11 Commits

Author SHA1 Message Date
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Ilya Dryomov
7af3ea189a libceph: stop allocating a new cipher on every crypto request
This is useless and more importantly not allowed on the writeback path,
because crypto_alloc_skcipher() allocates memory with GFP_KERNEL, which
can recurse back into the filesystem:

    kworker/9:3     D ffff92303f318180     0 20732      2 0x00000080
    Workqueue: ceph-msgr ceph_con_workfn [libceph]
     ffff923035dd4480 ffff923038f8a0c0 0000000000000001 000000009eb27318
     ffff92269eb28000 ffff92269eb27338 ffff923036b145ac ffff923035dd4480
     00000000ffffffff ffff923036b145b0 ffffffff951eb4e1 ffff923036b145a8
    Call Trace:
     [<ffffffff951eb4e1>] ? schedule+0x31/0x80
     [<ffffffff951eb77a>] ? schedule_preempt_disabled+0xa/0x10
     [<ffffffff951ed1f4>] ? __mutex_lock_slowpath+0xb4/0x130
     [<ffffffff951ed28b>] ? mutex_lock+0x1b/0x30
     [<ffffffffc0a974b3>] ? xfs_reclaim_inodes_ag+0x233/0x2d0 [xfs]
     [<ffffffff94d92ba5>] ? move_active_pages_to_lru+0x125/0x270
     [<ffffffff94f2b985>] ? radix_tree_gang_lookup_tag+0xc5/0x1c0
     [<ffffffff94dad0f3>] ? __list_lru_walk_one.isra.3+0x33/0x120
     [<ffffffffc0a98331>] ? xfs_reclaim_inodes_nr+0x31/0x40 [xfs]
     [<ffffffff94e05bfe>] ? super_cache_scan+0x17e/0x190
     [<ffffffff94d919f3>] ? shrink_slab.part.38+0x1e3/0x3d0
     [<ffffffff94d9616a>] ? shrink_node+0x10a/0x320
     [<ffffffff94d96474>] ? do_try_to_free_pages+0xf4/0x350
     [<ffffffff94d967ba>] ? try_to_free_pages+0xea/0x1b0
     [<ffffffff94d863bd>] ? __alloc_pages_nodemask+0x61d/0xe60
     [<ffffffff94ddf42d>] ? cache_grow_begin+0x9d/0x560
     [<ffffffff94ddfb88>] ? fallback_alloc+0x148/0x1c0
     [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130
     [<ffffffff94de09db>] ? __kmalloc+0x1eb/0x580
     [<ffffffffc09fe2db>] ? crush_choose_firstn+0x3eb/0x470 [libceph]
     [<ffffffff94ed84e7>] ? __crypto_alloc_tfm+0x37/0x130
     [<ffffffff94ed9c19>] ? crypto_spawn_tfm+0x39/0x60
     [<ffffffffc08b30a3>] ? crypto_cbc_init_tfm+0x23/0x40 [cbc]
     [<ffffffff94ed857c>] ? __crypto_alloc_tfm+0xcc/0x130
     [<ffffffff94edcc23>] ? crypto_skcipher_init_tfm+0x113/0x180
     [<ffffffff94ed7cc3>] ? crypto_create_tfm+0x43/0xb0
     [<ffffffff94ed83b0>] ? crypto_larval_lookup+0x150/0x150
     [<ffffffff94ed7da2>] ? crypto_alloc_tfm+0x72/0x120
     [<ffffffffc0a01dd7>] ? ceph_aes_encrypt2+0x67/0x400 [libceph]
     [<ffffffffc09fd264>] ? ceph_pg_to_up_acting_osds+0x84/0x5b0 [libceph]
     [<ffffffff950d40a0>] ? release_sock+0x40/0x90
     [<ffffffff95139f94>] ? tcp_recvmsg+0x4b4/0xae0
     [<ffffffffc0a02714>] ? ceph_encrypt2+0x54/0xc0 [libceph]
     [<ffffffffc0a02b4d>] ? ceph_x_encrypt+0x5d/0x90 [libceph]
     [<ffffffffc0a02bdf>] ? calcu_signature+0x5f/0x90 [libceph]
     [<ffffffffc0a02ef5>] ? ceph_x_sign_message+0x35/0x50 [libceph]
     [<ffffffffc09e948c>] ? prepare_write_message_footer+0x5c/0xa0 [libceph]
     [<ffffffffc09ecd18>] ? ceph_con_workfn+0x2258/0x2dd0 [libceph]
     [<ffffffffc09e9903>] ? queue_con_delay+0x33/0xd0 [libceph]
     [<ffffffffc09f68ed>] ? __submit_request+0x20d/0x2f0 [libceph]
     [<ffffffffc09f6ef8>] ? ceph_osdc_start_request+0x28/0x30 [libceph]
     [<ffffffffc0b52603>] ? rbd_queue_workfn+0x2f3/0x350 [rbd]
     [<ffffffff94c94ec0>] ? process_one_work+0x160/0x410
     [<ffffffff94c951bd>] ? worker_thread+0x4d/0x480
     [<ffffffff94c95170>] ? process_one_work+0x410/0x410
     [<ffffffff94c9af8d>] ? kthread+0xcd/0xf0
     [<ffffffff951efb2f>] ? ret_from_fork+0x1f/0x40
     [<ffffffff94c9aec0>] ? kthread_create_on_node+0x190/0x190

Allocating the cipher along with the key fixes the issue - as long the
key doesn't change, a single cipher context can be used concurrently in
multiple requests.

We still can't take that GFP_KERNEL allocation though.  Both
ceph_crypto_key_clone() and ceph_crypto_key_decode() are called from
GFP_NOFS context, so resort to memalloc_noio_{save,restore}() here.

Reported-by: Lucas Stach <l.stach@pengutronix.de>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-12 23:09:20 +01:00
Ilya Dryomov
6db2304aab libceph: uninline ceph_crypto_key_destroy()
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-12 23:09:20 +01:00
Ilya Dryomov
2b1e1a7cd0 libceph: remove now unused ceph_*{en,de}crypt*() functions
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-12 23:09:20 +01:00
Ilya Dryomov
a45f795c65 libceph: introduce ceph_crypt() for in-place en/decryption
Starting with 4.9, kernel stacks may be vmalloced and therefore not
guaranteed to be physically contiguous; the new CONFIG_VMAP_STACK
option is enabled by default on x86.  This makes it invalid to use
on-stack buffers with the crypto scatterlist API, as sg_set_buf()
expects a logical address and won't work with vmalloced addresses.

There isn't a different (e.g. kvec-based) crypto API we could switch
net/ceph/crypto.c to and the current scatterlist.h API isn't getting
updated to accommodate this use case.  Allocating a new header and
padding for each operation is a non-starter, so do the en/decryption
in-place on a single pre-assembled (header + data + padding) heap
buffer.  This is explicitly supported by the crypto API:

    "... the caller may provide the same scatter/gather list for the
     plaintext and cipher text. After the completion of the cipher
     operation, the plaintext data is replaced with the ciphertext data
     in case of an encryption and vice versa for a decryption."

Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Sage Weil <sage@redhat.com>
2016-12-12 23:09:19 +01:00
Ilya Dryomov
cbf99a11fb libceph: introduce ceph_x_authorizer_cleanup()
Commit ae385eaf24dc ("libceph: store session key in cephx authorizer")
introduced ceph_x_authorizer::session_key, but didn't update all the
exit/error paths.  Introduce ceph_x_authorizer_cleanup() to encapsulate
ceph_x_authorizer cleanup and switch to it.  This fixes ceph_x_destroy(),
which currently always leaks key and ceph_x_build_authorizer() error
paths.

Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Yan, Zheng <zyan@redhat.com>
2015-11-02 23:36:48 +01:00
Joe Perches
348662a142 net: 8021q/bluetooth/bridge/can/ceph: Remove extern from function prototypes
There are a mix of function prototypes with and without extern
in the kernel sources.  Standardize on not using extern for
function prototypes.

Function prototypes don't need to be written with extern.
extern is assumed by the compiler.  Its use is as unnecessary as
using auto to declare automatic/local variables in a block.

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-19 19:12:11 -04:00
Sylvain Munaut
f0666b1ac8 libceph: fix crypto key null deref, memory leak
Avoid crashing if the crypto key payload was NULL, as when it was not correctly
allocated and initialized.  Also, avoid leaking it.

Signed-off-by: Sylvain Munaut <tnt@246tNt.com>
Signed-off-by: Sage Weil <sage@inktank.com>
Reviewed-by: Alex Elder <elder@inktank.com>
2012-08-02 09:19:20 -07:00
Tommi Virtanen
4b2a58abd1 libceph: Create a new key type "ceph".
This allows us to use existence of the key type as a feature test,
from userspace.

Signed-off-by: Tommi Virtanen <tommi.virtanen@dreamhost.com>
Signed-off-by: Sage Weil <sage@newdream.net>
2011-03-29 12:11:24 -07:00
Tommi Virtanen
8323c3aa74 ceph: Move secret key parsing earlier.
This makes the base64 logic be contained in mount option parsing,
and prepares us for replacing the homebew key management with the
kernel key retention service.

Signed-off-by: Tommi Virtanen <tommi.virtanen@dreamhost.com>
Signed-off-by: Sage Weil <sage@newdream.net>
2011-03-29 12:11:16 -07:00
Yehuda Sadeh
3d14c5d2b6 ceph: factor out libceph from Ceph file system
This factors out protocol and low-level storage parts of ceph into a
separate libceph module living in net/ceph and include/linux/ceph.  This
is mostly a matter of moving files around.  However, a few key pieces
of the interface change as well:

 - ceph_client becomes ceph_fs_client and ceph_client, where the latter
   captures the mon and osd clients, and the fs_client gets the mds client
   and file system specific pieces.
 - Mount option parsing and debugfs setup is correspondingly broken into
   two pieces.
 - The mon client gets a generic handler callback for otherwise unknown
   messages (mds map, in this case).
 - The basic supported/required feature bits can be expanded (and are by
   ceph_fs_client).

No functional change, aside from some subtle error handling cases that got
cleaned up in the refactoring process.

Signed-off-by: Sage Weil <sage@newdream.net>
2010-10-20 15:37:28 -07:00