IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Split out the btree level information into a separate struct and put it
at the end of the cursor structure as a VLA. Files with huge data forks
(and in the future, the realtime rmap btree) will require the ability to
support many more levels than a per-AG btree cursor, which means that
we're going to create per-btree type cursor caches to conserve memory
for the more common case.
Note that a subsequent patch actually introduces dynamic cursor heights.
This one merely rearranges the structure to prepare for that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Stop directly referencing b_bn in code outside the buffer cache, as
b_bn is supposed to be used only as an internal cache index.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The remaining mount flags kept in m_flags are actually runtime state
flags. These change dynamically, so they really should be updated
atomically so we don't potentially lose an update due to racing
modifications.
Convert these remaining flags to be stored in m_opstate and use
atomic bitops to set and clear the flags. This also adds a couple of
simple wrappers for common state checks - read only and shutdown.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Because there are a lot of tracepoints that express numeric data with
an associated unit and tag, document what they are to help everyone else
keep these thigns straight.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print inode generation in hexadecimal and preceded with the unit
"gen".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
For the remaining xfs_buf tracepoints, convert all the tags to
xfs_daddr_t units and retag them 'daddrcount' to match everything else.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Emit whichfork values as text strings in the ftrace output.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Whenever we record i_disk_size (i.e. the ondisk file size), use the
"disize" tag and hexadecimal format consistently.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Some of our tracepoints have a field known as "count". That name
doesn't describe any units, which makes the fields not very useful.
Rename the fields to capture units and ensure the format is hexadecimal
when we're referring to blocks, extents, or IO operations.
"fsbcount" are in units of fs blocks
"bytecount" are in units of bytes
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Some of our tracepoints have a field known as "len". That name doesn't
describe any units, which makes the fields not very useful. Rename the
fields to capture units and ensure the format is hexadecimal.
"fsbcount" are in units of fs blocks
"bbcount" are in units of 512b blocks
"ireccount" are in units of inodes
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Some of our tracepoints describe fields as "offset". That name doesn't
describe any units, which makes the fields not very useful. Rename the
fields to capture units and ensure the format is hexadecimal.
"fileoff" means file offset, in units of fs blocks
"pos" means file offset, in bytes
"forkoff" means inode fork offset, in bytes
The one remaining "offset" value is for iclogs, since that's the byte
offset of the end of where we've written into the current iclog.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Some of our tracepoints describe fields as "blkno", "block", or "bno".
That name doesn't describe any units, which makes the fields not very
useful. Rename the fields to capture units and ensure the format is
hexadecimal.
"startblock" is the startblock field from the bmap structure, which is a
segmented fsblock on the data device, or an rfsblock on the realtime
device.
"fileoff" is a file offset, in units of filesystem blocks
"daddr" is a raw device offset, in 512b blocks
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print disk addr (i.e. 512 byte block) numbers in hexadecimal and
preceded with the unit "daddr".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print rmap owner number in hexadecimal and preceded with the unit
"owner".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print allocation group block numbers in hexadecimal and preceded
with the unit "agbno".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print allocation group numbers in hexadecimal and preceded with
the unit "agno".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print inode numbers in hexadecimal and preceded with the unit
"ino" or "agino", as apropriate. Fix one tracepoint that used "ino %u"
for an inode btree block count to reduce confusion.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
The query_range functions are supposed to call a caller-supplied
function on each record found in the dataset. These functions don't
own the memory storing the record, so don't let them change the record.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add a tracepoint for fs shutdowns so we can capture that in ftrace
output.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We don't need an iclog state field to tell us the log has been shut
down. We can just check the xlog_is_shutdown() instead. The avoids
the need to have shutdown overwrite the current iclog state while
being active used by the log code and so having to ensure that every
iclog state check handles XLOG_STATE_IOERROR appropriately.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This is a quick patch to add a new xfs_attr_*_return tracepoints. We
use these to track when ever a new state is set or -EAGAIN is returned
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
There is no reason for this wrapper existing anymore. All the places
that use KM_NOFS allocation are within transaction contexts and
hence covered by memalloc_nofs_save/restore contexts. Hence we don't
need any special handling of vmalloc for large IOs anymore and
so special casing this code isn't necessary.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Since commit 59bb47985c ("mm, sl[aou]b: guarantee natural alignment
for kmalloc(power-of-two)"), the core slab code now guarantees slab
alignment in all situations sufficient for IO purposes (i.e. minimum
of 512 byte alignment of >= 512 byte sized heap allocations) we no
longer need the workaround in the XFS code to provide this
guarantee.
Replace the use of kmem_alloc_io() with kmem_alloc() or
kmem_alloc_large() appropriately, and remove the kmem_alloc_io()
interface altogether.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Now that we defer inode inactivation, we've decoupled the process of
unlinking or closing an inode from the process of inactivating it. In
theory this should lead to better throughput since we now inactivate the
queued inodes in batches instead of one at a time.
Unfortunately, one of the primary risks with this decoupling is the loss
of rate control feedback between the frontend and background threads.
In other words, a rm -rf /* thread can run the system out of memory if
it can queue inodes for inactivation and jump to a new CPU faster than
the background threads can actually clear the deferred work. The
workers can get scheduled off the CPU if they have to do IO, etc.
To solve this problem, we configure a shrinker so that it will activate
the /second/ time the shrinkers are called. The custom shrinker will
queue all percpu deferred inactivation workers immediately and set a
flag to force frontend callers who are releasing a vfs inode to wait for
the inactivation workers.
On my test VM with 560M of RAM and a 2TB filesystem, this seems to solve
most of the OOMing problem when deleting 10 million inodes.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In xfs_trans_alloc, if the block reservation call returns ENOSPC, we
call xfs_blockgc_free_space with a NULL icwalk structure to try to free
space. Each frontend thread that encounters this situation starts its
own walk of the inode cache to see if it can find anything, which is
wasteful since we don't have any additional selection criteria. For
this one common case, create a function that reschedules all pending
background work immediately and flushes the workqueue so that the scan
can run in parallel.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that we have the infrastructure to switch background workers on and
off at will, fix the block gc worker code so that we don't actually run
the worker when the filesystem is frozen, same as we do for deferred
inactivation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Move inode inactivation to background work contexts so that it no
longer runs in the context that releases the final reference to an
inode. This will allow process work that ends up blocking on
inactivation to continue doing work while the filesytem processes
the inactivation in the background.
A typical demonstration of this is unlinking an inode with lots of
extents. The extents are removed during inactivation, so this blocks
the process that unlinked the inode from the directory structure. By
moving the inactivation to the background process, the userspace
applicaiton can keep working (e.g. unlinking the next inode in the
directory) while the inactivation work on the previous inode is
done by a different CPU.
The implementation of the queue is relatively simple. We use a
per-cpu lockless linked list (llist) to queue inodes for
inactivation without requiring serialisation mechanisms, and a work
item to allow the queue to be processed by a CPU bound worker
thread. We also keep a count of the queue depth so that we can
trigger work after a number of deferred inactivations have been
queued.
The use of a bound workqueue with a single work depth allows the
workqueue to run one work item per CPU. We queue the work item on
the CPU we are currently running on, and so this essentially gives
us affine per-cpu worker threads for the per-cpu queues. THis
maintains the effective CPU affinity that occurs within XFS at the
AG level due to all objects in a directory being local to an AG.
Hence inactivation work tends to run on the same CPU that last
accessed all the objects that inactivation accesses and this
maintains hot CPU caches for unlink workloads.
A depth of 32 inodes was chosen to match the number of inodes in an
inode cluster buffer. This hopefully allows sequential
allocation/unlink behaviours to defering inactivation of all the
inodes in a single cluster buffer at a time, further helping
maintain hot CPU and buffer cache accesses while running
inactivations.
A hard per-cpu queue throttle of 256 inode has been set to avoid
runaway queuing when inodes that take a long to time inactivate are
being processed. For example, when unlinking inodes with large
numbers of extents that can take a lot of processing to free.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: tweak comments and tracepoints, convert opflags to state bits]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Because I cannot tell if the NEED_FLUSH flag is being set correctly
by the log force and CIL push machinery without it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
It's currently unlikely that we will ever end up with more than 4
billion inodes waiting for reclamation, but the fs object code uses long
int for object counts and we're certainly capable of generating that
many. Instead of truncating the internal counters, widen them and
report the object counts correctly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Hoist the code in xfs_iget_cache_hit that restores the VFS inode state
to an xfs_inode that was previously vfs-destroyed. The next patch will
add a new set of state flags, so we need the helper to avoid
duplication.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
For the DEBUGS!
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs: Delay Ready Attributes
Hi all,
This set is a subset of a larger series for Dealyed Attributes. Which is a
subset of a yet larger series for parent pointers. Delayed attributes allow
attribute operations (set and remove) to be logged and committed in the same
way that other delayed operations do. This allows more complex operations (like
parent pointers) to be broken up into multiple smaller transactions. To do
this, the existing attr operations must be modified to operate as a delayed
operation. This means that they cannot roll, commit, or finish transactions.
Instead, they return -EAGAIN to allow the calling function to handle the
transaction. In this series, we focus on only the delayed attribute portion.
We will introduce parent pointers in a later set.
The set as a whole is a bit much to digest at once, so I usually send out the
smaller sub series to reduce reviewer burn out. But the entire extended series
is visible through the included github links.
Updates since v19: Added Darricks fix for the remote block accounting as well as
some minor nits about the default assert in xfs_attr_set_iter. Spent quite
a bit of time testing this cycle to weed out any more unexpected bugs. No new
test failures were observed with the addition of this set.
xfs: Fix default ASSERT in xfs_attr_set_iter
Replaced the assert with ASSERT(0);
xfs: Add delay ready attr remove routines
Added Darricks fix for remote block accounting
This series can be viewed on github here:
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_v20
As well as the extended delayed attribute and parent pointer series:
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_v20_extended
And the test cases:
https://github.com/allisonhenderson/xfs_work/tree/pptr_xfstestsv3
In order to run the test cases, you will need have the corresponding xfsprogs
changes as well. Which can be found here:
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_xfsprogs_v20https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_xfsprogs_v20_extended
To run the xfs attributes tests run:
check -g attr
To run as delayed attributes run:
export MOUNT_OPTIONS="-o delattr"
check -g attr
To run parent pointer tests:
check -g parent
I've also made the corresponding updates to the user space side as well, and ported anything
they need to seat correctly.
Questions, comment and feedback appreciated!
Thanks all!
Allison
* tag 'xfs-delay-ready-attrs-v20.1' of https://github.com/allisonhenderson/xfs_work:
xfs: Make attr name schemes consistent
xfs: Fix default ASSERT in xfs_attr_set_iter
xfs: Clean up xfs_attr_node_addname_clear_incomplete
xfs: Remove xfs_attr_rmtval_set
xfs: Add delay ready attr set routines
xfs: Add delay ready attr remove routines
xfs: Hoist node transaction handling
xfs: Hoist xfs_attr_leaf_addname
xfs: Hoist xfs_attr_node_addname
xfs: Add helper xfs_attr_node_addname_find_attr
xfs: Separate xfs_attr_node_addname and xfs_attr_node_addname_clear_incomplete
xfs: Refactor xfs_attr_set_shortform
xfs: Add xfs_attr_node_remove_name
xfs: Reverse apply 72b97ea40d
The xfs_eofblocks structure is no longer well-named -- nowadays it
provides optional filtering criteria to any walk of the incore inode
cache. Only one of the cache walk goals has anything to do with
clearing of speculative post-EOF preallocations, so change the name to
be more appropriate.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
This ambitious series aims to cleans up redundant inode walk code in
xfs_icache.c, hide implementation details of the quotaoff dquot release
code, and eliminates indirect function calls from incore inode walks.
The first thing it does is to move all the code that quotaoff calls to
release dquots from all incore inodes into xfs_icache.c. Next, it
separates the goal of an inode walk from the actual radix tree tags that
may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
Finally, we split the speculative preallocation (blockgc) and quotaoff
dquot release code paths into separate functions so that we can keep the
implementations cohesive.
Christoph suggested last cycle that we 'simply' change quotaoff not to
allow deactivating quota entirely, but as these cleanups are to enable
one major change in behavior (deferred inode inactivation) I do not want
to add a second behavior change (quotaoff) as a dependency.
To be blunt: Additional cleanups are not in scope for this series.
Next, I made two observations about incore inode radix tree walks --
since there's a 1:1 mapping between the walk goal and the per-inode
processing function passed in, we can use the goal to make a direct call
to the processing function. Furthermore, the only caller to supply a
nonzero iter_flags argument is quotaoff, and there's only one INEW flag.
From that observation, I concluded that it's quite possible to remove
two parameters from the xfs_inode_walk* function signatures -- the
iter_flags, and the execute function pointer. The middle of the series
moves the INEW functionality into the one piece (quotaoff) that wants
it, and removes the indirect calls.
The final observation is that the inode reclaim walk loop is now almost
the same as xfs_inode_walk, so it's silly to maintain two copies. Merge
the reclaim loop code into xfs_inode_walk.
Lastly, refactor the per-ag radix tagging functions since there's
duplicated code that can be consolidated.
This series is a prerequisite for the next two patchsets, since deferred
inode inactivation will add another inode radix tree tag and iterator
function to xfs_inode_walk.
v2: walk the vfs inode list when running quotaoff instead of the radix
tree, then rework the (now completely internal) inode walk function
to take the tag as the main parameter.
v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
radix tree tagging functions
v4: rebase to 5.13-rc4
v5: combine with the quotaoff patchset, reorder functions to minimize
forward declarations, split inode walk goals from radix tree tags
to reduce conceptual confusion
v6: start moving the inode cache code towards the xfs_icwalk prefix
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmC5Yv0ACgkQ+H93GTRK
tOv7Fg//Z7cKph0zSg6qsukMEMZxscuNcEBydCW1bu9gSx1NpszDpiGqAiO5ZB3X
wP2XkCqjuatbNGGvkNLHS/M4sbLX3ELogvYmMRvUhDoaSFxT/KKgxvsyNffiCSS7
xRB/rvWRp9MGRpBWPF0ZUxFU6VBzhCrYdMsNhvW95AEup8S/j+NplwoIif0gzaZZ
Q6Fl4Ca9VEBvJQPV+/zkLih19iFItmARJhPHUs4BO1nZv+CzZBFQHg7Ijw7nW92j
eSY68W4LH/IQ5cqm+HrD/+Z6ns0P7J2viewzVymkNEGnuX4a0xrQrzQ8ydRsAxTi
9EDrpIe3MbSI5YjJfmRe8G3LX5p7vBpqc8TeyZdRDMGWkFjT33HPlQNb6WxKLQbA
mjKdfr8AYZR/UQKW/7oZFrJnOoMpYRAQ4Sn/9BAYZQYm7tiLzuZsrEZ7JBwiUA56
XHmlsDDeLzJeKvjmUu8M3H4oh4Nwf5/I2vJwHjueTfhl83uJP04igIXC4rnq56bM
AAAjH9uV11Fo3q0ywAnRtN2HYj8PEJlCMK5CNskILrGeMITsBPGht0SbaA6hDI2h
GYmltKInHzuPhHC9NfyPVrVr3BrmPR5cBsVFESiz5A4E9rbuKmmna6Yk8MFlMyl8
FRIA3zVatJ2qQXtsAcdI8AZzMd7ciYhkAgCqFKxv8qK/qxITHh4=
=Rxdn
-----END PGP SIGNATURE-----
Merge tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.14-merge2
xfs: clean up incore inode walk functions
This ambitious series aims to cleans up redundant inode walk code in
xfs_icache.c, hide implementation details of the quotaoff dquot release
code, and eliminates indirect function calls from incore inode walks.
The first thing it does is to move all the code that quotaoff calls to
release dquots from all incore inodes into xfs_icache.c. Next, it
separates the goal of an inode walk from the actual radix tree tags that
may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
Finally, we split the speculative preallocation (blockgc) and quotaoff
dquot release code paths into separate functions so that we can keep the
implementations cohesive.
Christoph suggested last cycle that we 'simply' change quotaoff not to
allow deactivating quota entirely, but as these cleanups are to enable
one major change in behavior (deferred inode inactivation) I do not want
to add a second behavior change (quotaoff) as a dependency.
To be blunt: Additional cleanups are not in scope for this series.
Next, I made two observations about incore inode radix tree walks --
since there's a 1:1 mapping between the walk goal and the per-inode
processing function passed in, we can use the goal to make a direct call
to the processing function. Furthermore, the only caller to supply a
nonzero iter_flags argument is quotaoff, and there's only one INEW flag.
From that observation, I concluded that it's quite possible to remove
two parameters from the xfs_inode_walk* function signatures -- the
iter_flags, and the execute function pointer. The middle of the series
moves the INEW functionality into the one piece (quotaoff) that wants
it, and removes the indirect calls.
The final observation is that the inode reclaim walk loop is now almost
the same as xfs_inode_walk, so it's silly to maintain two copies. Merge
the reclaim loop code into xfs_inode_walk.
Lastly, refactor the per-ag radix tagging functions since there's
duplicated code that can be consolidated.
This series is a prerequisite for the next two patchsets, since deferred
inode inactivation will add another inode radix tree tag and iterator
function to xfs_inode_walk.
v2: walk the vfs inode list when running quotaoff instead of the radix
tree, then rework the (now completely internal) inode walk function
to take the tag as the main parameter.
v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
radix tree tagging functions
v4: rebase to 5.13-rc4
v5: combine with the quotaoff patchset, reorder functions to minimize
forward declarations, split inode walk goals from radix tree tags
to reduce conceptual confusion
v6: start moving the inode cache code towards the xfs_icwalk prefix
* tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
xfs: refactor per-AG inode tagging functions
xfs: merge xfs_reclaim_inodes_ag into xfs_inode_walk_ag
xfs: pass struct xfs_eofblocks to the inode scan callback
xfs: fix radix tree tag signs
xfs: make the icwalk processing functions clean up the grab state
xfs: clean up inode state flag tests in xfs_blockgc_igrab
xfs: remove indirect calls from xfs_inode_walk{,_ag}
xfs: remove iter_flags parameter from xfs_inode_walk_*
xfs: move xfs_inew_wait call into xfs_dqrele_inode
xfs: separate the dqrele_all inode grab logic from xfs_inode_walk_ag_grab
xfs: pass the goal of the incore inode walk to xfs_inode_walk()
xfs: rename xfs_inode_walk functions to xfs_icwalk
xfs: move the inode walk functions further down
xfs: detach inode dquots at the end of inactivation
xfs: move the quotaoff dqrele inode walk into xfs_icache.c
[djwong: added variable names to function declarations while fixing
merge conflicts]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation for adding another incore inode tree tag, refactor the
code that sets and clears tags from the per-AG inode tree and the tree
of per-AG structures, and remove the open-coded versions used by the
blockgc code.
Note: For reclaim, we now rely on the radix tree tags instead of the
reclaimable inode count more heavily than we used to. The conversion
should be fine, but the logic isn't 100% identical.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Merge these two inode walk loops together, since they're pretty similar
now.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that everything passes a perag, the agno is not needed anymore.
Convert all the users to use pag->pag_agno instead and remove the
agno from the cursor. This was largely done as an automated search
and replace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
This patch modifies the attr set routines to be delay ready. This means
they no longer roll or commit transactions, but instead return -EAGAIN
to have the calling routine roll and refresh the transaction. In this
series, xfs_attr_set_args has become xfs_attr_set_iter, which uses a
state machine like switch to keep track of where it was when EAGAIN was
returned. See xfs_attr.h for a more detailed diagram of the states.
Two new helper functions have been added: xfs_attr_rmtval_find_space and
xfs_attr_rmtval_set_blk. They provide a subset of logic similar to
xfs_attr_rmtval_set, but they store the current block in the delay attr
context to allow the caller to roll the transaction between allocations.
This helps to simplify and consolidate code used by
xfs_attr_leaf_addname and xfs_attr_node_addname. xfs_attr_set_args has
now become a simple loop to refresh the transaction until the operation
is completed. Lastly, xfs_attr_rmtval_remove is no longer used, and is
removed.
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This patch hoists xfs_attr_leaf_addname into the calling function. The
goal being to get all the code that will require state management into
the same scope. This isn't particularly aesthetic right away, but it is a
preliminary step to merging in the state machine code.
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In preparation of removing the historic icinode struct, move the on-disk
size field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
- Fix an ABBA deadlock when renaming files on overlayfs.
- Make sure that we can't overflow the inode extent counters when adding
to or removing extents from a file.
- Make directory sgid inheritance work the same way as all the other
filesystems.
- Don't drain the buffer cache on freeze and ro remount, which should
reduce the amount of time if read-only workloads are continuing
during the freeze.
- Fix a bug where symlink size isn't reported to the vfs in ecryptfs.
- Disentangle log cleaning from log covering. This refactoring sets us
up for future changes to the log, though for now it simply means that
we can use covering for freezes, and cleaning becomes something we
only do at unmount.
- Speed up file fsyncs by reducing iolock cycling.
- Fix delalloc blocks leaking when changing the project id fails because
of input validation errors in FSSETXATTR.
- Fix oversized quota reservation when converting unwritten extents
during a DAX write.
- Create a transaction allocation helper function to standardize the
idiom of allocating a transaction, reserving blocks, locking inodes,
and reserving quota. Replace all the open-coded logic for file
creation, file ownership changes, and file modifications to use them.
- Actually shut down the fs if the incore quota reservations get
corrupted.
- Fix background block garbage collection scans to not block and to
actually clean out CoW staging extents properly.
- Run block gc scans when we run low on project quota.
- Use the standardized transaction allocation helpers to make it so that
ENOSPC and EDQUOT errors during reservation will back out, invoke the
block gc scanner, and try again. This is preparation for introducing
background inode garbage collection in the next cycle.
- Combine speculative post-EOF block garbage collection with speculative
copy on write block garbage collection.
- Enable multithreaded quotacheck.
- Allow sysadmins to tweak the CPU affinities and maximum concurrency
levels of quotacheck and background blockgc worker pools.
- Expose the inode btree counter feature in the fs geometry ioctl.
- Cleanups of the growfs code in preparation for starting work on
filesystem shrinking.
- Fix all the bloody gcc warnings that the maintainer knows about. :P
- Fix a RST syntax error.
- Don't trigger bmbt corruption assertions after the fs shuts down.
- Restore behavior of forcing SIGBUS on a shut down filesystem when
someone triggers a mmap write fault (or really, any buffered write).
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmAlX/UACgkQ+H93GTRK
tOta+RAAiGqLKxeY07HH7F98pRJ86j6lU0zmc5i5UCOGMvZd8hLKDdThzggsjqO6
rrUSc7Ppg7MQt1JdXLSdZw2N6Ksb9yy6chufj+j3Dq1JQfSL4YvBO/LlXmZmFE6d
80Qbqq6HFSRWb6JzCMr3knhC+FJovAGhFgZYZGBZ817A/FXacTg9/A5Ow8SX81WX
42s517QOmegAn7YhC3xcPZp5iavjbMd7Y9v7izpuo4FBB9AY7NYyb5wVhvffILfS
/SMLQPw3T/tccRJuVJ8TfLA9R+B9+LaGmQ5tn/AtdwN+Lv7ykinzGKYLagkdlTmE
onGkEIwrebEgq9phT47eX7ixiEt7oWQiQGZukXLVn7mL/0WPVI2pbYi/M1BNpi8i
UftOEVroav+m4h0DF3duOE7rLGuBIEdjPuuAs85QhZ6UTusBjwxp1gOJbjuN0Up9
9hBGTtYQIRhWxHkxWKAeuYzIbtMxC2S2XGxnW4cNOxbE7GxwfxBw0KP/38ZP4iYQ
LKt6JVX+iFDQ+lH8JA6DD7+j+m7W37Alu89OPmpW2nYpFyisFDY+1dEIFvPw9roZ
BtbKlZzS2O2zD67/tTVh+ZcPoEcPfp156GDCrgfgdIdiBvQtGbyOLB/WQC6wSU1L
2PLt1inFBx5wNrIEMFMHT1hsduRihNMM+eLn6LV5XIK2RmSCT+I=
=CaLz
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.12-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"There's a lot going on this time, which seems about right for this
drama-filled year.
Community developers added some code to speed up freezing when
read-only workloads are still running, refactored the logging code,
added checks to prevent file extent counter overflow, reduced iolock
cycling to speed up fsync and gc scans, and started the slow march
towards supporting filesystem shrinking.
There's a huge refactoring of the internal speculative preallocation
garbage collection code which fixes a bunch of bugs, makes the gc
scheduling per-AG and hence multithreaded, and standardizes the retry
logic when we try to reserve space or quota, can't, and want to
trigger a gc scan. We also enable multithreaded quotacheck to reduce
mount times further. This is also preparation for background file gc,
which may or may not land for 5.13.
We also fixed some deadlocks in the rename code, fixed a quota
accounting leak when FSSETXATTR fails, restored the behavior that
write faults to an mmap'd region actually cause a SIGBUS, fixed a bug
where sgid directory inheritance wasn't quite working properly, and
fixed a bug where symlinks weren't working properly in ecryptfs. We
also now advertise the inode btree counters feature that was
introduced two cycles ago.
Summary:
- Fix an ABBA deadlock when renaming files on overlayfs.
- Make sure that we can't overflow the inode extent counters when
adding to or removing extents from a file.
- Make directory sgid inheritance work the same way as all the other
filesystems.
- Don't drain the buffer cache on freeze and ro remount, which should
reduce the amount of time if read-only workloads are continuing
during the freeze.
- Fix a bug where symlink size isn't reported to the vfs in ecryptfs.
- Disentangle log cleaning from log covering. This refactoring sets
us up for future changes to the log, though for now it simply means
that we can use covering for freezes, and cleaning becomes
something we only do at unmount.
- Speed up file fsyncs by reducing iolock cycling.
- Fix delalloc blocks leaking when changing the project id fails
because of input validation errors in FSSETXATTR.
- Fix oversized quota reservation when converting unwritten extents
during a DAX write.
- Create a transaction allocation helper function to standardize the
idiom of allocating a transaction, reserving blocks, locking
inodes, and reserving quota. Replace all the open-coded logic for
file creation, file ownership changes, and file modifications to
use them.
- Actually shut down the fs if the incore quota reservations get
corrupted.
- Fix background block garbage collection scans to not block and to
actually clean out CoW staging extents properly.
- Run block gc scans when we run low on project quota.
- Use the standardized transaction allocation helpers to make it so
that ENOSPC and EDQUOT errors during reservation will back out,
invoke the block gc scanner, and try again. This is preparation for
introducing background inode garbage collection in the next cycle.
- Combine speculative post-EOF block garbage collection with
speculative copy on write block garbage collection.
- Enable multithreaded quotacheck.
- Allow sysadmins to tweak the CPU affinities and maximum concurrency
levels of quotacheck and background blockgc worker pools.
- Expose the inode btree counter feature in the fs geometry ioctl.
- Cleanups of the growfs code in preparation for starting work on
filesystem shrinking.
- Fix all the bloody gcc warnings that the maintainer knows about. :P
- Fix a RST syntax error.
- Don't trigger bmbt corruption assertions after the fs shuts down.
- Restore behavior of forcing SIGBUS on a shut down filesystem when
someone triggers a mmap write fault (or really, any buffered
write)"
* tag 'xfs-5.12-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (85 commits)
xfs: consider shutdown in bmapbt cursor delete assert
xfs: fix boolreturn.cocci warnings
xfs: restore shutdown check in mapped write fault path
xfs: fix rst syntax error in admin guide
xfs: fix incorrect root dquot corruption error when switching group/project quota types
xfs: get rid of xfs_growfs_{data,log}_t
xfs: rename `new' to `delta' in xfs_growfs_data_private()
libxfs: expose inobtcount in xfs geometry
xfs: don't bounce the iolock between free_{eof,cow}blocks
xfs: expose the blockgc workqueue knobs publicly
xfs: parallelize block preallocation garbage collection
xfs: rename block gc start and stop functions
xfs: only walk the incore inode tree once per blockgc scan
xfs: consolidate the eofblocks and cowblocks workers
xfs: consolidate incore inode radix tree posteof/cowblocks tags
xfs: remove trivial eof/cowblocks functions
xfs: hide xfs_icache_free_cowblocks
xfs: hide xfs_icache_free_eofblocks
xfs: relocate the eofb/cowb workqueue functions
xfs: set WQ_SYSFS on all workqueues in debug mode
...
The clearing of posteof blocks and cowblocks serve the same purpose:
removing speculative block preallocations from inactive files. We don't
need to burn two radix tree tags on this, so combine them into one.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In anticipation of more restructuring of the eof/cowblocks gc code,
refactor calling of those two functions into a single internal helper
function, then present a new standard interface to purge speculative
block preallocations and start shifting higher level code to use that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add some tracepoints so that we can observe when the speculative
preallocation garbage collector runs.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Use a more suitable event class.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Pass the iocb and iov_iter to the tracepoints and leave decoding of
actual arguments to the code only run when tracing is enabled.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_wait_buftarg() is vaguely named and somewhat overloaded. Its
primary purpose is to reclaim all buffers from the provided buffer
target LRU. In preparation to refactor xfs_wait_buftarg() into
serialization and LRU draining components, rename the function and
associated helpers to something more descriptive. This patch has no
functional changes with the minor exception of renaming a
tracepoint.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Add a trace point so that we can capture when a recovered log intent
item fails to recover.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
There's a subtle design flaw in the deferred log item code that can lead
to pinning the log tail. Taking up the defer ops chain examples from
the previous commit, we can get trapped in sequences like this:
Caller hands us a transaction t0 with D0-D3 attached. The defer ops
chain will look like the following if the transaction rolls succeed:
t1: D0(t0), D1(t0), D2(t0), D3(t0)
t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0)
t3: d5(t1), D1(t0), D2(t0), D3(t0)
...
t9: d9(t7), D3(t0)
t10: D3(t0)
t11: d10(t10), d11(t10)
t12: d11(t10)
In transaction 9, we finish d9 and try to roll to t10 while holding onto
an intent item for D3 that we logged in t0.
The previous commit changed the order in which we place new defer ops in
the defer ops processing chain to reduce the maximum chain length. Now
make xfs_defer_finish_noroll capable of relogging the entire chain
periodically so that we can always move the log tail forward. Most
chains will never get relogged, except for operations that generate very
long chains (large extents containing many blocks with different sharing
levels) or are on filesystems with small logs and a lot of ongoing
metadata updates.
Callers are now required to ensure that the transaction reservation is
large enough to handle logging done items and new intent items for the
maximum possible chain length. Most callers are careful to keep the
chain lengths low, so the overhead should be minimal.
The decision to relog an intent item is made based on whether the intent
was logged in a previous checkpoint, since there's no point in relogging
an intent into the same checkpoint.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add a couple of tracepoints so that we can check the timestamp limits
being set on inodes and quotas.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>