don't think it's valid to expand the stack from GUP, the
final patch in here is a "warn if some crazy GUP user wants to try to
expand the stack" patch.  That one will be reverted before the final
release, but it's left to catch any odd cases during the merge window
and release candidates.

Reported-by: Ruihan Li <lrh2000@pku.edu.cn>

* branch 'expand-stack':
  gup: add warning if some caller would seem to want stack expansion
  mm: always expand the stack with the mmap write lock held
  execve: expand new process stack manually ahead of time
  mm: make find_extend_vma() fail if write lock not held
  powerpc/mm: convert coprocessor fault to lock_mm_and_find_vma()
  mm/fault: convert remaining simple cases to lock_mm_and_find_vma()
  arm/mm: Convert to using lock_mm_and_find_vma()
  riscv/mm: Convert to using lock_mm_and_find_vma()
  mips/mm: Convert to using lock_mm_and_find_vma()
  powerpc/mm: Convert to using lock_mm_and_find_vma()
  arm64/mm: Convert to using lock_mm_and_find_vma()
  mm: make the page fault mmap locking killable
  mm: introduce new 'lock_mm_and_find_vma()' page fault helper
2023-06-28 20:35:21 -07:00
Linus Torvalds
c2508ec5a5 mm: introduce new 'lock_mm_and_find_vma()' page fault helper
.. and make x86 use it.

This basically extracts the existing x86 "find and expand faulting vma"
code, but extends it to also take the mmap lock for writing in case we
actually do need to expand the vma.

We've historically short-circuited that case, and have some rather ugly
special logic to serialize the stack segment expansion (since we only
hold the mmap lock for reading) that doesn't match the normal VM
locking.

That slight violation of locking worked well, right up until it didn't:
the maple tree code really does want proper locking even for simple
extension of an existing vma.

So extract the code for "look up the vma of the fault" from x86, fix it
up to do the necessary write locking, and make it available as a helper
function for other architectures that can use the common helper.

Note: I say "common helper", but it really only handles the normal
stack-grows-down case.  Which is all architectures except for PA-RISC
and IA64.  So some rare architectures can't use the helper, but if they
care they'll just need to open-code this logic.

It's also worth pointing out that this code really would like to have an
optimistic "mmap_upgrade_trylock()" to make it quicker to go from a
read-lock (for the common case) to taking the write lock (for having to
extend the vma) in the normal single-threaded situation where there is
no other locking activity.

But that _is_ all the very uncommon special case, so while it would be
nice to have such an operation, it probably doesn't matter in reality.
I did put in the skeleton code for such a possible future expansion,
even if it only acts as pseudo-documentation for what we're doing.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-06-24 14:12:54 -07:00
Yosry Ahmed
b9c91c4341 mm: zswap: support exclusive loads
Commit 71024cb4a0bf ("frontswap: remove frontswap_tmem_exclusive_gets")
removed support for exclusive loads from frontswap as it was not used. 
Bring back exclusive loads support to frontswap by adding an "exclusive"
output parameter to frontswap_ops->load.

On the zswap side, add a module parameter to enable/disable exclusive
loads, and a config option to control the boot default value.  Refactor
zswap entry invalidation in zswap_frontswap_invalidate_page() into
zswap_invalidate_entry() to reuse it in zswap_frontswap_load() if
exclusive loads are enabled.

With exclusive loads, we avoid having two copies of the same page in
memory (compressed & uncompressed) after faulting it in from zswap.  On
the other hand, if the page is to be reclaimed again without being
dirtied, it will be re-compressed.  Compression is not usually slow, and a
page that was just faulted in is less likely to be reclaimed again soon.

Link: https://lkml.kernel.org/r/20230607195143.1473802-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Suggested-by: Yu Zhao <yuzhao@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:05 -07:00
Vlastimil Babka
7bc162d5cc Merge branches 'slab/for-6.5/prandom', 'slab/for-6.5/slab_no_merge' and 'slab/for-6.5/slab-deprecate' into slab/for-next
Merge the feature branches scheduled for 6.5:

- replace the usage of weak PRNGs, by David Keisar Schmidt

- introduce the SLAB_NO_MERGE kmem_cache flag, by Jesper Dangaard Brouer

- deprecate CONFIG_SLAB, with a planned removal, by myself
2023-06-16 11:05:59 +02:00
Vlastimil Babka
eb07c4f39c mm/slab: rename CONFIG_SLAB to CONFIG_SLAB_DEPRECATED
As discussed at LSF/MM [1] [2] and with no objections raised there,
deprecate the SLAB allocator. Rename the user-visible option so that
users with CONFIG_SLAB=y get a new prompt with explanation during make
oldconfig, while make olddefconfig will just switch to SLUB.

In all defconfigs with CONFIG_SLAB=y remove the line so those also
switch to SLUB. Regressions due to the switch should be reported to
linux-mm and slab maintainers.

[1] https://lore.kernel.org/all/4b9fc9c6-b48c-198f-5f80-811a44737e5f@suse.cz/
[2] https://lwn.net/Articles/932201/

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Acked-by: Helge Deller <deller@gmx.de> # parisc
2023-05-26 19:01:47 +02:00
Vlastimil Babka
d2e527f0d8 mm/slab: remove HAVE_HARDENED_USERCOPY_ALLOCATOR
With SLOB removed, both remaining allocators support hardened usercopy,
so remove the config and associated #ifdef.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
2023-05-24 15:38:17 +02:00
Linus Torvalds
7fa8a8ee94 - Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
 
 - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
 
 - zsmalloc performance improvements from Sergey Senozhatsky.
 
 - Yue Zhao has found and fixed some data race issues around the
   alteration of memcg userspace tunables.
 
 - VFS rationalizations from Christoph Hellwig:
 
   - removal of most of the callers of write_one_page().
 
   - make __filemap_get_folio()'s return value more useful
 
 - Luis Chamberlain has changed tmpfs so it no longer requires swap
   backing.  Use `mount -o noswap'.
 
 - Qi Zheng has made the slab shrinkers operate locklessly, providing
   some scalability benefits.
 
 - Keith Busch has improved dmapool's performance, making part of its
   operations O(1) rather than O(n).
 
 - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
   permitting userspace to wr-protect anon memory unpopulated ptes.
 
 - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
   than exclusive, and has fixed a bunch of errors which were caused by its
   unintuitive meaning.
 
 - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
   which causes minor faults to install a write-protected pte.
 
 - Vlastimil Babka has done some maintenance work on vma_merge():
   cleanups to the kernel code and improvements to our userspace test
   harness.
 
 - Cleanups to do_fault_around() by Lorenzo Stoakes.
 
 - Mike Rapoport has moved a lot of initialization code out of various
   mm/ files and into mm/mm_init.c.
 
 - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
   DRM, but DRM doesn't use it any more.
 
 - Lorenzo has also coverted read_kcore() and vread() to use iterators
   and has thereby removed the use of bounce buffers in some cases.
 
 - Lorenzo has also contributed further cleanups of vma_merge().
 
 - Chaitanya Prakash provides some fixes to the mmap selftesting code.
 
 - Matthew Wilcox changes xfs and afs so they no longer take sleeping
   locks in ->map_page(), a step towards RCUification of pagefaults.
 
 - Suren Baghdasaryan has improved mmap_lock scalability by switching to
   per-VMA locking.
 
 - Frederic Weisbecker has reworked the percpu cache draining so that it
   no longer causes latency glitches on cpu isolated workloads.
 
 - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
   logic.
 
 - Liu Shixin has changed zswap's initialization so we no longer waste a
   chunk of memory if zswap is not being used.
 
 - Yosry Ahmed has improved the performance of memcg statistics flushing.
 
 - David Stevens has fixed several issues involving khugepaged,
   userfaultfd and shmem.
 
 - Christoph Hellwig has provided some cleanup work to zram's IO-related
   code paths.
 
 - David Hildenbrand has fixed up some issues in the selftest code's
   testing of our pte state changing.
 
 - Pankaj Raghav has made page_endio() unneeded and has removed it.
 
 - Peter Xu contributed some rationalizations of the userfaultfd
   selftests.
 
 - Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
 
 - Chaitanya Prakash has fixed some arm-related issues in the
   selftests/mm code.
 
 - Longlong Xia has improved the way in which KSM handles hwpoisoned
   pages.
 
 - Peter Xu fixes a few issues with uffd-wp at fork() time.
 
 - Stefan Roesch has changed KSM so that it may now be used on a
   per-process and per-cgroup basis.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
 jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
 eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
 =J+Dj
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
   switching from a user process to a kernel thread.

 - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
   Raghav.

 - zsmalloc performance improvements from Sergey Senozhatsky.

 - Yue Zhao has found and fixed some data race issues around the
   alteration of memcg userspace tunables.

 - VFS rationalizations from Christoph Hellwig:
     - removal of most of the callers of write_one_page()
     - make __filemap_get_folio()'s return value more useful

 - Luis Chamberlain has changed tmpfs so it no longer requires swap
   backing. Use `mount -o noswap'.

 - Qi Zheng has made the slab shrinkers operate locklessly, providing
   some scalability benefits.

 - Keith Busch has improved dmapool's performance, making part of its
   operations O(1) rather than O(n).

 - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
   permitting userspace to wr-protect anon memory unpopulated ptes.

 - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
   rather than exclusive, and has fixed a bunch of errors which were
   caused by its unintuitive meaning.

 - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
   which causes minor faults to install a write-protected pte.

 - Vlastimil Babka has done some maintenance work on vma_merge():
   cleanups to the kernel code and improvements to our userspace test
   harness.

 - Cleanups to do_fault_around() by Lorenzo Stoakes.

 - Mike Rapoport has moved a lot of initialization code out of various
   mm/ files and into mm/mm_init.c.

 - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
   DRM, but DRM doesn't use it any more.

 - Lorenzo has also coverted read_kcore() and vread() to use iterators
   and has thereby removed the use of bounce buffers in some cases.

 - Lorenzo has also contributed further cleanups of vma_merge().

 - Chaitanya Prakash provides some fixes to the mmap selftesting code.

 - Matthew Wilcox changes xfs and afs so they no longer take sleeping
   locks in ->map_page(), a step towards RCUification of pagefaults.

 - Suren Baghdasaryan has improved mmap_lock scalability by switching to
   per-VMA locking.

 - Frederic Weisbecker has reworked the percpu cache draining so that it
   no longer causes latency glitches on cpu isolated workloads.

 - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
   logic.

 - Liu Shixin has changed zswap's initialization so we no longer waste a
   chunk of memory if zswap is not being used.

 - Yosry Ahmed has improved the performance of memcg statistics
   flushing.

 - David Stevens has fixed several issues involving khugepaged,
   userfaultfd and shmem.

 - Christoph Hellwig has provided some cleanup work to zram's IO-related
   code paths.

 - David Hildenbrand has fixed up some issues in the selftest code's
   testing of our pte state changing.

 - Pankaj Raghav has made page_endio() unneeded and has removed it.

 - Peter Xu contributed some rationalizations of the userfaultfd
   selftests.

 - Yosry Ahmed has fixed an issue around memcg's page recalim
   accounting.

 - Chaitanya Prakash has fixed some arm-related issues in the
   selftests/mm code.

 - Longlong Xia has improved the way in which KSM handles hwpoisoned
   pages.

 - Peter Xu fixes a few issues with uffd-wp at fork() time.

 - Stefan Roesch has changed KSM so that it may now be used on a
   per-process and per-cgroup basis.

* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
  mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
  shmem: restrict noswap option to initial user namespace
  mm/khugepaged: fix conflicting mods to collapse_file()
  sparse: remove unnecessary 0 values from rc
  mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
  hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
  maple_tree: fix allocation in mas_sparse_area()
  mm: do not increment pgfault stats when page fault handler retries
  zsmalloc: allow only one active pool compaction context
  selftests/mm: add new selftests for KSM
  mm: add new KSM process and sysfs knobs
  mm: add new api to enable ksm per process
  mm: shrinkers: fix debugfs file permissions
  mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
  migrate_pages_batch: fix statistics for longterm pin retry
  userfaultfd: use helper function range_in_vma()
  lib/show_mem.c: use for_each_populated_zone() simplify code
  mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
  fs/buffer: convert create_page_buffers to folio_create_buffers
  fs/buffer: add folio_create_empty_buffers helper
  ...
2023-04-27 19:42:02 -07:00
Linus Torvalds
736b378b29 slab changes for 6.4
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmRCSGEACgkQu+CwddJF
 iJpA2wgAkwMP++Znd8JU3iQ4N53lv18euNuEMLTOY+jk7zXHvsRX8KyzLmsohUKO
 SSGVi1Om785AidOsJhARJawW7AWYuJ5l7ri+FyskTwrTUcMC4UZ/IT2tB22lRsXi
 0f3lgbdArZbj7aq7AVO9N7bh9rgVUHa/RHIwXzMp0sc9nekne9t+FFv7tyRnr7cc
 SMp/FdMZqbt9pVf0Uwud1BpdgER7QqQaSfaxITL7D2oJTePRZVWiXerrr4hMcQl1
 s6kgUgKdlaYmIx2N8eP1Nmp7undtwHo1C8dLLWKGCEuEAaXIxtXUtaUWFFmBDzH9
 Fv6qswNFcfwiLNPsY+xi9iA+vlGKAg==
 =T0EM
 -----END PGP SIGNATURE-----

Merge tag 'slab-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab

Pull slab updates from Vlastimil Babka:
 "The main change is naturally the SLOB removal. Since its deprecation
  in 6.2 I've seen no complaints so hopefully SLUB_(TINY) works well for
  everyone and we can proceed.

  Besides the code cleanup, the main immediate benefit will be allowing
  kfree() family of function to work on kmem_cache_alloc() objects,
  which was incompatible with SLOB. This includes kfree_rcu() which had
  no kmem_cache_free_rcu() counterpart yet and now it shouldn't be
  necessary anymore.

  Besides that, there are several small code and comment improvements
  from Thomas, Thorsten and Vernon"

* tag 'slab-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
  mm/slab: document kfree() as allowed for kmem_cache_alloc() objects
  mm/slob: remove slob.c
  mm/slab: remove CONFIG_SLOB code from slab common code
  mm, pagemap: remove SLOB and SLQB from comments and documentation
  mm, page_flags: remove PG_slob_free
  mm/slob: remove CONFIG_SLOB
  mm/slub: fix help comment of SLUB_DEBUG
  mm: slub: make kobj_type structure constant
  slab: Adjust comment after refactoring of gfp.h
2023-04-25 13:00:41 -07:00
Aneesh Kumar K.V
0b376f1e0f mm/hugetlb_vmemmap: rename ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
Now we use ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP config option to
indicate devdax and hugetlb vmemmap optimization support.  Hence rename
that to a generic ARCH_WANT_OPTIMIZE_VMEMMAP

Link: https://lkml.kernel.org/r/20230412050025.84346-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Tarun Sahu <tsahu@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18 16:30:09 -07:00
Suren Baghdasaryan
0b6cc04f3d mm: introduce CONFIG_PER_VMA_LOCK
Patch series "Per-VMA locks", v4.

LWN article describing the feature: https://lwn.net/Articles/906852/

Per-vma locks idea that was discussed during SPF [1] discussion at LSF/MM
last year [2], which concluded with suggestion that “a reader/writer
semaphore could be put into the VMA itself; that would have the effect of
using the VMA as a sort of range lock.  There would still be contention at
the VMA level, but it would be an improvement.” This patchset implements
this suggested approach.

When handling page faults we lookup the VMA that contains the faulting
page under RCU protection and try to acquire its lock.  If that fails we
fall back to using mmap_lock, similar to how SPF handled this situation.

One notable way the implementation deviates from the proposal is the way
VMAs are read-locked.  During some of mm updates, multiple VMAs need to be
locked until the end of the update (e.g.  vma_merge, split_vma, etc). 
Tracking all the locked VMAs, avoiding recursive locks, figuring out when
it's safe to unlock previously locked VMAs would make the code more
complex.  So, instead of the usual lock/unlock pattern, the proposed
solution marks a VMA as locked and provides an efficient way to:

1. Identify locked VMAs.

2. Unlock all locked VMAs in bulk.

We also postpone unlocking the locked VMAs until the end of the update,
when we do mmap_write_unlock.  Potentially this keeps a VMA locked for
longer than is absolutely necessary but it results in a big reduction of
code complexity.

Read-locking a VMA is done using two sequence numbers - one in the
vm_area_struct and one in the mm_struct.  VMA is considered read-locked
when these sequence numbers are equal.  To read-lock a VMA we set the
sequence number in vm_area_struct to be equal to the sequence number in
mm_struct.  To unlock all VMAs we increment mm_struct's seq number.  This
allows for an efficient way to track locked VMAs and to drop the locks on
all VMAs at the end of the update.

The patchset implements per-VMA locking only for anonymous pages which are
not in swap and avoids userfaultfs as their implementation is more
complex.  Additional support for file-back page faults, swapped and user
pages can be added incrementally.

Performance benchmarks show similar although slightly smaller benefits as
with SPF patchset (~75% of SPF benefits).  Still, with lower complexity
this approach might be more desirable.

Since RFC was posted in September 2022, two separate Google teams outside
of Android evaluated the patchset and confirmed positive results.  Here
are the known usecases when per-VMA locks show benefits:

Android:

Apps with high number of threads (~100) launch times improve by up to 20%.
Each thread mmaps several areas upon startup (Stack and Thread-local
storage (TLS), thread signal stack, indirect ref table), which requires
taking mmap_lock in write mode.  Page faults take mmap_lock in read mode. 
During app launch, both thread creation and page faults establishing the
active workinget are happening in parallel and that causes lock contention
between mm writers and readers even if updates and page faults are
happening in different VMAs.  Per-vma locks prevent this contention by
providing more granular lock.

Google Fibers:

We have several dynamically sized thread pools that spawn new threads
under increased load and reduce their number when idling. For example,
Google's in-process scheduling/threading framework, UMCG/Fibers, is backed
by such a thread pool. When idling, only a small number of idle worker
threads are available; when a spike of incoming requests arrive, each
request is handled in its own "fiber", which is a work item posted onto a
UMCG worker thread; quite often these spikes lead to a number of new
threads spawning. Each new thread needs to allocate and register an RSEQ
section on its TLS, then register itself with the kernel as a UMCG worker
thread, and only after that it can be considered by the in-process
UMCG/Fiber scheduler as available to do useful work. In short, during an
incoming workload spike new threads have to be spawned, and they perform
several syscalls (RSEQ registration, UMCG worker registration, memory
allocations) before they can actually start doing useful work. Removing
any bottlenecks on this thread startup path will greatly improve our
services' latencies when faced with request/workload spikes.

At high scale, mmap_lock contention during thread creation and stack page
faults leads to user-visible multi-second serving latencies in a similar
pattern to Android app startup.  Per-VMA locking patchset has been run
successfully in limited experiments with user-facing production workloads.
In these experiments, we observed that the peak thread creation rate was
high enough that thread creation is no longer a bottleneck.

TCP zerocopy receive:

From the point of view of TCP zerocopy receive, the per-vma lock patch is
massively beneficial.

In today's implementation, a process with N threads where N - 1 are
performing zerocopy receive and 1 thread is performing madvise() with the
write lock taken (e.g.  needs to change vm_flags) will result in all N -1
receive threads blocking until the madvise is done.  Conversely, on a busy
process receiving a lot of data, an madvise operation that does need to
take the mmap lock in write mode will need to wait for all of the receives
to be done - a lose:lose proposition.  Per-VMA locking _removes_ by
definition this source of contention entirely.

There are other benefits for receive as well, chiefly a reduction in
cacheline bouncing across receiving threads for locking/unlocking the
single mmap lock.  On an RPC style synthetic workload with 4KB RPCs:

1a) The find+lock+unlock VMA path in the base case, without the
    per-vma lock patchset, is about 0.7% of cycles as measured by perf.

1b) mmap_read_lock + mmap_read_unlock in the base case is about 0.5%
    cycles overall - most of this is within the TCP read hotpath (a small
    fraction is 'other' usage in the system).

2a) The find+lock+unlock VMA path, with the per-vma patchset and a
    trivial patch written to take advantage of it in TCP, is about 0.4% of
    cycles (down from 0.7% above)

2b) mmap_read_lock + mmap_read_unlock in the per-vma patchset is <
    0.1% cycles and is out of the TCP read hotpath entirely (down from
    0.5% before, the remaining usage is the 'other' usage in the system). 
    So, in addition to entirely removing an onerous source of contention,
    it also reduces the CPU cycles of TCP receive zerocopy by about 0.5%+
    (compared to overall cycles in perf) for the 'small' RPC scenario.

In https://lkml.kernel.org/r/87fsaqouyd.fsf_-_@stealth, Punit
demonstrated throughput improvements of as much as 188% from this
patchset.


This patch (of 25):

This configuration variable will be used to build the support for VMA
locking during page fault handling.

This is enabled on supported architectures with SMP and MMU set.

The architecture support is needed since the page fault handler is called
from the architecture's page faulting code which needs modifications to
handle faults under VMA lock.

Link: https://lkml.kernel.org/r/20230227173632.3292573-1-surenb@google.com
Link: https://lkml.kernel.org/r/20230227173632.3292573-10-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 20:02:56 -07:00
Kirill A. Shutemov
23baf831a3 mm, treewide: redefine MAX_ORDER sanely
MAX_ORDER currently defined as number of orders page allocator supports:
user can ask buddy allocator for page order between 0 and MAX_ORDER-1.

This definition is counter-intuitive and lead to number of bugs all over
the kernel.

Change the definition of MAX_ORDER to be inclusive: the range of orders
user can ask from buddy allocator is 0..MAX_ORDER now.

[kirill@shutemov.name: fix min() warning]
  Link: https://lkml.kernel.org/r/20230315153800.32wib3n5rickolvh@box
[akpm@linux-foundation.org: fix another min_t warning]
[kirill@shutemov.name: fixups per Zi Yan]
  Link: https://lkml.kernel.org/r/20230316232144.b7ic4cif4kjiabws@box.shutemov.name
[akpm@linux-foundation.org: fix underlining in docs]
  Link: https://lore.kernel.org/oe-kbuild-all/202303191025.VRCTk6mP-lkp@intel.com/
Link: https://lkml.kernel.org/r/20230315113133.11326-11-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 19:42:46 -07:00
Keith Busch
def8574308 dmapool: add alloc/free performance test
Patch series "dmapool enhancements", v4.

Time spent in dma_pool alloc/free increases linearly with the number of
pages backing the pool.  We can reduce this to constant time with minor
changes to how free pages are tracked.


This patch (of 12):

Provide a module that allocates and frees many blocks of various sizes and
report how long it takes.  This is intended to provide a consistent way to
measure how changes to the dma_pool_alloc/free routines affect timing.

Link: https://lkml.kernel.org/r/20230126215125.4069751-1-kbusch@meta.com
Link: https://lkml.kernel.org/r/20230126215125.4069751-2-kbusch@meta.com
Signed-off-by: Keith Busch <kbusch@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 19:42:38 -07:00