IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
There is no reason to conditionally take the iolock inside xfs_setattr_size
when we can let the caller handle it unconditionally, which just incrases
the lock hold time for the case where it was previously taken internally
by a few instructions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When xfs_growfs_data_private() is updating backup superblocks,
it bails out on the first error encountered, whether reading or
writing:
* If we get an error writing out the alternate superblocks,
* just issue a warning and continue. The real work is
* already done and committed.
This can cause a problem later during repair, because repair
looks at all superblocks, and picks the most prevalent one
as correct. If we bail out early in the backup superblock
loop, we can end up with more "bad" matching superblocks than
good, and a post-growfs repair may revert the filesystem to
the old geometry.
With the combination of superblock verifiers and old bugs,
we're more likely to encounter read errors due to verification.
And perhaps even worse, we don't even properly write any of the
newly-added superblocks in the new AGs.
Even with this change, growfs will still say:
xfs_growfs: XFS_IOC_FSGROWFSDATA xfsctl failed: Structure needs cleaning
data blocks changed from 319815680 to 335216640
which might be confusing to the user, but it at least communicates
that something has gone wrong, and dmesg will probably highlight
the need for an xfs_repair.
And this is still best-effort; if verifiers fail on more than
half the backup supers, they may still "win" - but that's probably
best left to repair to more gracefully handle by doing its own
strict verification as part of the backup super "voting."
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
If we get EWRONGFS due to probing of non-xfs filesystems,
there's no need to issue the scary corruption error and backtrace.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
__xfs_printk adds its own "\n". Having it in the original string
leads to unintentional blank lines from these messages.
Most format strings have no newline, but a few do, leading to
i.e.:
[ 7347.119911] XFS (sdb2): Access to block zero in inode 132 start_block: 0 start_off: 0 blkcnt: 0 extent-state: 0 lastx: 1a05
[ 7347.119911]
[ 7347.119919] XFS (sdb2): Access to block zero in inode 132 start_block: 0 start_off: 0 blkcnt: 0 extent-state: 0 lastx: 1a05
[ 7347.119919]
Fix them all.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Recent analysis of a deadlocked XFS filesystem from a kernel
crash dump indicated that the filesystem was stuck waiting for log
space. The short story of the hang on the RHEL6 kernel is this:
- the tail of the log is pinned by an inode
- the inode has been pushed by the xfsaild
- the inode has been flushed to it's backing buffer and is
currently flush locked and hence waiting for backing
buffer IO to complete and remove it from the AIL
- the backing buffer is marked for write - it is on the
delayed write queue
- the inode buffer has been modified directly and logged
recently due to unlinked inode list modification
- the backing buffer is pinned in memory as it is in the
active CIL context.
- the xfsbufd won't start buffer writeback because it is
pinned
- xfssyncd won't force the log because it sees the log as
needing to be covered and hence wants to issue a dummy
transaction to move the log covering state machine along.
Hence there is no trigger to force the CIL to the log and hence
unpin the inode buffer and therefore complete the inode IO, remove
it from the AIL and hence move the tail of the log along, allowing
transactions to start again.
Mainline kernels also have the same deadlock, though the signature
is slightly different - the inode buffer never reaches the delayed
write lists because xfs_buf_item_push() sees that it is pinned and
hence never adds it to the delayed write list that the xfsaild
flushes.
There are two possible solutions here. The first is to simply force
the log before trying to cover the log and so ensure that the CIL is
emptied before we try to reserve space for the dummy transaction in
the xfs_log_worker(). While this might work most of the time, it is
still racy and is no guarantee that we don't get stuck in
xfs_trans_reserve waiting for log space to come free. Hence it's not
the best way to solve the problem.
The second solution is to modify xfs_log_need_covered() to be aware
of the CIL. We only should be attempting to cover the log if there
is no current activity in the log - covering the log is the process
of ensuring that the head and tail in the log on disk are identical
(i.e. the log is clean and at idle). Hence, by definition, if there
are items in the CIL then the log is not at idle and so we don't
need to attempt to cover it.
When we don't need to cover the log because it is active or idle, we
issue a log force from xfs_log_worker() - if the log is idle, then
this does nothing. However, if the log is active due to there being
items in the CIL, it will force the items in the CIL to the log and
unpin them.
In the case of the above deadlock scenario, instead of
xfs_log_worker() getting stuck in xfs_trans_reserve() attempting to
cover the log, it will instead force the log, thereby unpinning the
inode buffer, allowing IO to be issued and complete and hence
removing the inode that was pinning the tail of the log from the
AIL. At that point, everything will start moving along again. i.e.
the xfs_log_worker turns back into a watchdog that can alleviate
deadlocks based around pinned items that prevent the tail of the log
from being moved...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The xfs_inactive() return value is meaningless. Turn xfs_inactive()
into a void function and clean up the error handling appropriately.
Kill the VN_INACTIVE_[NO]CACHE directives as they are not relevant
to Linux.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Push the inode free work performed during xfs_inactive() down into
a new xfs_inactive_ifree() helper. This clears xfs_inactive() from
all inode locking and transaction management more directly
associated with freeing the inode xattrs, extents and the inode
itself.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Create the new xfs_inactive_truncate() function to handle the
truncate portion of xfs_inactive(). Push the locking and
transaction management into the new function.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Push down the transaction management for remote symlinks from
xfs_inactive() down to xfs_inactive_symlink_rmt(). The latter is
cleaned up to avoid transaction management intended for the
calling context (i.e., trans duplication, reservation, item
attachment).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add the inode type directory type support to XFS_IOC_FSGEOM
so that xfs_repair/xfs_info knows if the superblock v4 filesystem
enabled the feature.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This fixes a build failure caused by calling the free() function which
does not exist in the Linux kernel.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit aaaae98022efa4f3c31042f1fdf9e7a0c5f04663)
Free the memory in error path of xlog_recover_add_to_trans().
Normally this memory is freed in recovery pass2, but is leaked
in the error path.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 519ccb81ac1c8e3e4eed294acf93be00b43dcad6)
The determination of whether a directory entry contains a dtype
field originally was dependent on the filesystem having CRCs
enabled. This meant that the format for dtype beign enabled could be
determined by checking the directory block magic number rather than
doing a feature bit check. This was useful in that it meant that we
didn't need to pass a struct xfs_mount around to functions that
were already supplied with a directory block header.
Unfortunately, the introduction of dtype fields into the v4
structure via a feature bit meant this "use the directory block
magic number" method of discriminating the dirent entry sizes is
broken. Hence we need to convert the places that use magic number
checks to use feature bit checks so that they work correctly and not
by chance.
The current code works on v4 filesystems only because the dirent
size roundup covers the extra byte needed by the dtype field in the
places where this problem occurs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 367993e7c6428cb7617ab7653d61dca54e2fdede)
Michael Semon reported that xfs/299 generated this lockdep warning:
=============================================
[ INFO: possible recursive locking detected ]
3.12.0-rc2+ #2 Not tainted
---------------------------------------------
touch/21072 is trying to acquire lock:
(&xfs_dquot_other_class){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64
but task is already holding lock:
(&xfs_dquot_other_class){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&xfs_dquot_other_class);
lock(&xfs_dquot_other_class);
*** DEADLOCK ***
May be due to missing lock nesting notation
7 locks held by touch/21072:
#0: (sb_writers#10){++++.+}, at: [<c11185b6>] mnt_want_write+0x1e/0x3e
#1: (&type->i_mutex_dir_key#4){+.+.+.}, at: [<c11078ee>] do_last+0x245/0xe40
#2: (sb_internal#2){++++.+}, at: [<c122c9e0>] xfs_trans_alloc+0x1f/0x35
#3: (&(&ip->i_lock)->mr_lock/1){+.+...}, at: [<c126cd1b>] xfs_ilock+0x100/0x1f1
#4: (&(&ip->i_lock)->mr_lock){++++-.}, at: [<c126cf52>] xfs_ilock_nowait+0x105/0x22f
#5: (&dqp->q_qlock){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64
#6: (&xfs_dquot_other_class){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64
The lockdep annotation for dquot lock nesting only understands
locking for user and "other" dquots, not user, group and quota
dquots. Fix the annotations to match the locking heirarchy we now
have.
Reported-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit f112a049712a5c07de25d511c3c6587a2b1a015e)
XFS never calls mark_inode_bad or iget_failed, so it will never see a
bad inode. Remove all checks for is_bad_inode because they are
unnecessary.
Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
At xfs_iext_realloc_direct(), the new_size is changed by adding
if_bytes if originally the extent records are stored at the inline
extent buffer, and we have to switch from it to a direct extent
list for those new allocated extents, this is wrong. e.g,
Create a file with three extents which was showing as following,
xfs_io -f -c "truncate 100m" /xfs/testme
for i in $(seq 0 5 10); do
offset=$(($i * $((1 << 20))))
xfs_io -c "pwrite $offset 1m" /xfs/testme
done
Inline
------
irec: if_bytes bytes_diff new_size
1st 0 16 16
2nd 16 16 32
Switching
--------- rnew_size
3rd 32 16 48 + 32 = 80 roundup=128
In this case, the desired value of new_size should be 48, and then
it will be roundup to 64 and be assigned to rnew_size.
However, this issue has been covered by resetting the if_bytes to
the new_size which is calculated at the begnning of xfs_iext_add()
before leaving out this function, and in turn make the rnew_size
correctly again. Hence, this can not be detected via xfstestes.
This patch fix above problem and revise the new_size comments at
xfs_iext_realloc_direct() to make it more readable. Also, fix the
comments while switching from the inline extent buffer to a direct
extent list to reflect this change.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Get rid of function variable count from xfs_iomap_write_allocate() as
it is unused.
Additionally, checkpatch warn me of the following for this change:
WARNING: extern prototypes should be avoided in .h files
+extern int xfs_iomap_write_allocate(struct xfs_inode *, xfs_off_t,
So this patch also remove all extern function prototypes at xfs_iomap.h
to suppress it to make this code style in consistent manner in this file.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This fixes a build failure caused by calling the free() function which
does not exist in the Linux kernel.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Free the memory in error path of xlog_recover_add_to_trans().
Normally this memory is freed in recovery pass2, but is leaked
in the error path.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The determination of whether a directory entry contains a dtype
field originally was dependent on the filesystem having CRCs
enabled. This meant that the format for dtype beign enabled could be
determined by checking the directory block magic number rather than
doing a feature bit check. This was useful in that it meant that we
didn't need to pass a struct xfs_mount around to functions that
were already supplied with a directory block header.
Unfortunately, the introduction of dtype fields into the v4
structure via a feature bit meant this "use the directory block
magic number" method of discriminating the dirent entry sizes is
broken. Hence we need to convert the places that use magic number
checks to use feature bit checks so that they work correctly and not
by chance.
The current code works on v4 filesystems only because the dirent
size roundup covers the extra byte needed by the dtype field in the
places where this problem occurs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Michael Semon reported that xfs/299 generated this lockdep warning:
=============================================
[ INFO: possible recursive locking detected ]
3.12.0-rc2+ #2 Not tainted
---------------------------------------------
touch/21072 is trying to acquire lock:
(&xfs_dquot_other_class){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64
but task is already holding lock:
(&xfs_dquot_other_class){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&xfs_dquot_other_class);
lock(&xfs_dquot_other_class);
*** DEADLOCK ***
May be due to missing lock nesting notation
7 locks held by touch/21072:
#0: (sb_writers#10){++++.+}, at: [<c11185b6>] mnt_want_write+0x1e/0x3e
#1: (&type->i_mutex_dir_key#4){+.+.+.}, at: [<c11078ee>] do_last+0x245/0xe40
#2: (sb_internal#2){++++.+}, at: [<c122c9e0>] xfs_trans_alloc+0x1f/0x35
#3: (&(&ip->i_lock)->mr_lock/1){+.+...}, at: [<c126cd1b>] xfs_ilock+0x100/0x1f1
#4: (&(&ip->i_lock)->mr_lock){++++-.}, at: [<c126cf52>] xfs_ilock_nowait+0x105/0x22f
#5: (&dqp->q_qlock){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64
#6: (&xfs_dquot_other_class){+.+...}, at: [<c12902fb>] xfs_trans_dqlockedjoin+0x57/0x64
The lockdep annotation for dquot lock nesting only understands
locking for user and "other" dquots, not user, group and quota
dquots. Fix the annotations to match the locking heirarchy we now
have.
Reported-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Commit f5ea1100 cleans up the disk to host conversions for
node directory entries, but because a variable is reused in
xfs_node_toosmall() the next node is not correctly found.
If the original node is small enough (<= 3/8 of the node size),
this change may incorrectly cause a node collapse when it should
not. That will cause an assert in xfstest generic/319:
Assertion failed: first <= last && last < BBTOB(bp->b_length),
file: /root/newest/xfs/fs/xfs/xfs_trans_buf.c, line: 569
Keep the original node header to get the correct forward node.
(When a node is considered for a merge with a sibling, it overwrites the
sibling pointers of the original incore nodehdr with the sibling's
pointers. This leads to loop considering the original node as a merge
candidate with itself in the second pass, and so it incorrectly
determines a merge should occur.)
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
[v3: added Dave Chinner's (slightly modified) suggestion to the commit header,
cleaned up whitespace. -bpm]
After a fair number of xfstests runs, xfs/182 started to fail
regularly with a corrupted directory - a directory read verifier was
failing after recovery because it found a block with a XARM magic
number (remote attribute block) rather than a directory data block.
The first time I saw this repeated failure I did /something/ and the
problem went away, so I was never able to find the underlying
problem. Test xfs/182 failed again today, and I found the root
cause before I did /something else/ that made it go away.
Tracing indicated that the block in question was being correctly
logged, the log was being flushed by sync, but the buffer was not
being written back before the shutdown occurred. Tracing also
indicated that log recovery was also reading the block, but then
never writing it before log recovery invalidated the cache,
indicating that it was not modified by log recovery.
More detailed analysis of the corpse indicated that the filesystem
had a uuid of "a4131074-1872-4cac-9323-2229adbcb886" but the XARM
block had a uuid of "8f32f043-c3c9-e7f8-f947-4e7f989c05d3", which
indicated it was a block from an older filesystem. The reason that
log recovery didn't replay it was that the LSN in the XARM block was
larger than the LSN of the transaction being replayed, and so the
block was not overwritten by log recovery.
Hence, log recovery cant blindly trust the magic number and LSN in
the block - it must verify that it belongs to the filesystem being
recovered before using the LSN. i.e. if the UUIDs don't match, we
need to unconditionally recovery the change held in the log.
This patch was first tested on a block device that was repeatedly
causing xfs/182 to fail with the same failure on the same block with
the same directory read corruption signature (i.e. XARM block). It
did not fail, and hasn't failed since.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
It uses a kernel internal structure in it's definition rather than
the user visible structure that is passed to the ioctl.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When we free an inode, we do so via RCU. As an RCU lookup can occur
at any time before we free an inode, and that lookup takes the inode
flags lock, we cannot safely assert that the flags lock is not held
just before marking it dead and running call_rcu() to free the
inode.
We check on allocation of a new inode structre that the lock is not
held, so we still have protection against locks being leaked and
hence not correctly initialised when allocated out of the slab.
Hence just remove the assert...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Regression introduced by commit 46f9d2e ("xfs: aborted buf items can
be in the AIL") which fails to lock the AIL before removing the
item. Spinlock debugging throws a warning about this.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Here we have defrag support for v5 superblock, a number of bugfixes and
a cleanup or two.
- defrag support for CRC filesystems
- fix endian worning in xlog_recover_get_buf_lsn
- fixes for sparse warnings
- fix for assert in xfs_dir3_leaf_hdr_from_disk
- fix for log recovery of remote symlinks
- fix for log recovery of btree root splits
- fixes formemory allocation failures with ACLs
- fix for assert in xfs_buf_item_relse
- fix for assert in xfs_inode_buf_verify
- fix an assignment in an assert that should be a test in
xfs_bmbt_change_owner
- remove dead code in xlog_recover_inode_pass2
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iQIcBAABAgAGBQJSMjQUAAoJENaLyazVq6ZOu2IP/1OHZYy+Bkmj0tO9pdsdEa4s
w4FEBPsQePMJPjwdN693rKpW1exZue5sUmPMErH3ENzc2DPAwpUAlc9XAIohtdFx
rTqrz2q+qTfZTq8oYBIA/RCOifJ2cHWN8tDYZPJpp5wceV7CRGYQeR1foiudE3ZH
QDIPXioy8P9IkfGaXCtr/iWf9kycMO2lgNTNfdL6qtwX99HCqHZanTlsWx1BIYGQ
Fa5TaOsXis6idPMCFMuEC15iEwA+YXc0HmXuHkMFLj+9mwFc4h/Aq65bwUkYZLmy
+T1Wo/uQ/21rl6im/rWqgCh6fFS8NJQp8NIJeCIyihUEHbarfPyJIJRJjoP457YO
cv8OkixCkt4zX6CkTxaL5ZFEBW9FYbRb13Gg96J6hb4WfdAFMtQg7FAjThSU/+Qr
HwjaAso3GXimEaZD1C3c0TtZEQ0x9E6pENVI7/ewB1I0p92p7GJBMq4C7CTAYThV
5zhdcOnViSrJTJvVQxm+gfOYzubkWWiVmbVku3RCO6//kvPBOvJ9juSYsl0mKeRu
v2DZZB3AYJE/qnbYfZBlktX9obE6k+keKF6w8Eiufr2IqwJaqfaM4h9eogzAwTJA
vyXKeLxUEmgHuqivFSZjw3sEK6sY654GCMMTP+2IpD19vlAIioYXdgp0ZbkkdiE3
6twrzdFZAr1zy80xlM8W
=2Uq6
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-v3.12-rc1-2' of git://oss.sgi.com/xfs/xfs
Pull xfs update #2 from Ben Myers:
"Here we have defrag support for v5 superblock, a number of bugfixes
and a cleanup or two.
- defrag support for CRC filesystems
- fix endian worning in xlog_recover_get_buf_lsn
- fixes for sparse warnings
- fix for assert in xfs_dir3_leaf_hdr_from_disk
- fix for log recovery of remote symlinks
- fix for log recovery of btree root splits
- fixes formemory allocation failures with ACLs
- fix for assert in xfs_buf_item_relse
- fix for assert in xfs_inode_buf_verify
- fix an assignment in an assert that should be a test in
xfs_bmbt_change_owner
- remove dead code in xlog_recover_inode_pass2"
* tag 'xfs-for-linus-v3.12-rc1-2' of git://oss.sgi.com/xfs/xfs:
xfs: remove dead code from xlog_recover_inode_pass2
xfs: = vs == typo in ASSERT()
xfs: don't assert fail on bad inode numbers
xfs: aborted buf items can be in the AIL.
xfs: factor all the kmalloc-or-vmalloc fallback allocations
xfs: fix memory allocation failures with ACLs
xfs: ensure we copy buffer type in da btree root splits
xfs: set remote symlink buffer type for recovery
xfs: recovery of swap extents operations for CRC filesystems
xfs: swap extents operations for CRC filesystems
xfs: check magic numbers in dir3 leaf verifier first
xfs: fix some minor sparse warnings
xfs: fix endian warning in xlog_recover_get_buf_lsn()
Merge more patches from Andrew Morton:
"The rest of MM. Plus one misc cleanup"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (35 commits)
mm/Kconfig: add MMU dependency for MIGRATION.
kernel: replace strict_strto*() with kstrto*()
mm, thp: count thp_fault_fallback anytime thp fault fails
thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page()
thp: do_huge_pmd_anonymous_page() cleanup
thp: move maybe_pmd_mkwrite() out of mk_huge_pmd()
mm: cleanup add_to_page_cache_locked()
thp: account anon transparent huge pages into NR_ANON_PAGES
truncate: drop 'oldsize' truncate_pagecache() parameter
mm: make lru_add_drain_all() selective
memcg: document cgroup dirty/writeback memory statistics
memcg: add per cgroup writeback pages accounting
memcg: check for proper lock held in mem_cgroup_update_page_stat
memcg: remove MEMCG_NR_FILE_MAPPED
memcg: reduce function dereference
memcg: avoid overflow caused by PAGE_ALIGN
memcg: rename RESOURCE_MAX to RES_COUNTER_MAX
memcg: correct RESOURCE_MAX to ULLONG_MAX
mm: memcg: do not trap chargers with full callstack on OOM
mm: memcg: rework and document OOM waiting and wakeup
...
truncate_pagecache() doesn't care about old size since commit
cedabed49b39 ("vfs: Fix vmtruncate() regression"). Let's drop it.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Additional code in the error handler of xlog_recover_inode_pass2()
results in the following error:
static checker warning: "fs/xfs/xfs_log_recover.c:2999
xlog_recover_inode_pass2()
info: ignoring unreachable code."
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Ben Myers <bpm@sgi.com
Signed-off-by: Ben Myers <bpm@sgi.com>
There is a '=' vs '==' typo so the ASSERT()s are always true.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This patch adds the missing call to list_lru_destroy (spotted by Li Zhong)
and moves the deletion to after the shrinker is unregistered, as correctly
spotted by Dave
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We currently use a compile-time constant to size the node array for the
list_lru structure. Due to this, we don't need to allocate any memory at
initialization time. But as a consequence, the structures that contain
embedded list_lru lists can become way too big (the superblock for
instance contains two of them).
This patch aims at ameliorating this situation by dynamically allocating
the node arrays with the firmware provided nr_node_ids.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The new LRU list isolation code in xfs_qm_dquot_isolate() isn't
completely up to date. Firstly, it needs conversion to return enum
lru_status values, not raw numbers. Secondly - most importantly - it
fails to unlock the dquot and relock the LRU in the LRU_RETRY path.
This leads to deadlocks in xfstests generic/232. Fix them.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
fix warnings
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Convert the XFS dquot lru to use the list_lru construct and convert the
shrinker to being node aware.
[glommer@openvz.org: edited for conflicts + warning fixes]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In converting the buffer lru lists to use the generic code, the locking
for marking the buffers as on the dispose list was lost. This results in
confusion in LRU buffer tracking and acocunting, resulting in reference
counts being mucked up and filesystem beig unmountable.
To fix this, introduce an internal buffer spinlock to protect the state
field that holds the dispose list information. Because there is now
locking needed around xfs_buf_lru_add/del, and they are used in exactly
one place each two lines apart, get rid of the wrappers and code the logic
directly in place.
Further, the LRU emptying code used on unmount is less than optimal.
Convert it to use a dispose list as per a normal shrinker walk, and repeat
the walk that fills the dispose list until the LRU is empty. Thi avoids
needing to drop and regain the LRU lock for every item being freed, and
allows the same logic as the shrinker isolate call to be used. Simpler,
easier to understand.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
fix warnings
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Convert the buftarg LRU to use the new generic LRU list and take advantage
of the functionality it supplies to make the buffer cache shrinker node
aware.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that the shrinker is passing a node in the scan control structure, we
can pass this to the the generic LRU list code to isolate reclaim to the
lists on matching nodes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Convert superblock shrinker to use the new count/scan API, and propagate
the API changes through to the filesystem callouts. The filesystem
callouts already use a count/scan API, so it's just changing counters to
longs to match the VM API.
This requires the dentry and inode shrinker callouts to be converted to
the count/scan API. This is mainly a mechanical change.
[glommer@openvz.org: use mult_frac for fractional proportions, build fixes]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The sysctl knob sysctl_vfs_cache_pressure is used to determine which
percentage of the shrinkable objects in our cache we should actively try
to shrink.
It works great in situations in which we have many objects (at least more
than 100), because the aproximation errors will be negligible. But if
this is not the case, specially when total_objects < 100, we may end up
concluding that we have no objects at all (total / 100 = 0, if total <
100).
This is certainly not the biggest killer in the world, but may matter in
very low kernel memory situations.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Let the inode verifier do it's work by returning an error when we
fail to find correct magic numbers in an inode buffer.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Saw this on generic/270 after a DQALLOC transaction overrun
shutdown:
XFS: Assertion failed: !(bip->bli_item.li_flags & XFS_LI_IN_AIL), file: fs/xfs/xfs_buf_item.c, line: 952
.....
xfs_buf_item_relse+0x4f/0xd0
xfs_buf_item_unlock+0x1b4/0x1e0
xfs_trans_free_items+0x7d/0xb0
xfs_trans_cancel+0x13c/0x1b0
xfs_symlink+0x37e/0xa60
....
When a transaction abort occured.
If we are aborting a transaction and trigger this code path, then
the item may be dirty. If the item is dirty, then it may be in the
AIL. Hence if we are aborting, we need to check if the item is in
the AIL and remove it before freeing it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
We have quite a few places now where we do:
x = kmem_zalloc(large size)
if (!x)
x = kmem_zalloc_large(large size)
and do a similar dance when freeing the memory. kmem_free() already
does the correct freeing dance, and kmem_zalloc_large() is only ever
called in these constructs, so just factor it all into
kmem_zalloc_large() and kmem_free().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Ever since increasing the number of supported ACLs from 25 to as
many as can fit in an xattr, there have been reports of order 4
memory allocations failing in the ACL code. Fix it in the same way
we've fixed all the xattr read/write code that has the same problem.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When splitting the root of the da btree, we shuffled data between
buffers and the structures that track them. At one point, we copy
data and state from one buffer to another, including the ops
associated with the buffer. When we do this, we also need to copy
the buffer type associated with the buf log item so that the buffer
is logged correctly. If we don't do that, log recovery won't
recognise it and hence it won't recalculate the CRC on the buffer
after recovery. This leads to a directory block that can't be read
after recovery has run.
Found by inspection after finding the same problem with remote
symlink buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The logging of a remote symlink block does not set the buffer type
being logged, and hence on recovery the type of buffer is not
recognised and hence CRCs are not calculated after replay. This
results in log recoery throwing:
XFS (vdc): Unknown buffer type 0
errors, and subsequent reads of the symlink failing CRC
verification. Found via fsstress + godown.
Reported by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
This is the recovery side of the btree block owner change operation
performed by swapext on CRC enabled filesystems. We detect that an
owner change is needed by the flag that has been placed on the inode
log format flag field. Because the inode recovery is being replayed
after the buffers that make up the BMBT in the given checkpoint, we
can walk all the buffers and directly modify them when we see the
flag set on an inode.
Because the inode can be relogged and hence present in multiple
chekpoints with the "change owner" flag set, we could do multiple
passes across the inode to do this change. While this isn't optimal,
we can't directly ignore the flag as there may be multiple
independent swap extent operations being replayed on the same inode
in different checkpoints so we can't ignore them.
Further, because the owner change operation uses ordered buffers, we
might have buffers that are newer on disk than the current
checkpoint and so already have the owner changed in them. Hence we
cannot just peek at a buffer in the tree and check that it has the
correct owner and assume that the change was completed.
So, for the moment just brute force the owner change every time we
see an inode with the flag set. Note that we have to be careful here
because the owner of the buffers may point to either the old owner
or the new owner. Currently the verifier can't verify the owner
directly, so there is no failure case here right now. If we verify
the owner exactly in future, then we'll have to take this into
account.
This was tested in terms of normal operation via xfstests - all of
the fsr tests now pass without failure. however, we really need to
modify xfs/227 to stress v3 inodes correctly to ensure we fully
cover this case for v5 filesystems.
In terms of recovery testing, I used a hacked version of xfs_fsr
that held the temp inode open for a few seconds before exiting so
that the filesystem could be shut down with an open owner change
recovery flags set on at least the temp inode. fsr leaves the temp
inode unlinked and in btree format, so this was necessary for the
owner change to be reliably replayed.
logprint confirmed the tmp inode in the log had the correct flag set:
INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88
INODE: #regs:3 ino:0x44 flags:0x209 dsize:88
^^^^^
0x200 is set, indicating a data fork owner change needed to be
replayed on inode 0x44. A printk in the revoery code confirmed that
the inode change was recovered:
XFS (vdc): Mounting Filesystem
XFS (vdc): Starting recovery (logdev: internal)
recovering owner change ino 0x44
XFS (vdc): Version 5 superblock detected. This kernel L support enabled!
Use of these features in this kernel is at your own risk!
XFS (vdc): Ending recovery (logdev: internal)
The script used to test this was:
$ cat ./recovery-fsr.sh
#!/bin/bash
dev=/dev/vdc
mntpt=/mnt/scratch
testfile=$mntpt/testfile
umount $mntpt
mkfs.xfs -f -m crc=1 $dev
mount $dev $mntpt
chmod 777 $mntpt
for i in `seq 10000 -1 0`; do
xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1
done
xfs_bmap -vp $testfile |head -20
xfs_fsr -d -v $testfile &
sleep 10
/home/dave/src/xfstests-dev/src/godown -f $mntpt
wait
umount $mntpt
xfs_logprint -t $dev |tail -20
time mount $dev $mntpt
xfs_bmap -vp $testfile
umount $mntpt
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>