IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
* PSCI relay at EL2 when "protected KVM" is enabled
* New exception injection code
* Simplification of AArch32 system register handling
* Fix PMU accesses when no PMU is enabled
* Expose CSV3 on non-Meltdown hosts
* Cache hierarchy discovery fixes
* PV steal-time cleanups
* Allow function pointers at EL2
* Various host EL2 entry cleanups
* Simplification of the EL2 vector allocation
s390:
* memcg accouting for s390 specific parts of kvm and gmap
* selftest for diag318
* new kvm_stat for when async_pf falls back to sync
x86:
* Tracepoints for the new pagetable code from 5.10
* Catch VFIO and KVM irqfd events before userspace
* Reporting dirty pages to userspace with a ring buffer
* SEV-ES host support
* Nested VMX support for wait-for-SIPI activity state
* New feature flag (AVX512 FP16)
* New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
* Selftest improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/bdL4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNgQQgAnTH6rhXa++Zd5F0EM2NwXwz3iEGb
lOq1DZSGjs6Eekjn8AnrWbmVQr+CBCuGU9MrxpSSzNDK/awryo3NwepOWAZw9eqk
BBCVwGBbJQx5YrdgkGC0pDq2sNzcpW/VVB3vFsmOxd9eHblnuKSIxEsCCXTtyqIt
XrLpQ1UhvI4yu102fDNhuFw2EfpzXm+K0Lc0x6idSkdM/p7SyeOxiv8hD4aMr6+G
bGUQuMl4edKZFOWFigzr8NovQAvDHZGrwfihu2cLRYKLhV97QuWVmafv/yYfXcz2
drr+wQCDNzDOXyANnssmviazrhOX0QmTAhbIXGGX/kTxYKcfPi83ZLoI3A==
=ISud
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Much x86 work was pushed out to 5.12, but ARM more than made up for it.
ARM:
- PSCI relay at EL2 when "protected KVM" is enabled
- New exception injection code
- Simplification of AArch32 system register handling
- Fix PMU accesses when no PMU is enabled
- Expose CSV3 on non-Meltdown hosts
- Cache hierarchy discovery fixes
- PV steal-time cleanups
- Allow function pointers at EL2
- Various host EL2 entry cleanups
- Simplification of the EL2 vector allocation
s390:
- memcg accouting for s390 specific parts of kvm and gmap
- selftest for diag318
- new kvm_stat for when async_pf falls back to sync
x86:
- Tracepoints for the new pagetable code from 5.10
- Catch VFIO and KVM irqfd events before userspace
- Reporting dirty pages to userspace with a ring buffer
- SEV-ES host support
- Nested VMX support for wait-for-SIPI activity state
- New feature flag (AVX512 FP16)
- New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
- Selftest improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: SVM: fix 32-bit compilation
KVM: SVM: Add AP_JUMP_TABLE support in prep for AP booting
KVM: SVM: Provide support to launch and run an SEV-ES guest
KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests
KVM: SVM: Provide support for SEV-ES vCPU loading
KVM: SVM: Provide support for SEV-ES vCPU creation/loading
KVM: SVM: Update ASID allocation to support SEV-ES guests
KVM: SVM: Set the encryption mask for the SVM host save area
KVM: SVM: Add NMI support for an SEV-ES guest
KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guest
KVM: SVM: Do not report support for SMM for an SEV-ES guest
KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ES
KVM: SVM: Add support for CR8 write traps for an SEV-ES guest
KVM: SVM: Add support for CR4 write traps for an SEV-ES guest
KVM: SVM: Add support for CR0 write traps for an SEV-ES guest
KVM: SVM: Add support for EFER write traps for an SEV-ES guest
KVM: SVM: Support string IO operations for an SEV-ES guest
KVM: SVM: Support MMIO for an SEV-ES guest
KVM: SVM: Create trace events for VMGEXIT MSR protocol processing
KVM: SVM: Create trace events for VMGEXIT processing
...
Conflict resolution gone astray results in the kernel not booting
on VHE-capable HW when VHE support is disabled. Thankfully spotted
by David.
Reported-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
When a CPU is booted in EL2, the kernel checks for VHE support and
initializes the CPU core accordingly. For nVHE it also installs the stub
vectors and drops down to EL1.
Once KVM gains the ability to boot cores without going through the
kernel entry point, it will need to initialize the CPU the same way.
Extract the relevant bits of el2_setup into an init_el2_state macro
with an argument specifying whether to initialize for VHE or nVHE.
The following ifdefs are removed:
* CONFIG_ARM_GIC_V3 - always selected on arm64
* CONFIG_COMPAT - hstr_el2 can be set even without 32-bit support
No functional change intended. Size of el2_setup increased by
148 bytes due to duplication.
Signed-off-by: David Brazdil <dbrazdil@google.com>
[maz: reworked to fit the new PSTATE initial setup code]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201202184122.26046-9-dbrazdil@google.com
As with SCTLR_ELx and other control registers, some PSTATE bits are
UNKNOWN out-of-reset, and we may not be able to rely on hardware or
firmware to initialize them to our liking prior to entry to the kernel,
e.g. in the primary/secondary boot paths and return from idle/suspend.
It would be more robust (and easier to reason about) if we consistently
initialized PSTATE to a default value, as we do with control registers.
This will ensure that the kernel is not adversely affected by bits it is
not aware of, e.g. when support for a feature such as PAN/UAO is
disabled.
This patch ensures that PSTATE is consistently initialized at boot time
via an ERET. This is not intended to relax the existing requirements
(e.g. DAIF bits must still be set prior to entering the kernel). For
features detected dynamically (which may require system-wide support),
it is still necessary to subsequently modify PSTATE.
As ERET is not always a Context Synchronization Event, an ISB is placed
before each exception return to ensure updates to control registers have
taken effect. This handles the kernel being entered with SCTLR_ELx.EOS
clear (or any future control bits being in an UNKNOWN state).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201113124937.20574-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Let's make SCTLR_ELx initialization a bit clearer by using meaningful
names for the initialization values, following the same scheme for
SCTLR_EL1 and SCTLR_EL2.
These definitions will be used more widely in subsequent patches.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201113124937.20574-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For a while now el2_setup has performed some basic initialization of EL1
even when the kernel is booted at EL1, so the name is a little
misleading. Further, some comments are stale as with VHE it doesn't drop
the CPU to EL1.
To clarify things, rename el2_setup to init_kernel_el, and update
comments to be clearer as to the function's purpose.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201113124937.20574-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Even though support for EFI boot remains entirely optional for arm64,
it is unlikely that we will ever be able to repurpose the image header
fields that the EFI loader relies on, i.e., the magic NOP at offset
0x0 and the PE header address at offset 0x3c.
So let's factor out the differences into a 'efi_signature_nop' macro and
a local symbol representing the PE header address, and move the
conditional definitions into efi-header.S, taking into account whether
CONFIG_EFI is enabled or not. While at it, switch to a signature NOP
that behaves more like a NOP, i.e., one that only clobbers the
flags.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201117124729.12642-4-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This reverts commit 353e228eb355be5a65a3c0996c774a0f46737fda.
Qian Cai reports that TX2 no longer boots with his .config as it appears
that task_cpu() gets instrumented and used before KASAN has been
initialised.
Although Mark has a proposed fix, let's take the safe option of reverting
this for now and sorting it out properly later.
Link: https://lore.kernel.org/r/711bc57a314d8d646b41307008db2845b7537b3d.camel@redhat.com
Reported-by: Qian Cai <cai@redhat.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Late patches for 5.10: MTE selftests, minor KCSAN preparation and removal
of some unused prototypes.
(Amit Daniel Kachhap and others)
* for-next/late-arrivals:
arm64: random: Remove no longer needed prototypes
arm64: initialize per-cpu offsets earlier
kselftest/arm64: Check mte tagged user address in kernel
kselftest/arm64: Verify KSM page merge for MTE pages
kselftest/arm64: Verify all different mmap MTE options
kselftest/arm64: Check forked child mte memory accessibility
kselftest/arm64: Verify mte tag inclusion via prctl
kselftest/arm64: Add utilities and a test to validate mte memory
The current initialization of the per-cpu offset register is difficult
to follow and this initialization is not always early enough for
upcoming instrumentation with KCSAN, where the instrumentation callbacks
use the per-cpu offset.
To make it possible to support KCSAN, and to simplify reasoning about
early bringup code, let's initialize the per-cpu offset earlier, before
we run any C code that may consume it. To do so, this patch adds a new
init_this_cpu_offset() helper that's called before the usual
primary/secondary start functions. For consistency, this is also used to
re-initialize the per-cpu offset after the runtime per-cpu areas have
been allocated (which can change CPU0's offset).
So that init_this_cpu_offset() isn't subject to any instrumentation that
might consume the per-cpu offset, it is marked with noinstr, preventing
instrumentation.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201005164303.21389-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
TEXT_OFFSET serves no purpose, and for this reason, it was redefined
as 0x0 in the v5.8 timeframe. Since this does not appear to have caused
any issues that require us to revisit that decision, let's get rid of the
macro entirely, along with any references to it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20200825135440.11288-1-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include
of the latter in the middle of asm includes. Fix this up with the aid of
the below script and manual adjustments here and there.
import sys
import re
if len(sys.argv) is not 3:
print "USAGE: %s <file> <header>" % (sys.argv[0])
sys.exit(1)
hdr_to_move="#include <linux/%s>" % sys.argv[2]
moved = False
in_hdrs = False
with open(sys.argv[1], "r") as f:
lines = f.readlines()
for _line in lines:
line = _line.rstrip('
')
if line == hdr_to_move:
continue
if line.startswith("#include <linux/"):
in_hdrs = True
elif not moved and in_hdrs:
moved = True
print hdr_to_move
print line
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.
Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Support for Clang's Shadow Call Stack in the kernel
(Sami Tolvanen and Will Deacon)
* for-next/scs:
arm64: entry-ftrace.S: Update comment to indicate that x18 is live
scs: Move DEFINE_SCS macro into core code
scs: Remove references to asm/scs.h from core code
scs: Move scs_overflow_check() out of architecture code
arm64: scs: Use 'scs_sp' register alias for x18
scs: Move accounting into alloc/free functions
arm64: scs: Store absolute SCS stack pointer value in thread_info
efi/libstub: Disable Shadow Call Stack
arm64: scs: Add shadow stacks for SDEI
arm64: Implement Shadow Call Stack
arm64: Disable SCS for hypervisor code
arm64: vdso: Disable Shadow Call Stack
arm64: efi: Restore register x18 if it was corrupted
arm64: Preserve register x18 when CPU is suspended
arm64: Reserve register x18 from general allocation with SCS
scs: Disable when function graph tracing is enabled
scs: Add support for stack usage debugging
scs: Add page accounting for shadow call stack allocations
scs: Add support for Clang's Shadow Call Stack (SCS)
ACPI and IORT updates
(Lorenzo Pieralisi)
* for-next/acpi:
ACPI/IORT: Remove the unused __get_pci_rid()
ACPI/IORT: Fix PMCG node single ID mapping handling
ACPI: IORT: Add comments for not calling acpi_put_table()
ACPI: GTDT: Put GTDT table after parsing
ACPI: IORT: Add extra message "applying workaround" for off-by-1 issue
ACPI/IORT: work around num_ids ambiguity
Revert "ACPI/IORT: Fix 'Number of IDs' handling in iort_id_map()"
ACPI/IORT: take _DMA methods into account for named components
BPF JIT optimisations for immediate value generation
(Luke Nelson)
* for-next/bpf:
bpf, arm64: Optimize ADD,SUB,JMP BPF_K using arm64 add/sub immediates
bpf, arm64: Optimize AND,OR,XOR,JSET BPF_K using arm64 logical immediates
arm64: insn: Fix two bugs in encoding 32-bit logical immediates
Addition of new CPU ID register fields and removal of some benign sanity checks
(Anshuman Khandual and others)
* for-next/cpufeature: (27 commits)
KVM: arm64: Check advertised Stage-2 page size capability
arm64/cpufeature: Add get_arm64_ftr_reg_nowarn()
arm64/cpuinfo: Add ID_MMFR4_EL1 into the cpuinfo_arm64 context
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR1 register
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR0 register
arm64/cpufeature: Add remaining feature bits in ID_AA64ISAR0 register
arm64/cpufeature: Add remaining feature bits in ID_MMFR4 register
arm64/cpufeature: Add remaining feature bits in ID_PFR0 register
arm64/cpufeature: Introduce ID_MMFR5 CPU register
arm64/cpufeature: Introduce ID_DFR1 CPU register
arm64/cpufeature: Introduce ID_PFR2 CPU register
arm64/cpufeature: Make doublelock a signed feature in ID_AA64DFR0
arm64/cpufeature: Drop TraceFilt feature exposure from ID_DFR0 register
arm64/cpufeature: Add explicit ftr_id_isar0[] for ID_ISAR0 register
arm64/cpufeature: Drop open encodings while extracting parange
arm64/cpufeature: Validate hypervisor capabilities during CPU hotplug
arm64: cpufeature: Group indexed system register definitions by name
arm64: cpufeature: Extend comment to describe absence of field info
arm64: drop duplicate definitions of ID_AA64MMFR0_TGRAN constants
arm64: cpufeature: Add an overview comment for the cpufeature framework
...
Minor documentation tweaks for silicon errata and booting requirements
(Rob Herring and Will Deacon)
* for-next/docs:
arm64: silicon-errata.rst: Sort the Cortex-A55 entries
arm64: docs: Mandate that the I-cache doesn't hold stale kernel text
Minor Kconfig cleanups
(Geert Uytterhoeven)
* for-next/kconfig:
arm64: cpufeature: Add "or" to mitigations for multiple errata
arm64: Sort vendor-specific errata
Miscellaneous updates
(Ard Biesheuvel and others)
* for-next/misc:
arm64: mm: Add asid_gen_match() helper
arm64: stacktrace: Factor out some common code into on_stack()
arm64: Call debug_traps_init() from trap_init() to help early kgdb
arm64: cacheflush: Fix KGDB trap detection
arm64/cpuinfo: Move device_initcall() near cpuinfo_regs_init()
arm64: kexec_file: print appropriate variable
arm: mm: use __pfn_to_section() to get mem_section
arm64: Reorder the macro arguments in the copy routines
efi/libstub/arm64: align PE/COFF sections to segment alignment
KVM: arm64: Drop PTE_S2_MEMATTR_MASK
arm64/kernel: Fix range on invalidating dcache for boot page tables
arm64: set TEXT_OFFSET to 0x0 in preparation for removing it entirely
arm64: lib: Consistently enable crc32 extension
arm64/mm: Use phys_to_page() to access pgtable memory
arm64: smp: Make cpus_stuck_in_kernel static
arm64: entry: remove unneeded semicolon in el1_sync_handler()
arm64/kernel: vmlinux.lds: drop redundant discard/keep macros
arm64: drop GZFLAGS definition and export
arm64: kexec_file: Avoid temp buffer for RNG seed
arm64: rename stext to primary_entry
Perf PMU driver updates
(Tang Bin and others)
* for-next/perf:
pmu/smmuv3: Clear IRQ affinity hint on device removal
drivers/perf: hisi: Permit modular builds of HiSilicon uncore drivers
drivers/perf: hisi: Fix typo in events attribute array
drivers/perf: arm_spe_pmu: Avoid duplicate printouts
drivers/perf: arm_dsu_pmu: Avoid duplicate printouts
Pointer authentication updates and support for vmcoreinfo
(Amit Daniel Kachhap and Mark Rutland)
* for-next/ptr-auth:
Documentation/vmcoreinfo: Add documentation for 'KERNELPACMASK'
arm64/crash_core: Export KERNELPACMASK in vmcoreinfo
arm64: simplify ptrauth initialization
arm64: remove ptrauth_keys_install_kernel sync arg
SDEI cleanup and non-critical fixes
(James Morse and others)
* for-next/sdei:
firmware: arm_sdei: Document the motivation behind these set_fs() calls
firmware: arm_sdei: remove unused interfaces
firmware: arm_sdei: Put the SDEI table after using it
firmware: arm_sdei: Drop check for /firmware/ node and always register driver
SMCCC updates and refactoring
(Sudeep Holla)
* for-next/smccc:
firmware: smccc: Fix missing prototype warning for arm_smccc_version_init
firmware: smccc: Add function to fetch SMCCC version
firmware: smccc: Refactor SMCCC specific bits into separate file
firmware: smccc: Drop smccc_version enum and use ARM_SMCCC_VERSION_1_x instead
firmware: smccc: Add the definition for SMCCCv1.2 version/error codes
firmware: smccc: Update link to latest SMCCC specification
firmware: smccc: Add HAVE_ARM_SMCCC_DISCOVERY to identify SMCCC v1.1 and above
vDSO cleanup and non-critical fixes
(Mark Rutland and Vincenzo Frascino)
* for-next/vdso:
arm64: vdso: Add --eh-frame-hdr to ldflags
arm64: vdso: use consistent 'map' nomenclature
arm64: vdso: use consistent 'abi' nomenclature
arm64: vdso: simplify arch_vdso_type ifdeffery
arm64: vdso: remove aarch32_vdso_pages[]
arm64: vdso: Add '-Bsymbolic' to ldflags
x18 holds the SCS stack pointer value, so introduce a register alias to
make this easier to read in assembly code.
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Prior to commit 8eb7e28d4c642c31 ("arm64/mm: move runtime pgds to
rodata"), idmap_pgd_dir, tramp_pg_dir, reserved_ttbr0, swapper_pg_dir,
and init_pg_dir were contiguous at the end of the kernel image. The
maintenance at the end of __create_page_tables assumed these were
contiguous, and affected everything from the start of idmap_pg_dir
to the end of init_pg_dir.
That commit moved all but init_pg_dir into the .rodata section, with
other data placed between idmap_pg_dir and init_pg_dir, but did not
update the maintenance. Hence the maintenance is performed on much
more data than necessary (but as the bootloader previously made this
clean to the PoC there is no functional problem).
As we only alter idmap_pg_dir, and init_pg_dir, we only need to perform
maintenance for these. As the other dirs are in .rodata, the bootloader
will have initialised them as expected and cleaned them to the PoC. The
kernel will initialize them as necessary after enabling the MMU.
This patch reworks the maintenance to only cover the idmap_pg_dir and
init_pg_dir to avoid this unnecessary work.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20200427235700.112220-1-gshan@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
For historical reasons, the primary entry routine living somewhere in
the inittext section is called stext(), which is confusing, given that
there is also a section marker called _stext which lives at a fixed
offset in the image (either 64 or 4096 bytes, depending on whether
CONFIG_EFI is enabled)
Let's rename stext to primary_entry(), which is a better description
and reflects the secondary_entry() routine that already exists for
SMP boot.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20200326171423.3080-1-ardb@kernel.org
Reviwed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Currently __cpu_setup conditionally initializes the address
authentication keys and enables them in SCTLR_EL1, doing so differently
for the primary CPU and secondary CPUs, and skipping this work for CPUs
returning from an idle state. For the latter case, cpu_do_resume
restores the keys and SCTLR_EL1 value after the MMU has been enabled.
This flow is rather difficult to follow, so instead let's move the
primary and secondary CPU initialization into their respective boot
paths. By following the example of cpu_do_resume and doing so once the
MMU is enabled, we can always initialize the keys from the values in
thread_struct, and avoid the machinery necessary to pass the keys in
secondary_data or open-coding initialization for the boot CPU.
This means we perform an additional RMW of SCTLR_EL1, but we already do
this in the cpu_do_resume path, and for other features in cpufeature.c,
so this isn't a major concern in a bringup path. Note that even while
the enable bits are clear, the key registers are accessible.
As this now renders the argument to __cpu_setup redundant, let's also
remove that entirely. Future extensions can follow a similar approach to
initialize values that differ for primary/secondary CPUs.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200423101606.37601-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
* for-next/asm-cleanups:
: Various asm clean-ups (alignment, mov_q vs ldr, .idmap)
arm64: move kimage_vaddr to .rodata
arm64: use mov_q instead of literal ldr
* for-next/asm-annotations:
: Modernise arm64 assembly annotations
arm64: head: Convert install_el2_stub to SYM_INNER_LABEL
arm64: Mark call_smc_arch_workaround_1 as __maybe_unused
arm64: entry-ftrace.S: Fix missing argument for CONFIG_FUNCTION_GRAPH_TRACER=y
arm64: vdso32: Convert to modern assembler annotations
arm64: vdso: Convert to modern assembler annotations
arm64: sdei: Annotate SDEI entry points using new style annotations
arm64: kvm: Modernize __smccc_workaround_1_smc_start annotations
arm64: kvm: Modernize annotation for __bp_harden_hyp_vecs
arm64: kvm: Annotate assembly using modern annoations
arm64: kernel: Convert to modern annotations for assembly data
arm64: head: Annotate stext and preserve_boot_args as code
arm64: head.S: Convert to modern annotations for assembly functions
arm64: ftrace: Modernise annotation of return_to_handler
arm64: ftrace: Correct annotation of ftrace_caller assembly
arm64: entry-ftrace.S: Convert to modern annotations for assembly functions
arm64: entry: Additional annotation conversions for entry.S
arm64: entry: Annotate ret_from_fork as code
arm64: entry: Annotate vector table and handlers as code
arm64: crypto: Modernize names for AES function macros
arm64: crypto: Modernize some extra assembly annotations
New assembly annotations have recently been introduced which aim to
make the way we describe symbols in assembly more consistent. Recently the
arm64 assembler was converted to use these but install_el2_stub was missed.
Signed-off-by: Mark Brown <broonie@kernel.org>
[catalin.marinas@arm.com: changed to SYM_L_LOCAL]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This datum is not referenced from .idmap.text: it does not need to be
mapped in idmap. Lets move it to .rodata as it is never written to after
early boot of the primary CPU.
(Maybe .data.ro_after_init would be cleaner though?)
Signed-off-by: Rémi Denis-Courmont <remi@remlab.net>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch allows __cpu_setup to be invoked with one of these flags,
ARM64_CPU_BOOT_PRIMARY, ARM64_CPU_BOOT_SECONDARY or ARM64_CPU_RUNTIME.
This is required as some cpufeatures need different handling during
different scenarios.
The input parameter in x0 is preserved till the end to be used inside
this function.
There should be no functional change with this patch and is useful
for the subsequent ptrauth patch which utilizes it. Some upcoming
arm cpufeatures can also utilize these flags.
Suggested-by: James Morse <james.morse@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These include specific
annotations for the start and end of data, update symbols for data to use
these.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions. Neither stext nor preserve_boot_args
is called with the usual AAPCS calling conventions and they should
therefore be annotated as code.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These replace ENTRY and
ENDPROC and also add a new annotation for static functions which previously
had no ENTRY equivalent. Update the annotations in the core kernel code to
the new macros.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There are no applicable literals above them.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Remi Denis-Courmont <remi.denis.courmont@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* for-next/52-bit-kva: (25 commits)
Support for 52-bit virtual addressing in kernel space
* for-next/cpu-topology: (9 commits)
Move CPU topology parsing into core code and add support for ACPI 6.3
* for-next/error-injection: (2 commits)
Support for function error injection via kprobes
* for-next/perf: (8 commits)
Support for i.MX8 DDR PMU and proper SMMUv3 group validation
* for-next/psci-cpuidle: (7 commits)
Move PSCI idle code into a new CPUidle driver
* for-next/rng: (4 commits)
Support for 'rng-seed' property being passed in the devicetree
* for-next/smpboot: (3 commits)
Reduce fragility of secondary CPU bringup in debug configurations
* for-next/tbi: (10 commits)
Introduce new syscall ABI with relaxed requirements for pointer tags
* for-next/tlbi: (6 commits)
Handle spurious page faults arising from kernel space
Although SMP bringup is inherently racy, we can significantly reduce
the window during which secondary CPUs can unexpectedly enter the
kernel by sanity checking the 'stack' and 'task' fields of the
'secondary_data' structure. If the booting CPU gave up waiting for us,
then they will have been cleared to NULL and we should spin in a WFE; WFI
loop instead.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Previous patches have enabled 52-bit kernel + user VAs and there is no
longer any scenario where user VA != kernel VA size.
This patch removes the, now redundant, vabits_user variable and replaces
usage with vabits_actual where appropriate.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Most of the machinery is now in place to enable 52-bit kernel VAs that
are detectable at boot time.
This patch adds a Kconfig option for 52-bit user and kernel addresses
and plumbs in the requisite CONFIG_ macros as well as sets TCR.T1SZ,
physvirt_offset and vmemmap at early boot.
To simplify things this patch also removes the 52-bit user/48-bit kernel
kconfig option.
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
When running with a 52-bit userspace VA and a 48-bit kernel VA we offset
ttbr1_el1 to allow the kernel pagetables with a 52-bit PTRS_PER_PGD to
be used for both userspace and kernel.
Moving on to a 52-bit kernel VA we no longer require this offset to
ttbr1_el1 should we be running on a system with HW support for 52-bit
VAs.
This patch introduces conditional logic to offset_ttbr1 to query
SYS_ID_AA64MMFR2_EL1 whenever 52-bit VAs are selected. If there is HW
support for 52-bit VAs then the ttbr1 offset is skipped.
We choose to read a system register rather than vabits_actual because
offset_ttbr1 can be called in places where the kernel data is not
actually mapped.
Calls to offset_ttbr1 appear to be made from rarely called code paths so
this extra logic is not expected to adversely affect performance.
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In order to support 52-bit kernel addresses detectable at boot time, one
needs to know the actual VA_BITS detected. A new variable vabits_actual
is introduced in this commit and employed for the KVM hypervisor layout,
KASAN, fault handling and phys-to/from-virt translation where there
would normally be compile time constants.
In order to maintain performance in phys_to_virt, another variable
physvirt_offset is introduced.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In order to support 52-bit kernel addresses detectable at boot time, the
kernel needs to know the most conservative VA_BITS possible should it
need to fall back to this quantity due to lack of hardware support.
A new compile time constant VA_BITS_MIN is introduced in this patch and
it is employed in the KASAN end address, KASLR, and EFI stub.
For Arm, if 52-bit VA support is unavailable the fallback is to 48-bits.
In other words: VA_BITS_MIN = min (48, VA_BITS)
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
RELR is a relocation packing format for relative relocations.
The format is described in a generic-abi proposal:
https://groups.google.com/d/topic/generic-abi/bX460iggiKg/discussion
The LLD linker can be instructed to pack relocations in the RELR
format by passing the flag --pack-dyn-relocs=relr.
This patch adds a new config option, CONFIG_RELR. Enabling this option
instructs the linker to pack vmlinux's relative relocations in the RELR
format, and causes the kernel to apply the relocations at startup along
with the RELA relocations. RELA relocations still need to be applied
because the linker will emit RELA relative relocations if they are
unrepresentable in the RELR format (i.e. address not a multiple of 2).
Enabling CONFIG_RELR reduces the size of a defconfig kernel image
with CONFIG_RANDOMIZE_BASE by 3.5MB/16% uncompressed, or 550KB/5%
compressed (lz4).
Signed-off-by: Peter Collingbourne <pcc@google.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
__early_cpu_boot_status is of type long. Use quad
assembler directive to allocate proper size.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Arun KS <arunks@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Following assembly code is not trivial; make it slightly easier to read by
replacing some of the magic numbers with the defines which are already
present in sysreg.h.
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Updates to the GIC architecture allow ID_AA64PFR0_EL1.GIC to have
values other than 0 or 1. At the moment, Linux is quite strict in the
way it handles this field at early boot stage (cpufeature is fine) and
will refuse to use the system register CPU interface if it doesn't
find the value 1.
Fixes: 021f653791ad17e03f98aaa7fb933816ae16f161 ("irqchip: gic-v3: Initial support for GICv3")
Reported-by: Chase Conklin <Chase.Conklin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A side effect of commit c55191e96caa ("arm64: mm: apply r/o permissions
of VM areas to its linear alias as well") is that the linear map is
created with page granularity, which means that transitioning the early
page table from global to non-global mappings when enabling kpti can
take a significant amount of time during boot.
Given that most CPU implementations do not require kpti, this mainly
impacts KASLR builds where kpti is forcefully enabled. However, in these
situations we know early on that non-global mappings are required and
can avoid the use of global mappings from the beginning. The only gotcha
is Cavium erratum #27456, which we must detect based on the MIDR value
of the boot CPU.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by: John Garry <john.garry@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In KVM we define the configuration of HCR_EL2 for a VHE HOST in
HCR_HOST_VHE_FLAGS, but we don't have a similar definition for the
non-VHE host flags, and open-code HCR_RW. Further, in head.S we
open-code the flags for VHE and non-VHE configurations.
In future, we're going to want to configure more flags for the host, so
lets add a HCR_HOST_NVHE_FLAGS defintion, and consistently use both
HCR_HOST_VHE_FLAGS and HCR_HOST_NVHE_FLAGS in the kvm code and head.S.
We now use mov_q to generate the HCR_EL2 value, as we use when
configuring other registers in head.S.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Will Deacon <will.deacon@arm.com>
Rather than add additional variables to detect specific early feature
mismatches with secondary CPUs, we can instead dedicate the upper bits
of the CPU boot status word to flag specific mismatches.
This allows us to communicate both granule and VA-size mismatches back
to the primary CPU without the need for additional book-keeping.
Tested-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Enabling 52-bit VAs for userspace is pretty confusing, since it requires
you to select "48-bit" virtual addressing in the Kconfig.
Rework the logic so that 52-bit user virtual addressing is advertised in
the "Virtual address space size" choice, along with some help text to
describe its interaction with Pointer Authentication. The EXPERT-only
option to force all user mappings to the 52-bit range is then made
available immediately below the VA size selection.
Signed-off-by: Will Deacon <will.deacon@arm.com>
On arm64 there is optional support for a 52-bit virtual address space.
To exploit this one has to be running with a 64KB page size and be
running on hardware that supports this.
For an arm64 kernel supporting a 48 bit VA with a 64KB page size,
some changes are needed to support a 52-bit userspace:
* TCR_EL1.T0SZ needs to be 12 instead of 16,
* TASK_SIZE needs to reflect the new size.
This patch implements the above when the support for 52-bit VAs is
detected at early boot time.
On arm64 userspace addresses translation is controlled by TTBR0_EL1. As
well as userspace, TTBR0_EL1 controls:
* The identity mapping,
* EFI runtime code.
It is possible to run a kernel with an identity mapping that has a
larger VA size than userspace (and for this case __cpu_set_tcr_t0sz()
would set TCR_EL1.T0SZ as appropriate). However, when the conditions for
52-bit userspace are met; it is possible to keep TCR_EL1.T0SZ fixed at
12. Thus in this patch, the TCR_EL1.T0SZ size changing logic is
disabled.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>