IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This is purely required because exit_aio() may block and exit_mmap() may
never start, if the oom_reap_task cannot start running on a mm with
mm_users == 0.
At the same time if the OOM reaper doesn't wait at all for the memory of
the current OOM candidate to be freed by exit_mmap->unmap_vmas, it would
generate a spurious OOM kill.
If it wasn't because of the exit_aio or similar blocking functions in
the last mmput, it would be enough to change the oom_reap_task() in the
case it finds mm_users == 0, to wait for a timeout or to wait for
__mmput to set MMF_OOM_SKIP itself, but it's not just exit_mmap the
problem here so the concurrency of exit_mmap and oom_reap_task is
apparently warranted.
It's a non standard runtime, exit_mmap() runs without mmap_sem, and
oom_reap_task runs with the mmap_sem for reading as usual (kind of
MADV_DONTNEED).
The race between the two is solved with a combination of
tsk_is_oom_victim() (serialized by task_lock) and MMF_OOM_SKIP
(serialized by a dummy down_write/up_write cycle on the same lines of
the ksm_exit method).
If the oom_reap_task() may be running concurrently during exit_mmap,
exit_mmap will wait it to finish in down_write (before taking down mm
structures that would make the oom_reap_task fail with use after free).
If exit_mmap comes first, oom_reap_task() will skip the mm if
MMF_OOM_SKIP is already set and in turn all memory is already freed and
furthermore the mm data structures may already have been taken down by
free_pgtables.
[aarcange@redhat.com: incremental one liner]
Link: http://lkml.kernel.org/r/20170726164319.GC29716@redhat.com
[rientjes@google.com: remove unused mmput_async]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708141733130.50317@chino.kir.corp.google.com
[aarcange@redhat.com: microoptimization]
Link: http://lkml.kernel.org/r/20170817171240.GB5066@redhat.com
Link: http://lkml.kernel.org/r/20170726162912.GA29716@redhat.com
Fixes: 26db62f179 ("oom: keep mm of the killed task available")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- VMAP_STACK support, allowing the kernel stacks to be allocated in
the vmalloc space with a guard page for trapping stack overflows. One
of the patches introduces THREAD_ALIGN and changes the generic
alloc_thread_stack_node() to use this instead of THREAD_SIZE (no
functional change for other architectures)
- Contiguous PTE hugetlb support re-enabled (after being reverted a
couple of times). We now have the semantics agreed in the generic mm
layer together with API improvements so that the architecture code can
detect between contiguous and non-contiguous huge PTEs
- Initial support for persistent memory on ARM: DC CVAP instruction
exposed to user space (HWCAP) and the in-kernel pmem API implemented
- raid6 improvements for arm64: faster algorithm for the delta syndrome
and implementation of the recovery routines using Neon
- FP/SIMD refactoring and removal of support for Neon in interrupt
context. This is in preparation for full SVE support
- PTE accessors converted from inline asm to cmpxchg so that we can
use LSE atomics if available (ARMv8.1)
- Perf support for Cortex-A35 and A73
- Non-urgent fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlmuunYACgkQa9axLQDI
XvEH9BAAo8V94GOMkX6HkT+2hjkl7DQ9krjumzmfzLV5AdgHMMzBNozmWKOCzgh0
yaxRcTUju3EyNeKhADr7yLiKDH8fnRPmYEJiVrwfgo7MaPApaCorr7LLIXfPGuxe
DTBHw+oxRMjlmaHeATX4PBWfQxAx+vjjhHqv3Qpmvdm4nYqR+0hZomH2BNsu64fk
AkSeUCxfCEyzSFIKuQM04M4zhSSZHz1tDxWI0b0RcK73qqEOuYZNkn6qxSKP5J4X
b2Y2U8nmxJ5C2fXpDYZaK9shiJ4Vu7X3Ocf/M7hsJzGY5z4dhnmUmxpHROaNiSvo
hCx7POYKyAPovps7zMSqcdsujkqOIQO8RHp4zGXx/pIr1RumjIiCY+RGpUYGibvU
N4Px5hZNneuHaPZZ+sWjOOdNB28xyzeUp2UK9Bb6uHB+/3xssMAD8Fd/b2ZLnS6a
YW3wrZmqA+ckfETsSRibabTs/ayqYHs2SDVwnlDJGtn+4Pw8oQpwGrwokxLQuuw3
uF2sNEPhJz+dcy21q3udYAQE1qOJBlLqTptgP96CHoVqh8X6nYSi5obT7y30ln3n
dhpZGOdi6R8YOouxgXS3Wg07pxn444L/VzDw5ku/5DkdryPOZCSRbk/2t8If6oDM
2VD6PCbTx3hsGc7SZ7FdSwIysD2j446u40OMGdH2iLB5jWBwyOM=
=vd0/
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- VMAP_STACK support, allowing the kernel stacks to be allocated in the
vmalloc space with a guard page for trapping stack overflows. One of
the patches introduces THREAD_ALIGN and changes the generic
alloc_thread_stack_node() to use this instead of THREAD_SIZE (no
functional change for other architectures)
- Contiguous PTE hugetlb support re-enabled (after being reverted a
couple of times). We now have the semantics agreed in the generic mm
layer together with API improvements so that the architecture code
can detect between contiguous and non-contiguous huge PTEs
- Initial support for persistent memory on ARM: DC CVAP instruction
exposed to user space (HWCAP) and the in-kernel pmem API implemented
- raid6 improvements for arm64: faster algorithm for the delta syndrome
and implementation of the recovery routines using Neon
- FP/SIMD refactoring and removal of support for Neon in interrupt
context. This is in preparation for full SVE support
- PTE accessors converted from inline asm to cmpxchg so that we can use
LSE atomics if available (ARMv8.1)
- Perf support for Cortex-A35 and A73
- Non-urgent fixes and cleanups
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (75 commits)
arm64: cleanup {COMPAT_,}SET_PERSONALITY() macro
arm64: introduce separated bits for mm_context_t flags
arm64: hugetlb: Cleanup setup_hugepagesz
arm64: Re-enable support for contiguous hugepages
arm64: hugetlb: Override set_huge_swap_pte_at() to support contiguous hugepages
arm64: hugetlb: Override huge_pte_clear() to support contiguous hugepages
arm64: hugetlb: Handle swap entries in huge_pte_offset() for contiguous hugepages
arm64: hugetlb: Add break-before-make logic for contiguous entries
arm64: hugetlb: Spring clean huge pte accessors
arm64: hugetlb: Introduce pte_pgprot helper
arm64: hugetlb: set_huge_pte_at Add WARN_ON on !pte_present
arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic cores
arm64: dma-mapping: Mark atomic_pool as __ro_after_init
arm64: dma-mapping: Do not pass data to gen_pool_set_algo()
arm64: Remove the !CONFIG_ARM64_HW_AFDBM alternative code paths
arm64: Ignore hardware dirty bit updates in ptep_set_wrprotect()
arm64: Move PTE_RDONLY bit handling out of set_pte_at()
kvm: arm64: Convert kvm_set_s2pte_readonly() from inline asm to cmpxchg()
arm64: Convert pte handling from inline asm to using (cmp)xchg
arm64: neon/efi: Make EFI fpsimd save/restore variables static
...
Commit 7c05126793 ("mm, fork: make dup_mmap wait for mmap_sem for
write killable") made it possible to kill a forking task while it is
waiting to acquire its ->mmap_sem for write, in dup_mmap().
However, it was overlooked that this introduced an new error path before
the new mm_struct's ->uprobes_state.xol_area has been set to NULL after
being copied from the old mm_struct by the memcpy in dup_mm(). For a
task that has previously hit a uprobe tracepoint, this resulted in the
'struct xol_area' being freed multiple times if the task was killed at
just the right time while forking.
Fix it by setting ->uprobes_state.xol_area to NULL in mm_init() rather
than in uprobe_dup_mmap().
With CONFIG_UPROBE_EVENTS=y, the bug can be reproduced by the same C
program given by commit 2b7e8665b4 ("fork: fix incorrect fput of
->exe_file causing use-after-free"), provided that a uprobe tracepoint
has been set on the fork_thread() function. For example:
$ gcc reproducer.c -o reproducer -lpthread
$ nm reproducer | grep fork_thread
0000000000400719 t fork_thread
$ echo "p $PWD/reproducer:0x719" > /sys/kernel/debug/tracing/uprobe_events
$ echo 1 > /sys/kernel/debug/tracing/events/uprobes/enable
$ ./reproducer
Here is the use-after-free reported by KASAN:
BUG: KASAN: use-after-free in uprobe_clear_state+0x1c4/0x200
Read of size 8 at addr ffff8800320a8b88 by task reproducer/198
CPU: 1 PID: 198 Comm: reproducer Not tainted 4.13.0-rc7-00015-g36fde05f3fb5 #255
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
Call Trace:
dump_stack+0xdb/0x185
print_address_description+0x7e/0x290
kasan_report+0x23b/0x350
__asan_report_load8_noabort+0x19/0x20
uprobe_clear_state+0x1c4/0x200
mmput+0xd6/0x360
do_exit+0x740/0x1670
do_group_exit+0x13f/0x380
get_signal+0x597/0x17d0
do_signal+0x99/0x1df0
exit_to_usermode_loop+0x166/0x1e0
syscall_return_slowpath+0x258/0x2c0
entry_SYSCALL_64_fastpath+0xbc/0xbe
...
Allocated by task 199:
save_stack_trace+0x1b/0x20
kasan_kmalloc+0xfc/0x180
kmem_cache_alloc_trace+0xf3/0x330
__create_xol_area+0x10f/0x780
uprobe_notify_resume+0x1674/0x2210
exit_to_usermode_loop+0x150/0x1e0
prepare_exit_to_usermode+0x14b/0x180
retint_user+0x8/0x20
Freed by task 199:
save_stack_trace+0x1b/0x20
kasan_slab_free+0xa8/0x1a0
kfree+0xba/0x210
uprobe_clear_state+0x151/0x200
mmput+0xd6/0x360
copy_process.part.8+0x605f/0x65d0
_do_fork+0x1a5/0xbd0
SyS_clone+0x19/0x20
do_syscall_64+0x22f/0x660
return_from_SYSCALL_64+0x0/0x7a
Note: without KASAN, you may instead see a "Bad page state" message, or
simply a general protection fault.
Link: http://lkml.kernel.org/r/20170830033303.17927-1-ebiggers3@gmail.com
Fixes: 7c05126793 ("mm, fork: make dup_mmap wait for mmap_sem for write killable")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 7c05126793 ("mm, fork: make dup_mmap wait for mmap_sem for
write killable") made it possible to kill a forking task while it is
waiting to acquire its ->mmap_sem for write, in dup_mmap().
However, it was overlooked that this introduced an new error path before
a reference is taken on the mm_struct's ->exe_file. Since the
->exe_file of the new mm_struct was already set to the old ->exe_file by
the memcpy() in dup_mm(), it was possible for the mmput() in the error
path of dup_mm() to drop a reference to ->exe_file which was never
taken.
This caused the struct file to later be freed prematurely.
Fix it by updating mm_init() to NULL out the ->exe_file, in the same
place it clears other things like the list of mmaps.
This bug was found by syzkaller. It can be reproduced using the
following C program:
#define _GNU_SOURCE
#include <pthread.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/wait.h>
#include <unistd.h>
static void *mmap_thread(void *_arg)
{
for (;;) {
mmap(NULL, 0x1000000, PROT_READ,
MAP_POPULATE|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
}
}
static void *fork_thread(void *_arg)
{
usleep(rand() % 10000);
fork();
}
int main(void)
{
fork();
fork();
fork();
for (;;) {
if (fork() == 0) {
pthread_t t;
pthread_create(&t, NULL, mmap_thread, NULL);
pthread_create(&t, NULL, fork_thread, NULL);
usleep(rand() % 10000);
syscall(__NR_exit_group, 0);
}
wait(NULL);
}
}
No special kernel config options are needed. It usually causes a NULL
pointer dereference in __remove_shared_vm_struct() during exit, or in
dup_mmap() (which is usually inlined into copy_process()) during fork.
Both are due to a vm_area_struct's ->vm_file being used after it's
already been freed.
Google Bug Id: 64772007
Link: http://lkml.kernel.org/r/20170823211408.31198-1-ebiggers3@gmail.com
Fixes: 7c05126793 ("mm, fork: make dup_mmap wait for mmap_sem for write killable")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [v4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some cases, an architecture might wish its stacks to be aligned to a
boundary larger than THREAD_SIZE. For example, using an alignment of
double THREAD_SIZE can allow for stack overflows smaller than
THREAD_SIZE to be detected by checking a single bit of the stack
pointer.
This patch allows architectures to override the alignment of VMAP'd
stacks, by defining THREAD_ALIGN. Where not defined, this defaults to
THREAD_SIZE, as is the case today.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: linux-kernel@vger.kernel.org
Conflicts:
include/linux/mm_types.h
mm/huge_memory.c
I removed the smp_mb__before_spinlock() like the following commit does:
8b1b436dd1 ("mm, locking: Rework {set,clear,mm}_tlb_flush_pending()")
and fixed up the affected commits.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Patch series "fixes of TLB batching races", v6.
It turns out that Linux TLB batching mechanism suffers from various
races. Races that are caused due to batching during reclamation were
recently handled by Mel and this patch-set deals with others. The more
fundamental issue is that concurrent updates of the page-tables allow
for TLB flushes to be batched on one core, while another core changes
the page-tables. This other core may assume a PTE change does not
require a flush based on the updated PTE value, while it is unaware that
TLB flushes are still pending.
This behavior affects KSM (which may result in memory corruption) and
MADV_FREE and MADV_DONTNEED (which may result in incorrect behavior). A
proof-of-concept can easily produce the wrong behavior of MADV_DONTNEED.
Memory corruption in KSM is harder to produce in practice, but was
observed by hacking the kernel and adding a delay before flushing and
replacing the KSM page.
Finally, there is also one memory barrier missing, which may affect
architectures with weak memory model.
This patch (of 7):
Setting and clearing mm->tlb_flush_pending can be performed by multiple
threads, since mmap_sem may only be acquired for read in
task_numa_work(). If this happens, tlb_flush_pending might be cleared
while one of the threads still changes PTEs and batches TLB flushes.
This can lead to the same race between migration and
change_protection_range() that led to the introduction of
tlb_flush_pending. The result of this race was data corruption, which
means that this patch also addresses a theoretically possible data
corruption.
An actual data corruption was not observed, yet the race was was
confirmed by adding assertion to check tlb_flush_pending is not set by
two threads, adding artificial latency in change_protection_range() and
using sysctl to reduce kernel.numa_balancing_scan_delay_ms.
Link: http://lkml.kernel.org/r/20170802000818.4760-2-namit@vmware.com
Fixes: 2084140594 ("mm: fix TLB flush race between migration, and
change_protection_range")
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lockdep is a runtime locking correctness validator that detects and
reports a deadlock or its possibility by checking dependencies between
locks. It's useful since it does not report just an actual deadlock but
also the possibility of a deadlock that has not actually happened yet.
That enables problems to be fixed before they affect real systems.
However, this facility is only applicable to typical locks, such as
spinlocks and mutexes, which are normally released within the context in
which they were acquired. However, synchronization primitives like page
locks or completions, which are allowed to be released in any context,
also create dependencies and can cause a deadlock.
So lockdep should track these locks to do a better job. The 'crossrelease'
implementation makes these primitives also be tracked.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: boqun.feng@gmail.com
Cc: kernel-team@lge.com
Cc: kirill@shutemov.name
Cc: npiggin@gmail.com
Cc: walken@google.com
Cc: willy@infradead.org
Link: http://lkml.kernel.org/r/1502089981-21272-6-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit a79be23860 ("selinux: Use task_alloc hook rather than
task_create hook") changed to use task_alloc hook, task_create hook is
no longer used.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Use the ascii-armor canary to prevent unterminated C string overflows
from being able to successfully overwrite the canary, even if they
somehow obtain the canary value.
Inspired by execshield ascii-armor and Daniel Micay's linux-hardened
tree.
Link: http://lkml.kernel.org/r/20170524155751.424-3-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add /proc/self/task/<current-tid>/fail-nth file that allows failing
0-th, 1-st, 2-nd and so on calls systematically.
Excerpt from the added documentation:
"Write to this file of integer N makes N-th call in the current task
fail (N is 0-based). Read from this file returns a single char 'Y' or
'N' that says if the fault setup with a previous write to this file
was injected or not, and disables the fault if it wasn't yet injected.
Note that this file enables all types of faults (slab, futex, etc).
This setting takes precedence over all other generic settings like
probability, interval, times, etc. But per-capability settings (e.g.
fail_futex/ignore-private) take precedence over it. This feature is
intended for systematic testing of faults in a single system call. See
an example below"
Why add a new setting:
1. Existing settings are global rather than per-task.
So parallel testing is not possible.
2. attr->interval is close but it depends on attr->count
which is non reset to 0, so interval does not work as expected.
3. Trying to model this with existing settings requires manipulations
of all of probability, interval, times, space, task-filter and
unexposed count and per-task make-it-fail files.
4. Existing settings are per-failure-type, and the set of failure
types is potentially expanding.
5. make-it-fail can't be changed by unprivileged user and aggressive
stress testing better be done from an unprivileged user.
Similarly, this would require opening the debugfs files to the
unprivileged user, as he would need to reopen at least times file
(not possible to pre-open before dropping privs).
The proposed interface solves all of the above (see the example).
We want to integrate this into syzkaller fuzzer. A prototype has found
10 bugs in kernel in first day of usage:
https://groups.google.com/forum/#!searchin/syzkaller/%22FAULT_INJECTION%22%7Csort:relevance
I've made the current interface work with all types of our sandboxes.
For setuid the secret sauce was prctl(PR_SET_DUMPABLE, 1, 0, 0, 0) to
make /proc entries non-root owned. So I am fine with the current
version of the code.
[akpm@linux-foundation.org: fix build]
Link: http://lkml.kernel.org/r/20170328130128.101773-1-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The reason to disable interrupts seems to be to avoid switching to a
different processor while handling per cpu data using individual loads and
stores. If we use per cpu RMV primitives we will not have to disable
interrupts.
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1705171055130.5898@east.gentwo.org
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler fixes from Thomas Gleixner:
"This scheduler update provides:
- The (hopefully) final fix for the vtime accounting issues which
were around for quite some time
- Use types known to user space in UAPI headers to unbreak user space
builds
- Make load balancing respect the current scheduling domain again
instead of evaluating unrelated CPUs"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/headers/uapi: Fix linux/sched/types.h userspace compilation errors
sched/fair: Fix load_balance() affinity redo path
sched/cputime: Accumulate vtime on top of nsec clocksource
sched/cputime: Move the vtime task fields to their own struct
sched/cputime: Rename vtime fields
sched/cputime: Always set tsk->vtime_snap_whence after accounting vtime
vtime, sched/cputime: Remove vtime_account_user()
Revert "sched/cputime: Refactor the cputime_adjust() code"
The kmem-specific functions do the same thing. Switch and drop.
Link: http://lkml.kernel.org/r/20170530181724.27197-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are about to add vtime accumulation fields to the task struct. Let's
avoid more bloatification and gather vtime information to their own
struct.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current "snapshot" based naming on vtime fields suggests we record
some past event but that's a low level picture of their actual purpose
which comes out blurry. The real point of these fields is to run a basic
state machine that tracks down cputime entry while switching between
contexts.
So lets reflect that with more meaningful names.
Tested-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1498756511-11714-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull kthread fix from Thomas Gleixner:
"A single fix which prevents a use after free when kthread fork fails"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kthread: Fix use-after-free if kthread fork fails
If a kthread forks (e.g. usermodehelper since commit 1da5c46fa9) but
fails in copy_process() between calling dup_task_struct() and setting
p->set_child_tid, then the value of p->set_child_tid will be inherited
from the parent and get prematurely freed by free_kthread_struct().
kthread()
- worker_thread()
- process_one_work()
| - call_usermodehelper_exec_work()
| - kernel_thread()
| - _do_fork()
| - copy_process()
| - dup_task_struct()
| - arch_dup_task_struct()
| - tsk->set_child_tid = current->set_child_tid // implied
| - ...
| - goto bad_fork_*
| - ...
| - free_task(tsk)
| - free_kthread_struct(tsk)
| - kfree(tsk->set_child_tid)
- ...
- schedule()
- __schedule()
- wq_worker_sleeping()
- kthread_data(task)->flags // UAF
The problem started showing up with commit 1da5c46fa9 since it reused
->set_child_tid for the kthread worker data.
A better long-term solution might be to get rid of the ->set_child_tid
abuse. The comment in set_kthread_struct() also looks slightly wrong.
Debugged-by: Jamie Iles <jamie.iles@oracle.com>
Fixes: 1da5c46fa9 ("kthread: Make struct kthread kmalloc'ed")
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jamie Iles <jamie.iles@oracle.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170509073959.17858-1-vegard.nossum@oracle.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Imagine we have a pid namespace and a task from its parent's pid_ns,
which made setns() to the pid namespace. The task is doing fork(),
while the pid namespace's child reaper is dying. We have the race
between them:
Task from parent pid_ns Child reaper
copy_process() ..
alloc_pid() ..
.. zap_pid_ns_processes()
.. disable_pid_allocation()
.. read_lock(&tasklist_lock)
.. iterate over pids in pid_ns
.. kill tasks linked to pids
.. read_unlock(&tasklist_lock)
write_lock_irq(&tasklist_lock); ..
attach_pid(p, PIDTYPE_PID); ..
.. ..
So, just created task p won't receive SIGKILL signal,
and the pid namespace will be in contradictory state.
Only manual kill will help there, but does the userspace
care about this? I suppose, the most users just inject
a task into a pid namespace and wait a SIGCHLD from it.
The patch fixes the problem. It simply checks for
(pid_ns->nr_hashed & PIDNS_HASH_ADDING) in copy_process().
We do it under the tasklist_lock, and can't skip
PIDNS_HASH_ADDING as noted by Oleg:
"zap_pid_ns_processes() does disable_pid_allocation()
and then takes tasklist_lock to kill the whole namespace.
Given that copy_process() checks PIDNS_HASH_ADDING
under write_lock(tasklist) they can't race;
if copy_process() takes this lock first, the new child will
be killed, otherwise copy_process() can't miss
the change in ->nr_hashed."
If allocation is disabled, we just return -ENOMEM
like it's made for such cases in alloc_pid().
v2: Do not move disable_pid_allocation(), do not
introduce a new variable in copy_process() and simplify
the patch as suggested by Oleg Nesterov.
Account the problem with double irq enabling
found by Eric W. Biederman.
Fixes: c876ad7682 ("pidns: Stop pid allocation when init dies")
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Ingo Molnar <mingo@kernel.org>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Oleg Nesterov <oleg@redhat.com>
CC: Mike Rapoport <rppt@linux.vnet.ibm.com>
CC: Michal Hocko <mhocko@suse.com>
CC: Andy Lutomirski <luto@kernel.org>
CC: "Eric W. Biederman" <ebiederm@xmission.com>
CC: Andrei Vagin <avagin@openvz.org>
CC: Cyrill Gorcunov <gorcunov@openvz.org>
CC: Serge Hallyn <serge@hallyn.com>
Cc: stable@vger.kernel.org
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Pull stackprotector fixlet from Ingo Molnar:
"A single fix/enhancement to increase stackprotector canary randomness
on 64-bit kernels with very little cost"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
stackprotector: Increase the per-task stack canary's random range from 32 bits to 64 bits on 64-bit platforms
Pull RCU updates from Ingo Molnar:
"The main changes are:
- Debloat RCU headers
- Parallelize SRCU callback handling (plus overlapping patches)
- Improve the performance of Tree SRCU on a CPU-hotplug stress test
- Documentation updates
- Miscellaneous fixes"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
rcu: Open-code the rcu_cblist_n_lazy_cbs() function
rcu: Open-code the rcu_cblist_n_cbs() function
rcu: Open-code the rcu_cblist_empty() function
rcu: Separately compile large rcu_segcblist functions
srcu: Debloat the <linux/rcu_segcblist.h> header
srcu: Adjust default auto-expediting holdoff
srcu: Specify auto-expedite holdoff time
srcu: Expedite first synchronize_srcu() when idle
srcu: Expedited grace periods with reduced memory contention
srcu: Make rcutorture writer stalls print SRCU GP state
srcu: Exact tracking of srcu_data structures containing callbacks
srcu: Make SRCU be built by default
srcu: Fix Kconfig botch when SRCU not selected
rcu: Make non-preemptive schedule be Tasks RCU quiescent state
srcu: Expedite srcu_schedule_cbs_snp() callback invocation
srcu: Parallelize callback handling
kvm: Move srcu_struct fields to end of struct kvm
rcu: Fix typo in PER_RCU_NODE_PERIOD header comment
rcu: Use true/false in assignment to bool
rcu: Use bool value directly
...
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using virtually mapped stack, kernel stacks are allocated via vmalloc.
In the current implementation, two stacks per cpu can be cached when
tasks are freed and the cached stacks are used again in task
duplications. But the cached stacks may remain unfreed even when cpu
are offline. By adding a cpu hotplug callback to free the cached stacks
when a cpu goes offline, the pages of the cached stacks are not wasted.
Link: http://lkml.kernel.org/r/1487076043-17802-1-git-send-email-hoeun.ryu@gmail.com
Signed-off-by: Hoeun Ryu <hoeun.ryu@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Mateusz Guzik <mguzik@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The stack canary is an 'unsigned long' and should be fully initialized to
random data rather than only 32 bits of random data.
Signed-off-by: Daniel Micay <danielmicay@gmail.com>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Arjan van Ven <arjan@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-hardening@lists.openwall.com
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170504133209.3053-1-danielmicay@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull security subsystem updates from James Morris:
"Highlights:
IMA:
- provide ">" and "<" operators for fowner/uid/euid rules
KEYS:
- add a system blacklist keyring
- add KEYCTL_RESTRICT_KEYRING, exposes keyring link restriction
functionality to userland via keyctl()
LSM:
- harden LSM API with __ro_after_init
- add prlmit security hook, implement for SELinux
- revive security_task_alloc hook
TPM:
- implement contextual TPM command 'spaces'"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (98 commits)
tpm: Fix reference count to main device
tpm_tis: convert to using locality callbacks
tpm: fix handling of the TPM 2.0 event logs
tpm_crb: remove a cruft constant
keys: select CONFIG_CRYPTO when selecting DH / KDF
apparmor: Make path_max parameter readonly
apparmor: fix parameters so that the permission test is bypassed at boot
apparmor: fix invalid reference to index variable of iterator line 836
apparmor: use SHASH_DESC_ON_STACK
security/apparmor/lsm.c: set debug messages
apparmor: fix boolreturn.cocci warnings
Smack: Use GFP_KERNEL for smk_netlbl_mls().
smack: fix double free in smack_parse_opts_str()
KEYS: add SP800-56A KDF support for DH
KEYS: Keyring asymmetric key restrict method with chaining
KEYS: Restrict asymmetric key linkage using a specific keychain
KEYS: Add a lookup_restriction function for the asymmetric key type
KEYS: Add KEYCTL_RESTRICT_KEYRING
KEYS: Consistent ordering for __key_link_begin and restrict check
KEYS: Add an optional lookup_restriction hook to key_type
...
Pull livepatch updates from Jiri Kosina:
- a per-task consistency model is being added for architectures that
support reliable stack dumping (extending this, currently rather
trivial set, is currently in the works).
This extends the nature of the types of patches that can be applied
by live patching infrastructure. The code stems from the design
proposal made [1] back in November 2014. It's a hybrid of SUSE's
kGraft and RH's kpatch, combining advantages of both: it uses
kGraft's per-task consistency and syscall barrier switching combined
with kpatch's stack trace switching. There are also a number of
fallback options which make it quite flexible.
Most of the heavy lifting done by Josh Poimboeuf with help from
Miroslav Benes and Petr Mladek
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
- module load time patch optimization from Zhou Chengming
- a few assorted small fixes
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch: add missing printk newlines
livepatch: Cancel transition a safe way for immediate patches
livepatch: Reduce the time of finding module symbols
livepatch: make klp_mutex proper part of API
livepatch: allow removal of a disabled patch
livepatch: add /proc/<pid>/patch_state
livepatch: change to a per-task consistency model
livepatch: store function sizes
livepatch: use kstrtobool() in enabled_store()
livepatch: move patching functions into patch.c
livepatch: remove unnecessary object loaded check
livepatch: separate enabled and patched states
livepatch/s390: add TIF_PATCH_PENDING thread flag
livepatch/s390: reorganize TIF thread flag bits
livepatch/powerpc: add TIF_PATCH_PENDING thread flag
livepatch/x86: add TIF_PATCH_PENDING thread flag
livepatch: create temporary klp_update_patch_state() stub
x86/entry: define _TIF_ALLWORK_MASK flags explicitly
stacktrace/x86: add function for detecting reliable stack traces
Pull perf updates from Ingo Molnar:
"The main changes in this cycle were:
Kernel side changes:
- Kprobes and uprobes changes:
- Make their trampolines read-only while they are used
- Make UPROBES_EVENTS default-y which is the distro practice
- Apply misc fixes and robustization to probe point insertion.
- add support for AMD IOMMU events
- extend hw events on Intel Goldmont CPUs
- ... plus misc fixes and updates.
Tooling side changes:
- support s390 jump instructions in perf annotate (Christian
Borntraeger)
- vendor hardware events updates (Andi Kleen)
- add argument support for SDT events in powerpc (Ravi Bangoria)
- beautify the statx syscall arguments in 'perf trace' (Arnaldo
Carvalho de Melo)
- handle inline functions in callchains (Jin Yao)
- enable sorting by srcline as key (Milian Wolff)
- add 'brstackinsn' field in 'perf script' to reuse the x86
instruction decoder used in the Intel PT code to study hot paths to
samples (Andi Kleen)
- add PERF_RECORD_NAMESPACES so that the kernel can record
information required to associate samples to namespaces, helping in
container problem characterization. (Hari Bathini)
- allow sorting by symbol_size in 'perf report' and 'perf top'
(Charles Baylis)
- in perf stat, make system wide (-a) the default option if no target
was specified and one of following conditions is met:
- no workload specified (current behaviour)
- a workload is specified but all requested events are system wide
ones, like uncore ones. (Jiri Olsa)
- ... plus lots of other updates, enhancements, cleanups and fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (235 commits)
perf tools: Fix the code to strip command name
tools arch x86: Sync cpufeatures.h
tools arch: Sync arch/x86/lib/memcpy_64.S with the kernel
tools: Update asm-generic/mman-common.h copy from the kernel
perf tools: Use just forward declarations for struct thread where possible
perf tools: Add the right header to obtain PERF_ALIGN()
perf tools: Remove poll.h and wait.h from util.h
perf tools: Remove string.h, unistd.h and sys/stat.h from util.h
perf tools: Remove stale prototypes from builtin.h
perf tools: Remove string.h from util.h
perf tools: Remove sys/ioctl.h from util.h
perf tools: Remove a few more needless includes from util.h
perf tools: Include sys/param.h where needed
perf callchain: Move callchain specific routines from util.[ch]
perf tools: Add compress.h for the *_decompress_to_file() headers
perf mem: Fix display of data source snoop indication
perf debug: Move dump_stack() and sighandler_dump_stack() to debug.h
perf kvm: Make function only used by 'perf kvm' static
perf tools: Move timestamp routines from util.h to time-utils.h
perf tools: Move units conversion/formatting routines to separate object
...
A group of Linux kernel hackers reported chasing a bug that resulted
from their assumption that SLAB_DESTROY_BY_RCU provided an existence
guarantee, that is, that no block from such a slab would be reallocated
during an RCU read-side critical section. Of course, that is not the
case. Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire
slab of blocks.
However, there is a phrase for this, namely "type safety". This commit
therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order
to avoid future instances of this sort of confusion.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
[ paulmck: Add comments mentioning the old name, as requested by Eric
Dumazet, in order to help people familiar with the old name find
the new one. ]
Acked-by: David Rientjes <rientjes@google.com>
A crash happened while I was playing with deadline PI rtmutex.
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: [<ffffffff810eeb8f>] rt_mutex_get_top_task+0x1f/0x30
PGD 232a75067 PUD 230947067 PMD 0
Oops: 0000 [#1] SMP
CPU: 1 PID: 10994 Comm: a.out Not tainted
Call Trace:
[<ffffffff810b658c>] enqueue_task+0x2c/0x80
[<ffffffff810ba763>] activate_task+0x23/0x30
[<ffffffff810d0ab5>] pull_dl_task+0x1d5/0x260
[<ffffffff810d0be6>] pre_schedule_dl+0x16/0x20
[<ffffffff8164e783>] __schedule+0xd3/0x900
[<ffffffff8164efd9>] schedule+0x29/0x70
[<ffffffff8165035b>] __rt_mutex_slowlock+0x4b/0xc0
[<ffffffff81650501>] rt_mutex_slowlock+0xd1/0x190
[<ffffffff810eeb33>] rt_mutex_timed_lock+0x53/0x60
[<ffffffff810ecbfc>] futex_lock_pi.isra.18+0x28c/0x390
[<ffffffff810ed8b0>] do_futex+0x190/0x5b0
[<ffffffff810edd50>] SyS_futex+0x80/0x180
This is because rt_mutex_enqueue_pi() and rt_mutex_dequeue_pi()
are only protected by pi_lock when operating pi waiters, while
rt_mutex_get_top_task(), will access them with rq lock held but
not holding pi_lock.
In order to tackle it, we introduce new "pi_top_task" pointer
cached in task_struct, and add new rt_mutex_update_top_task()
to update its value, it can be called by rt_mutex_setprio()
which held both owner's pi_lock and rq lock. Thus "pi_top_task"
can be safely accessed by enqueue_task_dl() under rq lock.
Originally-From: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: juri.lelli@arm.com
Cc: bigeasy@linutronix.de
Cc: mathieu.desnoyers@efficios.com
Cc: jdesfossez@efficios.com
Cc: bristot@redhat.com
Link: http://lkml.kernel.org/r/20170323150216.157682758@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We switched from "struct task_struct"->security to "struct cred"->security
in Linux 2.6.29. But not all LSM modules were happy with that change.
TOMOYO LSM module is an example which want to use per "struct task_struct"
security blob, for TOMOYO's security context is defined based on "struct
task_struct" rather than "struct cred". AppArmor LSM module is another
example which want to use it, for AppArmor is currently abusing the cred
a little bit to store the change_hat and setexeccon info. Although
security_task_free() hook was revived in Linux 3.4 because Yama LSM module
wanted to release per "struct task_struct" security blob,
security_task_alloc() hook and "struct task_struct"->security field were
not revived. Nowadays, we are getting proposals of lightweight LSM modules
which want to use per "struct task_struct" security blob.
We are already allowing multiple concurrent LSM modules (up to one fully
armored module which uses "struct cred"->security field or exclusive hooks
like security_xfrm_state_pol_flow_match(), plus unlimited number of
lightweight modules which do not use "struct cred"->security nor exclusive
hooks) as long as they are built into the kernel. But this patch does not
implement variable length "struct task_struct"->security field which will
become needed when multiple LSM modules want to use "struct task_struct"->
security field. Although it won't be difficult to implement variable length
"struct task_struct"->security field, let's think about it after we merged
this patch.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: John Johansen <john.johansen@canonical.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Tested-by: Djalal Harouni <tixxdz@gmail.com>
Acked-by: José Bollo <jobol@nonadev.net>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Eric Paris <eparis@parisplace.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: James Morris <james.l.morris@oracle.com>
Cc: José Bollo <jobol@nonadev.net>
Signed-off-by: James Morris <james.l.morris@oracle.com>
With the advert of container technologies like docker, that depend on
namespaces for isolation, there is a need for tracing support for
namespaces. This patch introduces new PERF_RECORD_NAMESPACES event for
recording namespaces related info. By recording info for every
namespace, it is left to userspace to take a call on the definition of a
container and trace containers by updating perf tool accordingly.
Each namespace has a combination of device and inode numbers. Though
every namespace has the same device number currently, that may change in
future to avoid the need for a namespace of namespaces. Considering such
possibility, record both device and inode numbers separately for each
namespace.
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@fb.com>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Sargun Dhillon <sargun@sargun.me>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/148891929686.25309.2827618988917007768.stgit@hbathini.in.ibm.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Move rcu_copy_process() into kernel/fork.c, which is the only
user of this inline function.
This simplifies <linux/sched/task.h> to the level that <linux/sched.h>
does not have to be included in it anymore - which change is done
in a subsequent patch.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a trivial, mostly empty <linux/sched/cputime.h> header
to prepare for the moving of cputime functionality out of sched.h.
Update all code that relies on these facilities.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task_stack.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/stat.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/stat.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up missing #includes in other places that rely on sched.h doing that for them.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/numa_balancing.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/numa_balancing.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/user.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/user.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/coredump.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/coredump.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
The APIs that are going to be moved first are:
mm_alloc()
__mmdrop()
mmdrop()
mmdrop_async_fn()
mmdrop_async()
mmget_not_zero()
mmput()
mmput_async()
get_task_mm()
mm_access()
mm_release()
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/autogroup.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/autogroup.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
threadgroup_change_begin()/end() is a pointless wrapper around
cgroup_threadgroup_change_begin()/end(), minus a might_sleep()
in the !CONFIG_CGROUPS=y case.
Remove the wrappery, move the might_sleep() (the down_read()
already has a might_sleep() check).
This debloats <linux/sched.h> a bit and simplifies this API.
Update all call sites.
No change in functionality.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:
git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_users);/mmget\(\1\);/'
git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_users);/mmget\(\&\1\);/'
This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.
(Michal Hocko provided most of the kerneldoc comment.)
Link: http://lkml.kernel.org/r/20161218123229.22952-2-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull namespace updates from Eric Biederman:
"There is a lot here. A lot of these changes result in subtle user
visible differences in kernel behavior. I don't expect anything will
care but I will revert/fix things immediately if any regressions show
up.
From Seth Forshee there is a continuation of the work to make the vfs
ready for unpriviled mounts. We had thought the previous changes
prevented the creation of files outside of s_user_ns of a filesystem,
but it turns we missed the O_CREAT path. Ooops.
Pavel Tikhomirov and Oleg Nesterov worked together to fix a long
standing bug in the implemenation of PR_SET_CHILD_SUBREAPER where only
children that are forked after the prctl are considered and not
children forked before the prctl. The only known user of this prctl
systemd forks all children after the prctl. So no userspace
regressions will occur. Holding earlier forked children to the same
rules as later forked children creates a semantic that is sane enough
to allow checkpoing of processes that use this feature.
There is a long delayed change by Nikolay Borisov to limit inotify
instances inside a user namespace.
Michael Kerrisk extends the API for files used to maniuplate
namespaces with two new trivial ioctls to allow discovery of the
hierachy and properties of namespaces.
Konstantin Khlebnikov with the help of Al Viro adds code that when a
network namespace exits purges it's sysctl entries from the dcache. As
in some circumstances this could use a lot of memory.
Vivek Goyal fixed a bug with stacked filesystems where the permissions
on the wrong inode were being checked.
I continue previous work on ptracing across exec. Allowing a file to
be setuid across exec while being ptraced if the tracer has enough
credentials in the user namespace, and if the process has CAP_SETUID
in it's own namespace. Proc files for setuid or otherwise undumpable
executables are now owned by the root in the user namespace of their
mm. Allowing debugging of setuid applications in containers to work
better.
A bug I introduced with permission checking and automount is now
fixed. The big change is to mark the mounts that the kernel initiates
as a result of an automount. This allows the permission checks in sget
to be safely suppressed for this kind of mount. As the permission
check happened when the original filesystem was mounted.
Finally a special case in the mount namespace is removed preventing
unbounded chains in the mount hash table, and making the semantics
simpler which benefits CRIU.
The vfs fix along with related work in ima and evm I believe makes us
ready to finish developing and merge fully unprivileged mounts of the
fuse filesystem. The cleanups of the mount namespace makes discussing
how to fix the worst case complexity of umount. The stacked filesystem
fixes pave the way for adding multiple mappings for the filesystem
uids so that efficient and safer containers can be implemented"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
proc/sysctl: Don't grab i_lock under sysctl_lock.
vfs: Use upper filesystem inode in bprm_fill_uid()
proc/sysctl: prune stale dentries during unregistering
mnt: Tuck mounts under others instead of creating shadow/side mounts.
prctl: propagate has_child_subreaper flag to every descendant
introduce the walk_process_tree() helper
nsfs: Add an ioctl() to return owner UID of a userns
fs: Better permission checking for submounts
exit: fix the setns() && PR_SET_CHILD_SUBREAPER interaction
vfs: open() with O_CREAT should not create inodes with unknown ids
nsfs: Add an ioctl() to return the namespace type
proc: Better ownership of files for non-dumpable tasks in user namespaces
exec: Remove LSM_UNSAFE_PTRACE_CAP
exec: Test the ptracer's saved cred to see if the tracee can gain caps
exec: Don't reset euid and egid when the tracee has CAP_SETUID
inotify: Convert to using per-namespace limits
When the mm with uffd-ed vmas fork()-s the respective vmas notify their
uffds with the event which contains a descriptor with new uffd. This
new descriptor can then be used to get events from the child and
populate its mm with data. Note, that there can be different uffd-s
controlling different vmas within one mm, so first we should collect all
those uffds (and ctx-s) in a list and then notify them all one by one
but only once per fork().
The context is created at fork() time but the descriptor, file struct
and anon inode object is created at event read time. So some trickery
is added to the userfaultfd_ctx_read() to handle the ctx queues' locking
vs file creation.
Another thing worth noticing is that the task that fork()-s waits for
the uffd event to get processed WITHOUT the mmap sem.
[aarcange@redhat.com: build warning fix]
Link: http://lkml.kernel.org/r/20161216144821.5183-10-aarcange@redhat.com
Link: http://lkml.kernel.org/r/20161216144821.5183-9-aarcange@redhat.com
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- Implement wraparound-safe refcount_t and kref_t types based on
generic atomic primitives (Peter Zijlstra)
- Improve and fix the ww_mutex code (Nicolai Hähnle)
- Add self-tests to the ww_mutex code (Chris Wilson)
- Optimize percpu-rwsems with the 'rcuwait' mechanism (Davidlohr
Bueso)
- Micro-optimize the current-task logic all around the core kernel
(Davidlohr Bueso)
- Tidy up after recent optimizations: remove stale code and APIs,
clean up the code (Waiman Long)
- ... plus misc fixes, updates and cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
fork: Fix task_struct alignment
locking/spinlock/debug: Remove spinlock lockup detection code
lockdep: Fix incorrect condition to print bug msgs for MAX_LOCKDEP_CHAIN_HLOCKS
lkdtm: Convert to refcount_t testing
kref: Implement 'struct kref' using refcount_t
refcount_t: Introduce a special purpose refcount type
sched/wake_q: Clarify queue reinit comment
sched/wait, rcuwait: Fix typo in comment
locking/mutex: Fix lockdep_assert_held() fail
locking/rtmutex: Flip unlikely() branch to likely() in __rt_mutex_slowlock()
locking/rwsem: Reinit wake_q after use
locking/rwsem: Remove unnecessary atomic_long_t casts
jump_labels: Move header guard #endif down where it belongs
locking/atomic, kref: Implement kref_put_lock()
locking/ww_mutex: Turn off __must_check for now
locking/atomic, kref: Avoid more abuse
locking/atomic, kref: Use kref_get_unless_zero() more
locking/atomic, kref: Kill kref_sub()
locking/atomic, kref: Add kref_read()
locking/atomic, kref: Add KREF_INIT()
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this (fairly busy) cycle were:
- There was a class of scheduler bugs related to forgetting to update
the rq-clock timestamp which can cause weird and hard to debug
problems, so there's a new debug facility for this: which uncovered
a whole lot of bugs which convinced us that we want to keep the
debug facility.
(Peter Zijlstra, Matt Fleming)
- Various cputime related updates: eliminate cputime and use u64
nanoseconds directly, simplify and improve the arch interfaces,
implement delayed accounting more widely, etc. - (Frederic
Weisbecker)
- Move code around for better structure plus cleanups (Ingo Molnar)
- Move IO schedule accounting deeper into the scheduler plus related
changes to improve the situation (Tejun Heo)
- ... plus a round of sched/rt and sched/deadline fixes, plus other
fixes, updats and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits)
sched/core: Remove unlikely() annotation from sched_move_task()
sched/autogroup: Rename auto_group.[ch] to autogroup.[ch]
sched/topology: Split out scheduler topology code from core.c into topology.c
sched/core: Remove unnecessary #include headers
sched/rq_clock: Consolidate the ordering of the rq_clock methods
delayacct: Include <uapi/linux/taskstats.h>
sched/core: Clean up comments
sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds
sched/clock: Add dummy clear_sched_clock_stable() stub function
sched/cputime: Remove generic asm headers
sched/cputime: Remove unused nsec_to_cputime()
s390, sched/cputime: Remove unused cputime definitions
powerpc, sched/cputime: Remove unused cputime definitions
s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs
ia64, sched/cputime: Remove unused cputime definitions
ia64: Convert vtime to use nsec units directly
ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it
sched/cputime: Remove jiffies based cputime
sched/cputime, vtime: Return nsecs instead of cputime_t to account
sched/cputime: Complete nsec conversion of tick based accounting
...
Stupid bug that wrecked the alignment of task_struct and causes WARN()s
in the x86 FPU code on some platforms.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Tested-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: e274795ea7 ("locking/mutex: Fix mutex handoff")
Link: http://lkml.kernel.org/r/20170218142645.GH6500@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If process forks some children when it has is_child_subreaper
flag enabled they will inherit has_child_subreaper flag - first
group, when is_child_subreaper is disabled forked children will
not inherit it - second group. So child-subreaper does not reparent
all his descendants when their parents die. Having these two
differently behaving groups can lead to confusion. Also it is
a problem for CRIU, as when we restore process tree we need to
somehow determine which descendants belong to which group and
much harder - to put them exactly to these group.
To simplify these we can add a propagation of has_child_subreaper
flag on PR_SET_CHILD_SUBREAPER, walking all descendants of child-
subreaper to setup has_child_subreaper flag.
In common cases when process like systemd first sets itself to
be a child-subreaper and only after that forks its services, we will
have zero-length list of descendants to walk. Testing with binary
subtree of 2^15 processes prctl took < 0.007 sec and has shown close
to linear dependency(~0.2 * n * usec) on lower numbers of processes.
Moreover, I doubt someone intentionaly pre-forks the children whitch
should reparent to init before becoming subreaper, because some our
ancestor migh have had is_child_subreaper flag while forking our
sub-tree and our childs will all inherit has_child_subreaper flag,
and we have no way to influence it. And only way to check if we have
no has_child_subreaper flag is to create some childs, kill them and
see where they will reparent to.
Using walk_process_tree helper to walk subtree, thanks to Oleg! Timing
seems to be the same.
Optimize:
a) When descendant already has has_child_subreaper flag all his subtree
has it too already.
* for a) to be true need to move has_child_subreaper inheritance under
the same tasklist_lock with adding task to its ->real_parent->children
as without it process can inherit zero has_child_subreaper, then we
set 1 to it's parent flag, check that parent has no more children, and
only after child with wrong flag is added to the tree.
* Also make these inheritance more clear by using real_parent instead of
current, as on clone(CLONE_PARENT) if current has is_child_subreaper
and real_parent has no is_child_subreaper or has_child_subreaper, child
will have has_child_subreaper flag set without actually having a
subreaper in it's ancestors.
b) When some descendant is child_reaper, it's subtree is in different
pidns from us(original child-subreaper) and processes from other pidns
will never reparent to us.
So we can skip their(a,b) subtree from walk.
v2: switch to walk_process_tree() general helper, move
has_child_subreaper inheritance
v3: remove csr_descendant leftover, change current to real_parent
in has_child_subreaper inheritance
v4: small commit message fix
Fixes: ebec18a6d3 ("prctl: add PR_{SET,GET}_CHILD_SUBREAPER to allow simple process supervision")
Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Add the new helper to walk the process tree, the next patch adds a user.
Note that it visits the group leaders only, proc_visitor can do
for_each_thread itself or we can trivially extend walk_process_tree() to
do this.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Use the new nsec based cputime accessors as part of the whole cputime
conversion from cputime_t to nsecs.
Also convert posix-cpu-timers to use nsec based internal counters to
simplify it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-19-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When CONFIG_POSIX_TIMERS is disabled, it is preferable to remove related
structures from struct task_struct and struct signal_struct as they
won't contain anything useful and shouldn't be relied upon by mistake.
Code still referencing those structures is also disabled here.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
While reviewing the ww_mutex patches, I noticed that it was still
possible to (incorrectly) succeed for (incorrect) code like:
mutex_lock(&a);
mutex_lock(&a);
This was possible if the second mutex_lock() would block (as expected)
but then receive a spurious wakeup. At that point it would find itself
at the front of the queue, request a handoff and instantly claim
ownership and continue, since owner would point to itself.
Avoid this scenario and simplify the code by introducing a third low
bit to signal handoff pickup. So once we request handoff, unlock
clears the handoff bit and sets the pickup bit along with the new
owner.
This also removes the need for the .handoff argument to
__mutex_trylock(), since that becomes superfluous with PICKUP.
In order to guarantee enough low bits, ensure task_struct alignment is
at least L1_CACHE_BYTES (which seems a good ideal regardless).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9d659ae14b ("locking/mutex: Add lock handoff to avoid starvation")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull namespace updates from Eric Biederman:
"After a lot of discussion and work we have finally reachanged a basic
understanding of what is necessary to make unprivileged mounts safe in
the presence of EVM and IMA xattrs which the last commit in this
series reflects. While technically it is a revert the comments it adds
are important for people not getting confused in the future. Clearing
up that confusion allows us to seriously work on unprivileged mounts
of fuse in the next development cycle.
The rest of the fixes in this set are in the intersection of user
namespaces, ptrace, and exec. I started with the first fix which
started a feedback cycle of finding additional issues during review
and fixing them. Culiminating in a fix for a bug that has been present
since at least Linux v1.0.
Potentially these fixes were candidates for being merged during the rc
cycle, and are certainly backport candidates but enough little things
turned up during review and testing that I decided they should be
handled as part of the normal development process just to be certain
there were not any great surprises when it came time to backport some
of these fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
Revert "evm: Translate user/group ids relative to s_user_ns when computing HMAC"
exec: Ensure mm->user_ns contains the execed files
ptrace: Don't allow accessing an undumpable mm
ptrace: Capture the ptracer's creds not PT_PTRACE_CAP
mm: Add a user_ns owner to mm_struct and fix ptrace permission checks
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
for it (Markus Mayer).
- Support for ARM Integrator/AP and Integrator/CP in the generic
DT cpufreq driver and elimination of the old Integrator cpufreq
driver (Linus Walleij).
- Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik).
- cpufreq core fix to eliminate races that may lead to using
inactive policy objects and related cleanups (Rafael Wysocki).
- cpufreq schedutil governor update to make it use SCHED_FIFO
kernel threads (instead of regular workqueues) for doing delayed
work (to reduce the response latency in some cases) and related
cleanups (Viresh Kumar).
- New cpufreq sysfs attribute for resetting statistics (Markus
Mayer).
- cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
Viresh Kumar).
- Support for using generic cpufreq governors in the intel_pstate
driver (Rafael Wysocki).
- Support for per-logical-CPU P-state limits and the EPP/EPB
(Energy Performance Preference/Energy Performance Bias) knobs
in the intel_pstate driver (Srinivas Pandruvada).
- New CPU ID for Knights Mill in intel_pstate (Piotr Luc).
- intel_pstate driver modification to use the P-state selection
algorithm based on CPU load on platforms with the system profile
in the ACPI tables set to "mobile" (Srinivas Pandruvada).
- intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
Srinivas Pandruvada).
- cpufreq powernv driver updates including fast switching support
(for the schedutil governor), fixes and cleanus (Akshay Adiga,
Andrew Donnellan, Denis Kirjanov).
- acpi-cpufreq driver rework to switch it over to the new CPU
offline/online state machine (Sebastian Andrzej Siewior).
- Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
Prakash).
- Idle injection rework (to make it use the regular idle path
instead of a home-grown custom one) and related powerclamp
thermal driver updates (Peter Zijlstra, Jacob Pan, Petr Mladek,
Sebastian Andrzej Siewior).
- New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
Shevchenko, Piotr Luc).
- intel_idle driver cleanups and switch over to using the new CPU
offline/online state machine (Anna-Maria Gleixner, Sebastian
Andrzej Siewior).
- cpuidle DT driver update to support suspend-to-idle properly
(Sudeep Holla).
- cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
Rafael Wysocki).
- Preliminary support for power domains including CPUs in the
generic power domains (genpd) framework and related DT bindings
(Lina Iyer).
- Assorted fixes and cleanups in the generic power domains (genpd)
framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven).
- Preliminary support for devices with multiple voltage regulators
and related fixes and cleanups in the Operating Performance Points
(OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd).
- System sleep state selection interface rework to make it easier
to support suspend-to-idle as the default system suspend method
(Rafael Wysocki).
- PM core fixes and cleanups, mostly related to the interactions
between the system suspend and runtime PM frameworks (Ulf Hansson,
Sahitya Tummala, Tony Lindgren).
- Latency tolerance PM QoS framework imorovements (Andrew
Lutomirski).
- New Knights Mill CPU ID for the Intel RAPL power capping driver
(Piotr Luc).
- Intel RAPL power capping driver fixes, cleanups and switch over
to using the new CPU offline/online state machine (Jacob Pan,
Thomas Gleixner, Sebastian Andrzej Siewior).
- Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh
Kumar).
- Fix for false-positive KASAN warnings during resume from ACPI S3
(suspend-to-RAM) on x86 (Josh Poimboeuf).
- Memory map verification during resume from hibernation on x86 to
ensure a consistent address space layout (Chen Yu).
- Wakeup sources debugging enhancement (Xing Wei).
- rockchip-io AVS driver cleanup (Shawn Lin).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJYTx4+AAoJEILEb/54YlRx9f8P/2SlNHUENW5qh6FtCw00oC2u
UqJerQJ2L38UgbgxbE/0VYblma9rFABDWC1eO2xN2XdcdW5UPBKPVvNcOgNe1Clh
gjy3RxZXVpmjfzt2kGfsTLEuGnHqwvx51hTUkeA2LwvkOal45xb8ZESmy8opCtiv
iG4LwmPHoxdX5Za5nA9ItFKzxyO1EoyNSnBYAVwALDHxmNOfxEcRevfurASt/0M9
brCCZJA0/sZxeL0lBdy8fNQPIBTUfCoTJG/MtmzGrObJ9wMFvEDfXrVEyZiWs/zA
AAZ4kQL77enrIKgrLN8e0G6LzTLHoVcvn38Xjf24dKUqhd7ACBhYcnW+jK3+7EAd
gjZ8efObQsiuyK/EDLUNw35tt96CHOqfrQCj2tIwRVvk9EekLqAGXdIndTCr2kYW
RpefmP5kMljnm/nQFOVLwMEUQMuVkvUE7EgxADy7DoDmepBFC4ICRDWPye70R2kC
0O1Tn2PAQq4Fd1tyI9TYYz0YQQkRoaRb5rfYUSzbRbeCdsphUopp4Vhsiyn6IcnF
XnLbg6pRAat82MoS9n4pfO/VCo8vkErKA8tut9G7TDakkrJoEE7l31PdKW0hP3f6
sBo6xXy6WTeivU/o/i8TbM6K4mA37pBaj78ooIkWLgg5fzRaS2+0xSPVy2H9x1m5
LymHcobCK9rSZ1l208Fe
=vhxI
-----END PGP SIGNATURE-----
Merge tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"Again, cpufreq gets more changes than the other parts this time (one
new driver, one old driver less, a bunch of enhancements of the
existing code, new CPU IDs, fixes, cleanups)
There also are some changes in cpuidle (idle injection rework, a
couple of new CPU IDs, online/offline rework in intel_idle, fixes and
cleanups), in the generic power domains framework (mostly related to
supporting power domains containing CPUs), and in the Operating
Performance Points (OPP) library (mostly related to supporting devices
with multiple voltage regulators)
In addition to that, the system sleep state selection interface is
modified to make it easier for distributions with unchanged user space
to support suspend-to-idle as the default system suspend method, some
issues are fixed in the PM core, the latency tolerance PM QoS
framework is improved a bit, the Intel RAPL power capping driver is
cleaned up and there are some fixes and cleanups in the devfreq
subsystem
Specifics:
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
for it (Markus Mayer)
- Support for ARM Integrator/AP and Integrator/CP in the generic DT
cpufreq driver and elimination of the old Integrator cpufreq driver
(Linus Walleij)
- Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik)
- cpufreq core fix to eliminate races that may lead to using inactive
policy objects and related cleanups (Rafael Wysocki)
- cpufreq schedutil governor update to make it use SCHED_FIFO kernel
threads (instead of regular workqueues) for doing delayed work (to
reduce the response latency in some cases) and related cleanups
(Viresh Kumar)
- New cpufreq sysfs attribute for resetting statistics (Markus Mayer)
- cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
Viresh Kumar)
- Support for using generic cpufreq governors in the intel_pstate
driver (Rafael Wysocki)
- Support for per-logical-CPU P-state limits and the EPP/EPB (Energy
Performance Preference/Energy Performance Bias) knobs in the
intel_pstate driver (Srinivas Pandruvada)
- New CPU ID for Knights Mill in intel_pstate (Piotr Luc)
- intel_pstate driver modification to use the P-state selection
algorithm based on CPU load on platforms with the system profile in
the ACPI tables set to "mobile" (Srinivas Pandruvada)
- intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
Srinivas Pandruvada)
- cpufreq powernv driver updates including fast switching support
(for the schedutil governor), fixes and cleanus (Akshay Adiga,
Andrew Donnellan, Denis Kirjanov)
- acpi-cpufreq driver rework to switch it over to the new CPU
offline/online state machine (Sebastian Andrzej Siewior)
- Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
Prakash)
- Idle injection rework (to make it use the regular idle path instead
of a home-grown custom one) and related powerclamp thermal driver
updates (Peter Zijlstra, Jacob Pan, Petr Mladek, Sebastian Andrzej
Siewior)
- New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
Shevchenko, Piotr Luc)
- intel_idle driver cleanups and switch over to using the new CPU
offline/online state machine (Anna-Maria Gleixner, Sebastian
Andrzej Siewior)
- cpuidle DT driver update to support suspend-to-idle properly
(Sudeep Holla)
- cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
Rafael Wysocki)
- Preliminary support for power domains including CPUs in the generic
power domains (genpd) framework and related DT bindings (Lina Iyer)
- Assorted fixes and cleanups in the generic power domains (genpd)
framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven)
- Preliminary support for devices with multiple voltage regulators
and related fixes and cleanups in the Operating Performance Points
(OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd)
- System sleep state selection interface rework to make it easier to
support suspend-to-idle as the default system suspend method
(Rafael Wysocki)
- PM core fixes and cleanups, mostly related to the interactions
between the system suspend and runtime PM frameworks (Ulf Hansson,
Sahitya Tummala, Tony Lindgren)
- Latency tolerance PM QoS framework imorovements (Andrew Lutomirski)
- New Knights Mill CPU ID for the Intel RAPL power capping driver
(Piotr Luc)
- Intel RAPL power capping driver fixes, cleanups and switch over to
using the new CPU offline/online state machine (Jacob Pan, Thomas
Gleixner, Sebastian Andrzej Siewior)
- Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh Kumar)
- Fix for false-positive KASAN warnings during resume from ACPI S3
(suspend-to-RAM) on x86 (Josh Poimboeuf)
- Memory map verification during resume from hibernation on x86 to
ensure a consistent address space layout (Chen Yu)
- Wakeup sources debugging enhancement (Xing Wei)
- rockchip-io AVS driver cleanup (Shawn Lin)"
* tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (127 commits)
devfreq: rk3399_dmc: Don't use OPP structures outside of RCU locks
devfreq: rk3399_dmc: Remove dangling rcu_read_unlock()
devfreq: exynos: Don't use OPP structures outside of RCU locks
Documentation: intel_pstate: Document HWP energy/performance hints
cpufreq: intel_pstate: Support for energy performance hints with HWP
cpufreq: intel_pstate: Add locking around HWP requests
PM / sleep: Print active wakeup sources when blocking on wakeup_count reads
PM / core: Fix bug in the error handling of async suspend
PM / wakeirq: Fix dedicated wakeirq for drivers not using autosuspend
PM / Domains: Fix compatible for domain idle state
PM / OPP: Don't WARN on multiple calls to dev_pm_opp_set_regulators()
PM / OPP: Allow platform specific custom set_opp() callbacks
PM / OPP: Separate out _generic_set_opp()
PM / OPP: Add infrastructure to manage multiple regulators
PM / OPP: Pass struct dev_pm_opp_supply to _set_opp_voltage()
PM / OPP: Manage supply's voltage/current in a separate structure
PM / OPP: Don't use OPP structure outside of rcu protected section
PM / OPP: Reword binding supporting multiple regulators per device
PM / OPP: Fix incorrect cpu-supply property in binding
cpuidle: Add a kerneldoc comment to cpuidle_use_deepest_state()
..
Merge updates from Andrew Morton:
- various misc bits
- most of MM (quite a lot of MM material is awaiting the merge of
linux-next dependencies)
- kasan
- printk updates
- procfs updates
- MAINTAINERS
- /lib updates
- checkpatch updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
init: reduce rootwait polling interval time to 5ms
binfmt_elf: use vmalloc() for allocation of vma_filesz
checkpatch: don't emit unified-diff error for rename-only patches
checkpatch: don't check c99 types like uint8_t under tools
checkpatch: avoid multiple line dereferences
checkpatch: don't check .pl files, improve absolute path commit log test
scripts/checkpatch.pl: fix spelling
checkpatch: don't try to get maintained status when --no-tree is given
lib/ida: document locking requirements a bit better
lib/rbtree.c: fix typo in comment of ____rb_erase_color
lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
MAINTAINERS: add drm and drm/i915 irc channels
MAINTAINERS: add "C:" for URI for chat where developers hang out
MAINTAINERS: add drm and drm/i915 bug filing info
MAINTAINERS: add "B:" for URI where to file bugs
get_maintainer: look for arbitrary letter prefixes in sections
printk: add Kconfig option to set default console loglevel
printk/sound: handle more message headers
printk/btrfs: handle more message headers
printk/kdb: handle more message headers
...
Pull timer updates from Thomas Gleixner:
"The time/timekeeping/timer folks deliver with this update:
- Fix a reintroduced signed/unsigned issue and cleanup the whole
signed/unsigned mess in the timekeeping core so this wont happen
accidentaly again.
- Add a new trace clock based on boot time
- Prevent injection of random sleep times when PM tracing abuses the
RTC for storage
- Make posix timers configurable for real tiny systems
- Add tracepoints for the alarm timer subsystem so timer based
suspend wakeups can be instrumented
- The usual pile of fixes and updates to core and drivers"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
timekeeping: Use mul_u64_u32_shr() instead of open coding it
timekeeping: Get rid of pointless typecasts
timekeeping: Make the conversion call chain consistently unsigned
timekeeping_Force_unsigned_clocksource_to_nanoseconds_conversion
alarmtimer: Add tracepoints for alarm timers
trace: Update documentation for mono, mono_raw and boot clock
trace: Add an option for boot clock as trace clock
timekeeping: Add a fast and NMI safe boot clock
timekeeping/clocksource_cyc2ns: Document intended range limitation
timekeeping: Ignore the bogus sleep time if pm_trace is enabled
selftests/timers: Fix spelling mistake "Asyncrhonous" -> "Asynchronous"
clocksource/drivers/bcm2835_timer: Unmap region obtained by of_iomap
clocksource/drivers/arm_arch_timer: Map frame with of_io_request_and_map()
arm64: dts: rockchip: Arch counter doesn't tick in system suspend
clocksource/drivers/arm_arch_timer: Don't assume clock runs in suspend
posix-timers: Make them configurable
posix_cpu_timers: Move the add_device_randomness() call to a proper place
timer: Move sys_alarm from timer.c to itimer.c
ptp_clock: Allow for it to be optional
Kconfig: Regenerate *.c_shipped files after previous changes
...
vfree() is going to use sleeping lock. Thread stack freed in atomic
context, therefore we must use vfree_atomic() here.
Link: http://lkml.kernel.org/r/1479474236-4139-6-git-send-email-hch@lst.de
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Jisheng Zhang <jszhang@marvell.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 23196f2e5f "kthread: Pin the stack via try_get_task_stack() /
put_task_stack() in to_live_kthread() function" is a workaround for the
fragile design of struct kthread being allocated on the task stack.
struct kthread in its current form should be removed, but this needs
cleanups outside of kthread.c.
As a first step move struct kthread away from the task stack by making it
kmalloc'ed. This allows to access kthread.exited without the magic of
trying to pin task stack and the try logic in to_live_kthread().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chunming Zhou <David1.Zhou@amd.com>
Cc: Roman Pen <roman.penyaev@profitbricks.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20161129175057.GA5330@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Idle injection drivers such as Intel powerclamp and ACPI PAD drivers use
realtime tasks to take control of CPU then inject idle. There are two
issues with this approach:
1. Low efficiency: injected idle task is treated as busy so sched ticks
do not stop during injected idle period, the result of these
unwanted wakeups can be ~20% loss in power savings.
2. Idle accounting: injected idle time is presented to user as busy.
This patch addresses the issues by introducing a new PF_IDLE flag which
allows any given task to be treated as idle task while the flag is set.
Therefore, idle injection tasks can run through the normal flow of NOHZ
idle enter/exit to get the correct accounting as well as tick stop when
possible.
The implication is that idle task is then no longer limited to PID == 0.
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During exec dumpable is cleared if the file that is being executed is
not readable by the user executing the file. A bug in
ptrace_may_access allows reading the file if the executable happens to
enter into a subordinate user namespace (aka clone(CLONE_NEWUSER),
unshare(CLONE_NEWUSER), or setns(fd, CLONE_NEWUSER).
This problem is fixed with only necessary userspace breakage by adding
a user namespace owner to mm_struct, captured at the time of exec, so
it is clear in which user namespace CAP_SYS_PTRACE must be present in
to be able to safely give read permission to the executable.
The function ptrace_may_access is modified to verify that the ptracer
has CAP_SYS_ADMIN in task->mm->user_ns instead of task->cred->user_ns.
This ensures that if the task changes it's cred into a subordinate
user namespace it does not become ptraceable.
The function ptrace_attach is modified to only set PT_PTRACE_CAP when
CAP_SYS_PTRACE is held over task->mm->user_ns. The intent of
PT_PTRACE_CAP is to be a flag to note that whatever permission changes
the task might go through the tracer has sufficient permissions for
it not to be an issue. task->cred->user_ns is always the same
as or descendent of mm->user_ns. Which guarantees that having
CAP_SYS_PTRACE over mm->user_ns is the worst case for the tasks
credentials.
To prevent regressions mm->dumpable and mm->user_ns are not considered
when a task has no mm. As simply failing ptrace_may_attach causes
regressions in privileged applications attempting to read things
such as /proc/<pid>/stat
Cc: stable@vger.kernel.org
Acked-by: Kees Cook <keescook@chromium.org>
Tested-by: Cyrill Gorcunov <gorcunov@openvz.org>
Fixes: 8409cca705 ("userns: allow ptrace from non-init user namespaces")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Some embedded systems have no use for them. This removes about
25KB from the kernel binary size when configured out.
Corresponding syscalls are routed to a stub logging the attempt to
use those syscalls which should be enough of a clue if they were
disabled without proper consideration. They are: timer_create,
timer_gettime: timer_getoverrun, timer_settime, timer_delete,
clock_adjtime, setitimer, getitimer, alarm.
The clock_settime, clock_gettime, clock_getres and clock_nanosleep
syscalls are replaced by simple wrappers compatible with CLOCK_REALTIME,
CLOCK_MONOTONIC and CLOCK_BOOTTIME only which should cover the vast
majority of use cases with very little code.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: Paul Bolle <pebolle@tiscali.nl>
Cc: linux-kbuild@vger.kernel.org
Cc: netdev@vger.kernel.org
Cc: Michal Marek <mmarek@suse.com>
Cc: Edward Cree <ecree@solarflare.com>
Link: http://lkml.kernel.org/r/1478841010-28605-7-git-send-email-nicolas.pitre@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Only s390 and powerpc have hardware facilities allowing to measure
cputimes scaled by frequency. On all other architectures
utimescaled/stimescaled are equal to utime/stime (however they are
accounted separately).
Remove {u,s}timescaled accounting on all architectures except
powerpc and s390, where those values are explicitly accounted
in the proper places.
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161031162143.GB12646@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If something goes wrong with task stack refcounting and a stack
refcount hits zero too early, warn and leak it rather than
potentially freeing it early (and silently).
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f29119c783a9680a4b4656e751b6123917ace94b.1477926663.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJX/BAFAAoJEIly9N/cbcAmzW8QALFbCs7EFFkML+M/M/9d8zEk
1QbUs/z8covJTTT1PjSdw7JUrAMulI3S00owpcQVd/PcWjRPU80QwfsXBgIB0tvC
Kub2qxn6Oaf+kTB646zwjFgjdCecw/USJP+90nfcu2+LCnE8ReclKd1aUee+Bnhm
iDEUyH2ONIoWq6ta2Z9sA7+E4y2ZgOlmW0iga3Mnf+OcPtLE70fWPoe5E4g9DpYk
B+kiPDrD9ql5zsHaEnKG1ldjiAZ1L6Grk8rGgLEXmbOWtTOFmnUhR+raK5NA/RCw
MXNuyPay5aYPpqDHFm+OuaWQAiPWfPNWM3Ett4k0d9ZWLixTcD1z68AciExwk7aW
SEA8b1Jwbg05ZNYM7NJB6t6suKC4dGPxWzKFOhmBicsh2Ni5f+Az0BQL6q8/V8/4
8UEqDLuFlPJBB50A3z5ngCVeYJKZe8Bg/Swb4zXl6mIzZ9darLzXDEV6ystfPXxJ
e1AdBb41WC+O2SAI4l64yyeswkGo3Iw2oMbXG5jmFl6wY/xGp7dWxw7gfnhC6oOh
afOT54p2OUDfSAbJaO0IHliWoIdmE5ZYdVYVU9Ek+uWyaIwcXhNmqRg+Uqmo32jf
cP5J9x2kF3RdOcbSHXmFp++fU+wkhBtEcjkNpvkjpi4xyA47IWS7lrVBBebrCq9R
pa/A7CNQwibIV6YD8+/p
=1dUK
-----END PGP SIGNATURE-----
Merge tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull gcc plugins update from Kees Cook:
"This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot
time as possible, hoping to capitalize on any possible variation in
CPU operation (due to runtime data differences, hardware differences,
SMP ordering, thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example
for how to manipulate kernel code using the gcc plugin internals"
* tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
latent_entropy: Mark functions with __latent_entropy
gcc-plugins: Add latent_entropy plugin
The __latent_entropy gcc attribute can be used only on functions and
variables. If it is on a function then the plugin will instrument it for
gathering control-flow entropy. If the attribute is on a variable then
the plugin will initialize it with random contents. The variable must
be an integer, an integer array type or a structure with integer fields.
These specific functions have been selected because they are init
functions (to help gather boot-time entropy), are called at unpredictable
times, or they have variable loops, each of which provide some level of
latent entropy.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
The need for very-early boot entropy tends to be very architecture or
system design specific, so this plugin is more suited for those sorts
of special cases. The existing kernel RNG already attempts to extract
entropy from reliable runtime variation, but this plugin takes the idea to
a logical extreme by permuting a global variable based on any variation
in code execution (e.g. a different value (and permutation function)
is used to permute the global based on loop count, case statement,
if/then/else branching, etc).
To do this, the plugin starts by inserting a local variable in every
marked function. The plugin then adds logic so that the value of this
variable is modified by randomly chosen operations (add, xor and rol) and
random values (gcc generates separate static values for each location at
compile time and also injects the stack pointer at runtime). The resulting
value depends on the control flow path (e.g., loops and branches taken).
Before the function returns, the plugin mixes this local variable into
the latent_entropy global variable. The value of this global variable
is added to the kernel entropy pool in do_one_initcall() and _do_fork(),
though it does not credit any bytes of entropy to the pool; the contents
of the global are just used to mix the pool.
Additionally, the plugin can pre-initialize arrays with build-time
random contents, so that two different kernel builds running on identical
hardware will not have the same starting values.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message and code comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
The global zero page is used to satisfy an anonymous read fault. If
THP(Transparent HugePage) is enabled then the global huge zero page is
used. The global huge zero page uses an atomic counter for reference
counting and is allocated/freed dynamically according to its counter
value.
CPU time spent on that counter will greatly increase if there are a lot
of processes doing anonymous read faults. This patch proposes a way to
reduce the access to the global counter so that the CPU load can be
reduced accordingly.
To do this, a new flag of the mm_struct is introduced:
MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch
the global counter in two cases:
1 The first time it uses the global huge zero page;
2 The time when mm_user of its mm_struct reaches zero.
Note that right now, the huge zero page is eligible to be freed as soon
as its last use goes away. With this patch, the page will not be
eligible to be freed until the exit of the last process from which it
was ever used.
And with the use of mm_user, the kthread is not eligible to use huge
zero page either. Since no kthread is using huge zero page today, there
is no difference after applying this patch. But if that is not desired,
I can change it to when mm_count reaches zero.
Case used for test on Haswell EP:
usemem -n 72 --readonly -j 0x200000 100G
Which spawns 72 processes and each will mmap 100G anonymous space and
then do read only access to that space sequentially with a step of 2MB.
CPU cycles from perf report for base commit:
54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page
CPU cycles from perf report for this commit:
0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page
Performance(throughput) of the workload for base commit: 1784430792
Performance(throughput) of the workload for this commit: 4726928591
164% increase.
Runtime of the workload for base commit: 707592 us
Runtime of the workload for this commit: 303970 us
50% drop.
Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After "oom: keep mm of the killed task available" we can safely detect
an oom victim by checking task->signal->oom_mm so we do not need the
signal_struct counter anymore so let's get rid of it.
This alone wouldn't be sufficient for nommu archs because
exit_oom_victim doesn't hide the process from the oom killer anymore.
We can, however, mark the mm with a MMF flag in __mmput. We can reuse
MMF_OOM_REAPED and rename it to a more generic MMF_OOM_SKIP.
Link: http://lkml.kernel.org/r/1472119394-11342-6-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lockdep complains that __mmdrop is not safe from the softirq context:
=================================
[ INFO: inconsistent lock state ]
4.6.0-oomfortification2-00011-geeb3eadeab96-dirty #949 Tainted: G W
---------------------------------
inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
swapper/1/0 [HC0[0]:SC1[1]:HE1:SE0] takes:
(pgd_lock){+.?...}, at: pgd_free+0x19/0x6b
{SOFTIRQ-ON-W} state was registered at:
__lock_acquire+0xa06/0x196e
lock_acquire+0x139/0x1e1
_raw_spin_lock+0x32/0x41
__change_page_attr_set_clr+0x2a5/0xacd
change_page_attr_set_clr+0x16f/0x32c
set_memory_nx+0x37/0x3a
free_init_pages+0x9e/0xc7
alternative_instructions+0xa2/0xb3
check_bugs+0xe/0x2d
start_kernel+0x3ce/0x3ea
x86_64_start_reservations+0x2a/0x2c
x86_64_start_kernel+0x17a/0x18d
irq event stamp: 105916
hardirqs last enabled at (105916): free_hot_cold_page+0x37e/0x390
hardirqs last disabled at (105915): free_hot_cold_page+0x2c1/0x390
softirqs last enabled at (105878): _local_bh_enable+0x42/0x44
softirqs last disabled at (105879): irq_exit+0x6f/0xd1
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(pgd_lock);
<Interrupt>
lock(pgd_lock);
*** DEADLOCK ***
1 lock held by swapper/1/0:
#0: (rcu_callback){......}, at: rcu_process_callbacks+0x390/0x800
stack backtrace:
CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 4.6.0-oomfortification2-00011-geeb3eadeab96-dirty #949
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Debian-1.8.2-1 04/01/2014
Call Trace:
<IRQ>
print_usage_bug.part.25+0x259/0x268
mark_lock+0x381/0x567
__lock_acquire+0x993/0x196e
lock_acquire+0x139/0x1e1
_raw_spin_lock+0x32/0x41
pgd_free+0x19/0x6b
__mmdrop+0x25/0xb9
__put_task_struct+0x103/0x11e
delayed_put_task_struct+0x157/0x15e
rcu_process_callbacks+0x660/0x800
__do_softirq+0x1ec/0x4d5
irq_exit+0x6f/0xd1
smp_apic_timer_interrupt+0x42/0x4d
apic_timer_interrupt+0x8e/0xa0
<EOI>
arch_cpu_idle+0xf/0x11
default_idle_call+0x32/0x34
cpu_startup_entry+0x20c/0x399
start_secondary+0xfe/0x101
More over commit a79e53d856 ("x86/mm: Fix pgd_lock deadlock") was
explicit about pgd_lock not to be called from the irq context. This
means that __mmdrop called from free_signal_struct has to be postponed
to a user context. We already have a similar mechanism for mmput_async
so we can use it here as well. This is safe because mm_count is pinned
by mm_users.
This fixes bug introduced by "oom: keep mm of the killed task available"
Link: http://lkml.kernel.org/r/1472119394-11342-5-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_reap_task has to call exit_oom_victim in order to make sure that the
oom vicim will not block the oom killer for ever. This is, however,
opening new problems (e.g oom_killer_disable exclusion - see commit
7407054209 ("oom, suspend: fix oom_reaper vs. oom_killer_disable
race")). exit_oom_victim should be only called from the victim's
context ideally.
One way to achieve this would be to rely on per mm_struct flags. We
already have MMF_OOM_REAPED to hide a task from the oom killer since
"mm, oom: hide mm which is shared with kthread or global init". The
problem is that the exit path:
do_exit
exit_mm
tsk->mm = NULL;
mmput
__mmput
exit_oom_victim
doesn't guarantee that exit_oom_victim will get called in a bounded
amount of time. At least exit_aio depends on IO which might get blocked
due to lack of memory and who knows what else is lurking there.
This patch takes a different approach. We remember tsk->mm into the
signal_struct and bind it to the signal struct life time for all oom
victims. __oom_reap_task_mm as well as oom_scan_process_thread do not
have to rely on find_lock_task_mm anymore and they will have a reliable
reference to the mm struct. As a result all the oom specific
communication inside the OOM killer can be done via tsk->signal->oom_mm.
Increasing the signal_struct for something as unlikely as the oom killer
is far from ideal but this approach will make the code much more
reasonable and long term we even might want to move task->mm into the
signal_struct anyway. In the next step we might want to make the oom
killer exclusion and access to memory reserves completely independent
which would be also nice.
Link: http://lkml.kernel.org/r/1472119394-11342-4-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull namespace updates from Eric Biederman:
"This set of changes is a number of smaller things that have been
overlooked in other development cycles focused on more fundamental
change. The devpts changes are small things that were a distraction
until we managed to kill off DEVPTS_MULTPLE_INSTANCES. There is an
trivial regression fix to autofs for the unprivileged mount changes
that went in last cycle. A pair of ioctls has been added by Andrey
Vagin making it is possible to discover the relationships between
namespaces when referring to them through file descriptors.
The big user visible change is starting to add simple resource limits
to catch programs that misbehave. With namespaces in general and user
namespaces in particular allowing users to use more kinds of
resources, it has become important to have something to limit errant
programs. Because the purpose of these limits is to catch errant
programs the code needs to be inexpensive to use as it always on, and
the default limits need to be high enough that well behaved programs
on well behaved systems don't encounter them.
To this end, after some review I have implemented per user per user
namespace limits, and use them to limit the number of namespaces. The
limits being per user mean that one user can not exhause the limits of
another user. The limits being per user namespace allow contexts where
the limit is 0 and security conscious folks can remove from their
threat anlysis the code used to manage namespaces (as they have
historically done as it root only). At the same time the limits being
per user namespace allow other parts of the system to use namespaces.
Namespaces are increasingly being used in application sand boxing
scenarios so an all or nothing disable for the entire system for the
security conscious folks makes increasing use of these sandboxes
impossible.
There is also added a limit on the maximum number of mounts present in
a single mount namespace. It is nontrivial to guess what a reasonable
system wide limit on the number of mount structure in the kernel would
be, especially as it various based on how a system is using
containers. A limit on the number of mounts in a mount namespace
however is much easier to understand and set. In most cases in
practice only about 1000 mounts are used. Given that some autofs
scenarious have the potential to be 30,000 to 50,000 mounts I have set
the default limit for the number of mounts at 100,000 which is well
above every known set of users but low enough that the mount hash
tables don't degrade unreaonsably.
These limits are a start. I expect this estabilishes a pattern that
other limits for resources that namespaces use will follow. There has
been interest in making inotify event limits per user per user
namespace as well as interest expressed in making details about what
is going on in the kernel more visible"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (28 commits)
autofs: Fix automounts by using current_real_cred()->uid
mnt: Add a per mount namespace limit on the number of mounts
netns: move {inc,dec}_net_namespaces into #ifdef
nsfs: Simplify __ns_get_path
tools/testing: add a test to check nsfs ioctl-s
nsfs: add ioctl to get a parent namespace
nsfs: add ioctl to get an owning user namespace for ns file descriptor
kernel: add a helper to get an owning user namespace for a namespace
devpts: Change the owner of /dev/pts/ptmx to the mounter of /dev/pts
devpts: Remove sync_filesystems
devpts: Make devpts_kill_sb safe if fsi is NULL
devpts: Simplify devpts_mount by using mount_nodev
devpts: Move the creation of /dev/pts/ptmx into fill_super
devpts: Move parse_mount_options into fill_super
userns: When the per user per user namespace limit is reached return ENOSPC
userns; Document per user per user namespace limits.
mntns: Add a limit on the number of mount namespaces.
netns: Add a limit on the number of net namespaces
cgroupns: Add a limit on the number of cgroup namespaces
ipcns: Add a limit on the number of ipc namespaces
...
vmalloc() is a bit slow, and pounding vmalloc()/vfree() will eventually
force a global TLB flush.
To reduce pressure on them, if CONFIG_VMAP_STACK=y, cache two thread
stacks per CPU. This will let us quickly allocate a hopefully
cache-hot, TLB-hot stack under heavy forking workloads (shell script style).
On my silly pthread_create() benchmark, it saves about 2 µs per
pthread_create()+join() with CONFIG_VMAP_STACK=y.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/94811d8e3994b2e962f88866290017d498eb069c.1474003868.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We currently keep every task's stack around until the task_struct
itself is freed. This means that we keep the stack allocation alive
for longer than necessary and that, under load, we free stacks in
big batches whenever RCU drops the last task reference. Neither of
these is good for reuse of cache-hot memory, and freeing in batches
prevents us from usefully caching small numbers of vmalloced stacks.
On architectures that have thread_info on the stack, we can't easily
change this, but on architectures that set THREAD_INFO_IN_TASK, we
can free it as soon as the task is dead.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/08ca06cde00ebed0046c5d26cbbf3fbb7ef5b812.1474003868.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge fixes from Andrew Morton:
"14 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
rapidio/tsi721: fix incorrect detection of address translation condition
rapidio/documentation/mport_cdev: add missing parameter description
kernel/fork: fix CLONE_CHILD_CLEARTID regression in nscd
MAINTAINERS: Vladimir has moved
mm, mempolicy: task->mempolicy must be NULL before dropping final reference
printk/nmi: avoid direct printk()-s from __printk_nmi_flush()
treewide: remove references to the now unnecessary DEFINE_PCI_DEVICE_TABLE
drivers/scsi/wd719x.c: remove last declaration using DEFINE_PCI_DEVICE_TABLE
mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator
lib/test_hash.c: fix warning in preprocessor symbol evaluation
lib/test_hash.c: fix warning in two-dimensional array init
kconfig: tinyconfig: provide whole choice blocks to avoid warnings
kexec: fix double-free when failing to relocate the purgatory
mm, oom: prevent premature OOM killer invocation for high order request
Commit fec1d01152 ("[PATCH] Disable CLONE_CHILD_CLEARTID for abnormal
exit") has caused a subtle regression in nscd which uses
CLONE_CHILD_CLEARTID to clear the nscd_certainly_running flag in the
shared databases, so that the clients are notified when nscd is
restarted. Now, when nscd uses a non-persistent database, clients that
have it mapped keep thinking the database is being updated by nscd, when
in fact nscd has created a new (anonymous) one (for non-persistent
databases it uses an unlinked file as backend).
The original proposal for the CLONE_CHILD_CLEARTID change claimed
(https://lkml.org/lkml/2006/10/25/233):
: The NPTL library uses the CLONE_CHILD_CLEARTID flag on clone() syscalls
: on behalf of pthread_create() library calls. This feature is used to
: request that the kernel clear the thread-id in user space (at an address
: provided in the syscall) when the thread disassociates itself from the
: address space, which is done in mm_release().
:
: Unfortunately, when a multi-threaded process incurs a core dump (such as
: from a SIGSEGV), the core-dumping thread sends SIGKILL signals to all of
: the other threads, which then proceed to clear their user-space tids
: before synchronizing in exit_mm() with the start of core dumping. This
: misrepresents the state of process's address space at the time of the
: SIGSEGV and makes it more difficult for someone to debug NPTL and glibc
: problems (misleading him/her to conclude that the threads had gone away
: before the fault).
:
: The fix below is to simply avoid the CLONE_CHILD_CLEARTID action if a
: core dump has been initiated.
The resulting patch from Roland (https://lkml.org/lkml/2006/10/26/269)
seems to have a larger scope than the original patch asked for. It
seems that limitting the scope of the check to core dumping should work
for SIGSEGV issue describe above.
[Changelog partly based on Andreas' description]
Fixes: fec1d01152 ("[PATCH] Disable CLONE_CHILD_CLEARTID for abnormal exit")
Link: http://lkml.kernel.org/r/1471968749-26173-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: William Preston <wpreston@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Andreas Schwab <schwab@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull audit fixes from Paul Moore:
"Two small patches to fix some bugs with the audit-by-executable
functionality we introduced back in v4.3 (both patches are marked
for the stable folks)"
* 'stable-4.8' of git://git.infradead.org/users/pcmoore/audit:
audit: fix exe_file access in audit_exe_compare
mm: introduce get_task_exe_file
For more convenient access if one has a pointer to the task.
As a minor nit take advantage of the fact that only task lock + rcu are
needed to safely grab ->exe_file. This saves mm refcount dance.
Use the helper in proc_exe_link.
Signed-off-by: Mateusz Guzik <mguzik@redhat.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Richard Guy Briggs <rgb@redhat.com>
Cc: <stable@vger.kernel.org> # 4.3.x
Signed-off-by: Paul Moore <paul@paul-moore.com>
If CONFIG_VMAP_STACK=y is selected, kernel stacks are allocated with
__vmalloc_node_range().
Grsecurity has had a similar feature (called GRKERNSEC_KSTACKOVERFLOW=y)
for a long time.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/14c07d4fd173a5b117f51e8b939f9f4323e39899.1470907718.git.luto@kernel.org
[ Minor edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup_threadgroup_rwsem is acquired in read mode during process exit
and fork. It is also grabbed in write mode during
__cgroups_proc_write(). I've recently run into a scenario with lots
of memory pressure and OOM and I am beginning to see
systemd
__switch_to+0x1f8/0x350
__schedule+0x30c/0x990
schedule+0x48/0xc0
percpu_down_write+0x114/0x170
__cgroup_procs_write.isra.12+0xb8/0x3c0
cgroup_file_write+0x74/0x1a0
kernfs_fop_write+0x188/0x200
__vfs_write+0x6c/0xe0
vfs_write+0xc0/0x230
SyS_write+0x6c/0x110
system_call+0x38/0xb4
This thread is waiting on the reader of cgroup_threadgroup_rwsem to
exit. The reader itself is under memory pressure and has gone into
reclaim after fork. There are times the reader also ends up waiting on
oom_lock as well.
__switch_to+0x1f8/0x350
__schedule+0x30c/0x990
schedule+0x48/0xc0
jbd2_log_wait_commit+0xd4/0x180
ext4_evict_inode+0x88/0x5c0
evict+0xf8/0x2a0
dispose_list+0x50/0x80
prune_icache_sb+0x6c/0x90
super_cache_scan+0x190/0x210
shrink_slab.part.15+0x22c/0x4c0
shrink_zone+0x288/0x3c0
do_try_to_free_pages+0x1dc/0x590
try_to_free_pages+0xdc/0x260
__alloc_pages_nodemask+0x72c/0xc90
alloc_pages_current+0xb4/0x1a0
page_table_alloc+0xc0/0x170
__pte_alloc+0x58/0x1f0
copy_page_range+0x4ec/0x950
copy_process.isra.5+0x15a0/0x1870
_do_fork+0xa8/0x4b0
ppc_clone+0x8/0xc
In the meanwhile, all processes exiting/forking are blocked almost
stalling the system.
This patch moves the threadgroup_change_begin from before
cgroup_fork() to just before cgroup_canfork(). There is no nee to
worry about threadgroup changes till the task is actually added to the
threadgroup. This avoids having to call reclaim with
cgroup_threadgroup_rwsem held.
tj: Subject and description edits.
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org # v4.2+
Signed-off-by: Tejun Heo <tj@kernel.org>
The same kind of recursive sane default limit and policy
countrol that has been implemented for the user namespace
is desirable for the other namespaces, so generalize
the user namespace refernce count into a ucount.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Add a structure that is per user and per user ns and use it to hold
the count of user namespaces. This makes prevents one user from
creating denying service to another user by creating the maximum
number of user namespaces.
Rename the sysctl export of the maximum count from
/proc/sys/userns/max_user_namespaces to /proc/sys/user/max_user_namespaces
to reflect that the count is now per user.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Export the export the maximum number of user namespaces as
/proc/sys/userns/max_user_namespaces.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
We should account for stacks regardless of stack size, and we need to
account in sub-page units if THREAD_SIZE < PAGE_SIZE. Change the units
to kilobytes and Move it into account_kernel_stack().
Fixes: 12580e4b54 ("mm: memcontrol: report kernel stack usage in cgroup2 memory.stat")
Link: http://lkml.kernel.org/r/9b5314e3ee5eda61b0317ec1563768602c1ef438.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, NR_KERNEL_STACK tracks the number of kernel stacks in a zone.
This only makes sense if each kernel stack exists entirely in one zone,
and allowing vmapped stacks could break this assumption.
Since frv has THREAD_SIZE < PAGE_SIZE, we need to track kernel stack
allocations in a unit that divides both THREAD_SIZE and PAGE_SIZE on all
architectures. Keep it simple and use KiB.
Link: http://lkml.kernel.org/r/083c71e642c5fa5f1b6898902e1b2db7b48940d4.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, to charge a non-slab allocation to kmemcg one has to use
alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with
this helper should finally be freed using free_kmem_pages, otherwise it
won't be uncharged.
This API suits its current users fine, but it turns out to be impossible
to use along with page reference counting, i.e. when an allocation is
supposed to be freed with put_page, as it is the case with pipe or unix
socket buffers.
To overcome this limitation, this patch moves charging/uncharging to
generic page allocator paths, i.e. to __alloc_pages_nodemask and
free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way,
one can use any of the available page allocation functions to get the
allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT,
just like in case of kmalloc and friends. A charged page will be
automatically uncharged on free.
To make it possible, we need to mark pages charged to kmemcg somehow.
To avoid introducing a new page flag, we make use of page->_mapcount for
marking such pages. Since pages charged to kmemcg are not supposed to
be mapped to userspace, it should work just fine. There are other
(ab)users of page->_mapcount - buddy and balloon pages - but we don't
conflict with them.
In case kmemcg is compiled out or not used at runtime, this patch
introduces no overhead to generic page allocator paths. If kmemcg is
used, it will be plus one gfp flags check on alloc and plus one
page->_mapcount check on free, which shouldn't hurt performance, because
the data accessed are hot.
Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b235beea9e ("Clarify naming of thread info/stack allocators")
breaks the build on some powerpc configs, where THREAD_SIZE < PAGE_SIZE:
kernel/fork.c:235:2: error: implicit declaration of function 'free_thread_stack'
kernel/fork.c:355:8: error: assignment from incompatible pointer type
stack = alloc_thread_stack_node(tsk, node);
^
Fix it by renaming free_stack() to free_thread_stack(), and updating the
return type of alloc_thread_stack_node().
Fixes: b235beea9e ("Clarify naming of thread info/stack allocators")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We've had the thread info allocated together with the thread stack for
most architectures for a long time (since the thread_info was split off
from the task struct), but that is about to change.
But the patches that move the thread info to be off-stack (and a part of
the task struct instead) made it clear how confused the allocator and
freeing functions are.
Because the common case was that we share an allocation with the thread
stack and the thread_info, the two pointers were identical. That
identity then meant that we would have things like
ti = alloc_thread_info_node(tsk, node);
...
tsk->stack = ti;
which certainly _worked_ (since stack and thread_info have the same
value), but is rather confusing: why are we assigning a thread_info to
the stack? And if we move the thread_info away, the "confusing" code
just gets to be entirely bogus.
So remove all this confusion, and make it clear that we are doing the
stack allocation by renaming and clarifying the function names to be
about the stack. The fact that the thread_info then shares the
allocation is an implementation detail, and not really about the
allocation itself.
This is a pure renaming and type fix: we pass in the same pointer, it's
just that we clarify what the pointer means.
The ia64 code that actually only has one single allocation (for all of
task_struct, thread_info and kernel thread stack) now looks a bit odd,
but since "tsk->stack" is actually not even used there, that oddity
doesn't matter. It would be a separate thing to clean that up, I
intentionally left the ia64 changes as a pure brute-force renaming and
type change.
Acked-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mmput_async is currently used only from the oom_reaper which is defined
only for CONFIG_MMU. We can save work_struct in mm_struct for
!CONFIG_MMU.
[akpm@linux-foundation.org: fix typo, per Minchan]
Link: http://lkml.kernel.org/r/20160520061658.GB19172@dhcp22.suse.cz
Reported-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dup_mmap needs to lock current's mm mmap_sem for write. If the waiting
task gets killed by the oom killer it would block oom_reaper from
asynchronous address space reclaim and reduce the chances of timely OOM
resolving. Wait for the lock in the killable mode and return with EINTR
if the task got killed while waiting.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linux preallocates the task structs of the idle tasks for all possible
CPUs. This currently means they all end up on node 0. This also
implies that the cache line of MWAIT, which is around the flags field in
the task struct, are all located in node 0.
We see a noticeable performance improvement on Knights Landing CPUs when
the cache lines used for MWAIT are located in the local nodes of the
CPUs using them. I would expect this to give a (likely slight)
improvement on other systems too.
The patch implements placing the idle task in the node of its CPUs, by
passing the right target node to copy_process()
[akpm@linux-foundation.org: use NUMA_NO_NODE, not a bare -1]
Link: http://lkml.kernel.org/r/1463492694-15833-1-git-send-email-andi@firstfloor.org
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo has properly noted that mmput slow path might get blocked waiting
for another party (e.g. exit_aio waits for an IO). If that happens the
oom_reaper would be put out of the way and will not be able to process
next oom victim. We should strive for making this context as reliable
and independent on other subsystems as much as possible.
Introduce mmput_async which will perform the slow path from an async
(WQ) context. This will delay the operation but that shouldn't be a
problem because the oom_reaper has reclaimed the victim's address space
for most cases as much as possible and the remaining context shouldn't
bind too much memory anymore. The only exception is when mmap_sem
trylock has failed which shouldn't happen too often.
The issue is only theoretical but not impossible.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch implements the SS_AUTODISARM flag that can be OR-ed with
SS_ONSTACK when forming ss_flags.
When this flag is set, sigaltstack will be disabled when entering
the signal handler; more precisely, after saving sas to uc_stack.
When leaving the signal handler, the sigaltstack is restored by
uc_stack.
When this flag is used, it is safe to switch from sighandler with
swapcontext(). Without this flag, the subsequent signal will corrupt
the state of the switched-away sighandler.
To detect the support of this functionality, one can do:
err = sigaltstack(SS_DISABLE | SS_AUTODISARM);
if (err && errno == EINVAL)
unsupported();
Signed-off-by: Stas Sergeev <stsp@list.ru>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Amanieu d'Antras <amanieu@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Jason Low <jason.low2@hp.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Moore <pmoore@redhat.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: linux-api@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1460665206-13646-4-git-send-email-stsp@list.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup namespace support from Tejun Heo:
"These are changes to implement namespace support for cgroup which has
been pending for quite some time now. It is very straight-forward and
only affects what part of cgroup hierarchies are visible.
After unsharing, mounting a cgroup fs will be scoped to the cgroups
the task belonged to at the time of unsharing and the cgroup paths
exposed to userland would be adjusted accordingly"
* 'for-4.6-ns' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: fix and restructure error handling in copy_cgroup_ns()
cgroup: fix alloc_cgroup_ns() error handling in copy_cgroup_ns()
Add FS_USERNS_FLAG to cgroup fs
cgroup: Add documentation for cgroup namespaces
cgroup: mount cgroupns-root when inside non-init cgroupns
kernfs: define kernfs_node_dentry
cgroup: cgroup namespace setns support
cgroup: introduce cgroup namespaces
sched: new clone flag CLONE_NEWCGROUP for cgroup namespace
kernfs: Add API to generate relative kernfs path
Show how much memory is allocated to kernel stacks.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce the ability to create new cgroup namespace. The newly created
cgroup namespace remembers the cgroup of the process at the point
of creation of the cgroup namespace (referred as cgroupns-root).
The main purpose of cgroup namespace is to virtualize the contents
of /proc/self/cgroup file. Processes inside a cgroup namespace
are only able to see paths relative to their namespace root
(unless they are moved outside of their cgroupns-root, at which point
they will see a relative path from their cgroupns-root).
For a correctly setup container this enables container-tools
(like libcontainer, lxc, lmctfy, etc.) to create completely virtualized
containers without leaking system level cgroup hierarchy to the task.
This patch only implements the 'unshare' part of the cgroupns.
Signed-off-by: Aditya Kali <adityakali@google.com>
Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When inspecting a vague code inside prctl(PR_SET_MM_MEM) call (which
testing the RLIMIT_DATA value to figure out if we're allowed to assign
new @start_brk, @brk, @start_data, @end_data from mm_struct) it's been
commited that RLIMIT_DATA in a form it's implemented now doesn't do
anything useful because most of user-space libraries use mmap() syscall
for dynamic memory allocations.
Linus suggested to convert RLIMIT_DATA rlimit into something suitable
for anonymous memory accounting. But in this patch we go further, and
the changes are bundled together as:
* keep vma counting if CONFIG_PROC_FS=n, will be used for limits
* replace mm->shared_vm with better defined mm->data_vm
* account anonymous executable areas as executable
* account file-backed growsdown/up areas as stack
* drop struct file* argument from vm_stat_account
* enforce RLIMIT_DATA for size of data areas
This way code looks cleaner: now code/stack/data classification depends
only on vm_flags state:
VM_EXEC & ~VM_WRITE -> code (VmExe + VmLib in proc)
VM_GROWSUP | VM_GROWSDOWN -> stack (VmStk)
VM_WRITE & ~VM_SHARED & !stack -> data (VmData)
The rest (VmSize - VmData - VmStk - VmExe - VmLib) could be called
"shared", but that might be strange beast like readonly-private or VM_IO
area.
- RLIMIT_AS limits whole address space "VmSize"
- RLIMIT_STACK limits stack "VmStk" (but each vma individually)
- RLIMIT_DATA now limits "VmData"
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Kees Cook <keescook@google.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg. For the list, see below:
- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems. This is the most tedious part, because
most filesystems overwrite the alloc_inode method.
The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds. Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
- cgroup v2 interface is now official. It's no longer hidden behind a
devel flag and can be mounted using the new cgroup2 fs type.
Unfortunately, cpu v2 interface hasn't made it yet due to the
discussion around in-process hierarchical resource distribution and
only memory and io controllers can be used on the v2 interface at the
moment.
- The existing documentation which has always been a bit of mess is
relocated under Documentation/cgroup-v1/. Documentation/cgroup-v2.txt
is added as the authoritative documentation for the v2 interface.
- Some features are added through for-4.5-ancestor-test branch to
enable netfilter xt_cgroup match to use cgroup v2 paths. The actual
netfilter changes will be merged through the net tree which pulled in
the said branch.
- Various cleanups
* 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: rename cgroup documentations
cgroup: fix a typo.
cgroup: Remove resource_counter.txt in Documentation/cgroup-legacy/00-INDEX.
cgroup: demote subsystem init messages to KERN_DEBUG
cgroup: Fix uninitialized variable warning
cgroup: put controller Kconfig options in meaningful order
cgroup: clean up the kernel configuration menu nomenclature
cgroup_pids: fix a typo.
Subject: cgroup: Fix incomplete dd command in blkio documentation
cgroup: kill cgrp_ss_priv[CGROUP_CANFORK_COUNT] and friends
cpuset: Replace all instances of time_t with time64_t
cgroup: replace unified-hierarchy.txt with a proper cgroup v2 documentation
cgroup: rename Documentation/cgroups/ to Documentation/cgroup-legacy/
cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type
In the following commit:
7675104990 ("sched: Implement lockless wake-queues")
we gained lockless wake-queues.
The -RT kernel managed to lockup itself with those. There could be multiple
attempts for task X to enqueue it for a wakeup _even_ if task X is already
running.
The reason is that task X could be runnable but not yet on CPU. The the
task performing the wakeup did not leave the CPU it could performe
multiple wakeups.
With the proper timming task X could be running and enqueued for a
wakeup. If this happens while X is performing a fork() then its its
child will have a !NULL `wake_q` member copied.
This is not a problem as long as the child task does not participate in
lockless wakeups :)
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 7675104990 ("sched: Implement lockless wake-queues")
Link: http://lkml.kernel.org/r/20151221171710.GA5499@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cputime can only be updated by the current task itself, even in
vtime case. So we can safely use seqcount instead of seqlock as there
is no writer concurrency involved.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-8-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
VTIME_SLEEPING state happens either when:
1) The task is sleeping and no tickless delta is to be added on the task
cputime stats.
2) The CPU isn't running vtime at all, so the same properties of 1) applies.
Lets rename the vtime symbol to reflect both states.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that nobody use the "priv" arg passed to can_fork/cancel_fork/fork we can
kill CGROUP_CANFORK_COUNT/SUBSYS_TAG/etc and cgrp_ss_priv[] in copy_process().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
If the new child migrates to another cgroup before cgroup_post_fork() calls
subsys->fork(), then both pids_can_attach() and pids_fork() will do the same
pids_uncharge(old_pids) + pids_charge(pids) sequence twice.
Change copy_process() to call threadgroup_change_begin/threadgroup_change_end
unconditionally. percpu_down_read() is cheap and this allows other cleanups,
see the next changes.
Also, this way we can unify cgroup_threadgroup_rwsem and dup_mmap_sem.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Merge patch-bomb from Andrew Morton:
- inotify tweaks
- some ocfs2 updates (many more are awaiting review)
- various misc bits
- kernel/watchdog.c updates
- Some of mm. I have a huge number of MM patches this time and quite a
lot of it is quite difficult and much will be held over to next time.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
selftests: vm: add tests for lock on fault
mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
mm: introduce VM_LOCKONFAULT
mm: mlock: add new mlock system call
mm: mlock: refactor mlock, munlock, and munlockall code
kasan: always taint kernel on report
mm, slub, kasan: enable user tracking by default with KASAN=y
kasan: use IS_ALIGNED in memory_is_poisoned_8()
kasan: Fix a type conversion error
lib: test_kasan: add some testcases
kasan: update reference to kasan prototype repo
kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
kasan: various fixes in documentation
kasan: update log messages
kasan: accurately determine the type of the bad access
kasan: update reported bug types for kernel memory accesses
kasan: update reported bug types for not user nor kernel memory accesses
mm/kasan: prevent deadlock in kasan reporting
mm/kasan: don't use kasan shadow pointer in generic functions
mm/kasan: MODULE_VADDR is not available on all archs
...
The cost of faulting in all memory to be locked can be very high when
working with large mappings. If only portions of the mapping will be used
this can incur a high penalty for locking.
For the example of a large file, this is the usage pattern for a large
statical language model (probably applies to other statical or graphical
models as well). For the security example, any application transacting in
data that cannot be swapped out (credit card data, medical records, etc).
This patch introduces the ability to request that pages are not
pre-faulted, but are placed on the unevictable LRU when they are finally
faulted in. The VM_LOCKONFAULT flag will be used together with VM_LOCKED
and has no effect when set without VM_LOCKED. Setting the VM_LOCKONFAULT
flag for a VMA will cause pages faulted into that VMA to be added to the
unevictable LRU when they are faulted or if they are already present, but
will not cause any missing pages to be faulted in.
Exposing this new lock state means that we cannot overload the meaning of
the FOLL_POPULATE flag any longer. Prior to this patch it was used to
mean that the VMA for a fault was locked. This means we need the new
FOLL_MLOCK flag to communicate the locked state of a VMA. FOLL_POPULATE
will now only control if the VMA should be populated and in the case of
VM_LOCKONFAULT, it will not be set.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
cgroup_exit() is called when a task exits and disassociates the
exiting task from its cgroups and half-attach it to the root cgroup.
This is unnecessary and undesirable.
No controller actually needs an exiting task to be disassociated with
non-root cgroups. Both cpu and perf_event controllers update the
association to the root cgroup from their exit callbacks just to keep
consistent with the cgroup core behavior.
Also, this disassociation makes it difficult to track resources held
by zombies or determine where the zombies came from. Currently, pids
controller is completely broken as it uncharges on exit and zombies
always escape the resource restriction. With cgroup association being
reset on exit, fixing it is pretty painful.
There's no reason to reset cgroup membership on exit. The zombie can
be removed from its css_set so that it doesn't show up on
"cgroup.procs" and thus can't be migrated or interfere with cgroup
removal. It can still pin and point to the css_set so that its cgroup
membership is maintained. This patch makes cgroup core keep zombies
associated with their cgroups at the time of exit.
* Previous patches decoupled populated_cnt tracking from css_set
lifetime, so a dying task can be simply unlinked from its css_set
while pinning and pointing to the css_set. This keeps css_set
association from task side alive while hiding it from "cgroup.procs"
and populated_cnt tracking. The css_set reference is dropped when
the task_struct is freed.
* ->exit() callback no longer needs the css arguments as the
associated css never changes once PF_EXITING is set. Removed.
* cpu and perf_events controllers no longer need ->exit() callbacks.
There's no reason to explicitly switch away on exit. The final
schedule out is enough. The callbacks are removed.
* On traditional hierarchies, nothing changes. "/proc/PID/cgroup"
still reports "/" for all zombies. On the default hierarchy,
"/proc/PID/cgroup" keeps reporting the cgroup that the task belonged
to at the time of exit. If the cgroup gets removed before the task
is reaped, " (deleted)" is appended.
v2: Build brekage due to missing dummy cgroup_free() when
!CONFIG_CGROUP fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
In the next patch in this series, a new field 'checking_timer' will
be added to 'struct thread_group_cputimer'. Both this and the
existing 'running' integer field are just used as boolean values. To
save space in the structure, we can make both of these fields booleans.
This is a preparatory patch to convert the existing running integer
field to a boolean.
Suggested-by: George Spelvin <linux@horizon.com>
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed: George Spelvin <linux@horizon.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: hideaki.kimura@hpe.com
Cc: terry.rudd@hpe.com
Cc: scott.norton@hpe.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1444849677-29330-4-git-send-email-jason.low2@hp.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Note: This commit was originally committed as d59cfc09c3 but got
reverted by 0c986253b9 due to the performance regression from
the percpu_rwsem write down/up operations added to cgroup task
migration path. percpu_rwsem changes which alleviate the
performance issue are pending for v4.4-rc1 merge window.
Re-apply.
The cgroup side of threadgroup locking uses signal_struct->group_rwsem
to synchronize against threadgroup changes. This per-process rwsem
adds small overhead to thread creation, exit and exec paths, forces
cgroup code paths to do lock-verify-unlock-retry dance in a couple
places and makes it impossible to atomically perform operations across
multiple processes.
This patch replaces signal_struct->group_rwsem with a global
percpu_rwsem cgroup_threadgroup_rwsem which is cheaper on the reader
side and contained in cgroups proper. This patch converts one-to-one.
This does make writer side heavier and lower the granularity; however,
cgroup process migration is a fairly cold path, we do want to optimize
thread operations over it and cgroup migration operations don't take
enough time for the lower granularity to matter.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/g/55F8097A.7000206@de.ibm.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
This reverts commit d59cfc09c3.
d59cfc09c3 ("sched, cgroup: replace signal_struct->group_rwsem with
a global percpu_rwsem") and b5ba75b5fc ("cgroup: simplify
threadgroup locking") changed how cgroup synchronizes against task
fork and exits so that it uses global percpu_rwsem instead of
per-process rwsem; unfortunately, the write [un]lock paths of
percpu_rwsem always involve synchronize_rcu_expedited() which turned
out to be too expensive.
Improvements for percpu_rwsem are scheduled to be merged in the coming
v4.4-rc1 merge window which alleviates this issue. For now, revert
the two commits to restore per-process rwsem. They will be re-applied
for the v4.4-rc1 merge window.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/g/55F8097A.7000206@de.ibm.com
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org # v4.2+
These two flags gets set in vma->vm_flags to tell the VM common code
if the userfaultfd is armed and in which mode (only tracking missing
faults, only tracking wrprotect faults or both). If neither flags is
set it means the userfaultfd is not armed on the vma.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the vm_userfaultfd_ctx to the vm_area_struct.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
- a new PIDs controller is added. It turns out that PIDs are actually
an independent resource from kmem due to the limited PID space.
- more core preparations for the v2 interface. Once cpu side interface
is settled, it should be ready for lifting the devel mask.
for-4.3-unified-base was temporarily branched so that other trees
(block) can pull cgroup core changes that blkcg changes depend on.
- a non-critical idr_preload usage bug fix.
* 'for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: pids: fix invalid get/put usage
cgroup: introduce cgroup_subsys->legacy_name
cgroup: don't print subsystems for the default hierarchy
cgroup: make cftype->private a unsigned long
cgroup: export cgrp_dfl_root
cgroup: define controller file conventions
cgroup: fix idr_preload usage
cgroup: add documentation for the PIDs controller
cgroup: implement the PIDs subsystem
cgroup: allow a cgroup subsystem to reject a fork
Pull user namespace updates from Eric Biederman:
"This finishes up the changes to ensure proc and sysfs do not start
implementing executable files, as the there are application today that
are only secure because such files do not exist.
It akso fixes a long standing misfeature of /proc/<pid>/mountinfo that
did not show the proper source for files bind mounted from
/proc/<pid>/ns/*.
It also straightens out the handling of clone flags related to user
namespaces, fixing an unnecessary failure of unshare(CLONE_NEWUSER)
when files such as /proc/<pid>/environ are read while <pid> is calling
unshare. This winds up fixing a minor bug in unshare flag handling
that dates back to the first version of unshare in the kernel.
Finally, this fixes a minor regression caused by the introduction of
sysfs_create_mount_point, which broke someone's in house application,
by restoring the size of /sys/fs/cgroup to 0 bytes. Apparently that
application uses the directory size to determine if a tmpfs is mounted
on /sys/fs/cgroup.
The bind mount escape fixes are present in Al Viros for-next branch.
and I expect them to come from there. The bind mount escape is the
last of the user namespace related security bugs that I am aware of"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
fs: Set the size of empty dirs to 0.
userns,pidns: Force thread group sharing, not signal handler sharing.
unshare: Unsharing a thread does not require unsharing a vm
nsfs: Add a show_path method to fix mountinfo
mnt: fs_fully_visible enforce noexec and nosuid if !SB_I_NOEXEC
vfs: Commit to never having exectuables on proc and sysfs.
Pull scheduler updates from Ingo Molnar:
"The biggest change in this cycle is the rewrite of the main SMP load
balancing metric: the CPU load/utilization. The main goal was to make
the metric more precise and more representative - see the changelog of
this commit for the gory details:
9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
It is done in a way that significantly reduces complexity of the code:
5 files changed, 249 insertions(+), 494 deletions(-)
and the performance testing results are encouraging. Nevertheless we
need to keep an eye on potential regressions, since this potentially
affects every SMP workload in existence.
This work comes from Yuyang Du.
Other changes:
- SCHED_DL updates. (Andrea Parri)
- Simplify architecture callbacks by removing finish_arch_switch().
(Peter Zijlstra et al)
- cputime accounting: guarantee stime + utime == rtime. (Peter
Zijlstra)
- optimize idle CPU wakeups some more - inspired by Facebook server
loads. (Mike Galbraith)
- stop_machine fixes and updates. (Oleg Nesterov)
- Introduce the 'trace_sched_waking' tracepoint. (Peter Zijlstra)
- sched/numa tweaks. (Srikar Dronamraju)
- misc fixes and small cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
sched/deadline: Fix comment in enqueue_task_dl()
sched/deadline: Fix comment in push_dl_tasks()
sched: Change the sched_class::set_cpus_allowed() calling context
sched: Make sched_class::set_cpus_allowed() unconditional
sched: Fix a race between __kthread_bind() and sched_setaffinity()
sched: Ensure a task has a non-normalized vruntime when returning back to CFS
sched/numa: Fix NUMA_DIRECT topology identification
tile: Reorganize _switch_to()
sched, sparc32: Update scheduler comments in copy_thread()
sched: Remove finish_arch_switch()
sched, tile: Remove finish_arch_switch
sched, sh: Fold finish_arch_switch() into switch_to()
sched, score: Remove finish_arch_switch()
sched, avr32: Remove finish_arch_switch()
sched, MIPS: Get rid of finish_arch_switch()
sched, arm: Remove finish_arch_switch()
sched/fair: Clean up load average references
sched/fair: Provide runnable_load_avg back to cfs_rq
sched/fair: Remove task and group entity load when they are dead
sched/fair: Init cfs_rq's sched_entity load average
...
The code that places signals in signal queues computes the uids, gids,
and pids at the time the signals are enqueued. Which means that tasks
that share signal queues must be in the same pid and user namespaces.
Sharing signal handlers is fine, but bizarre.
So make the code in fork and userns_install clearer by only testing
for what is functionally necessary.
Also update the comment in unshare about unsharing a user namespace to
be a little more explicit and make a little more sense.
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
In the logic in the initial commit of unshare made creating a new
thread group for a process, contingent upon creating a new memory
address space for that process. That is wrong. Two separate
processes in different thread groups can share a memory address space
and clone allows creation of such proceses.
This is significant because it was observed that mm_users > 1 does not
mean that a process is multi-threaded, as reading /proc/PID/maps
temporarily increments mm_users, which allows other processes to
(accidentally) interfere with unshare() calls.
Correct the check in check_unshare_flags() to test for
!thread_group_empty() for CLONE_THREAD, CLONE_SIGHAND, and CLONE_VM.
For sighand->count > 1 for CLONE_SIGHAND and CLONE_VM.
For !current_is_single_threaded instead of mm_users > 1 for CLONE_VM.
By using the correct checks in unshare this removes the possibility of
an accidental denial of service attack.
Additionally using the correct checks in unshare ensures that only an
explicit unshare(CLONE_VM) can possibly trigger the slow path of
current_is_single_threaded(). As an explict unshare(CLONE_VM) is
pointless it is not expected there are many applications that make
that call.
Cc: stable@vger.kernel.org
Fixes: b2e0d98705 userns: Implement unshare of the user namespace
Reported-by: Ricky Zhou <rickyz@chromium.org>
Reported-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
While the current code guarantees monotonicity for stime and utime
independently of one another, it does not guarantee that the sum of
both is equal to the total time we started out with.
This confuses things (and peoples) who look at this sum, like top, and
will report >100% usage followed by a matching period of 0%.
Rework the code to provide both individual monotonicity and a coherent
sum.
Suggested-by: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Reported-by: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Tested-by: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jason.low2@hp.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Don't burden architectures without dynamic task_struct sizing
with the overhead of dynamic sizing.
Also optimize the x86 code a bit by caching task_struct_size.
Acked-and-Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-3-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The FPU rewrite removed the dynamic allocations of 'struct fpu'.
But, this potentially wastes massive amounts of memory (2k per
task on systems that do not have AVX-512 for instance).
Instead of having a separate slab, this patch just appends the
space that we need to the 'task_struct' which we dynamically
allocate already. This saves from doing an extra slab
allocation at fork().
The only real downside here is that we have to stick everything
and the end of the task_struct. But, I think the
BUILD_BUG_ON()s I stuck in there should keep that from being too
fragile.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-2-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a new cgroup subsystem callback can_fork that conditionally
states whether or not the fork is accepted or rejected by a cgroup
policy. In addition, add a cancel_fork callback so that if an error
occurs later in the forking process, any state modified by can_fork can
be reverted.
Allow for a private opaque pointer to be passed from cgroup_can_fork to
cgroup_post_fork, allowing for the fork state to be stored by each
subsystem separately.
Also add a tagging system for cgroup_subsys.h to allow for CGROUP_<TAG>
enumerations to be be defined and used. In addition, explicitly add a
CGROUP_CANFORK_COUNT macro to make arrays easier to define.
This is in preparation for implementing the pids cgroup subsystem.
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull cgroup updates from Tejun Heo:
- threadgroup_lock got reorganized so that its users can pick the
actual locking mechanism to use. Its only user - cgroups - is
updated to use a percpu_rwsem instead of per-process rwsem.
This makes things a bit lighter on hot paths and allows cgroups to
perform and fail multi-task (a process) migrations atomically.
Multi-task migrations are used in several places including the
unified hierarchy.
- Delegation rule and documentation added to unified hierarchy. This
will likely be the last interface update from the cgroup core side
for unified hierarchy before lifting the devel mask.
- Some groundwork for the pids controller which is scheduled to be
merged in the coming devel cycle.
* 'for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: add delegation section to unified hierarchy documentation
cgroup: require write perm on common ancestor when moving processes on the default hierarchy
cgroup: separate out cgroup_procs_write_permission() from __cgroup_procs_write()
kernfs: make kernfs_get_inode() public
MAINTAINERS: add a cgroup core co-maintainer
cgroup: fix uninitialised iterator in for_each_subsys_which
cgroup: replace explicit ss_mask checking with for_each_subsys_which
cgroup: use bitmask to filter for_each_subsys
cgroup: add seq_file forward declaration for struct cftype
cgroup: simplify threadgroup locking
sched, cgroup: replace signal_struct->group_rwsem with a global percpu_rwsem
sched, cgroup: reorganize threadgroup locking
cgroup: switch to unsigned long for bitmasks
cgroup: reorganize include/linux/cgroup.h
cgroup: separate out include/linux/cgroup-defs.h
cgroup: fix some comment typos
clone has some of the quirkiest syscall handling in the kernel, with a
pile of special cases, historical curiosities, and architecture-specific
calling conventions. In particular, clone with CLONE_SETTLS accepts a
parameter "tls" that the C entry point completely ignores and some
assembly entry points overwrite; instead, the low-level arch-specific
code pulls the tls parameter out of the arch-specific register captured
as part of pt_regs on entry to the kernel. That's a massive hack, and
it makes the arch-specific code only work when called via the specific
existing syscall entry points; because of this hack, any new clone-like
system call would have to accept an identical tls argument in exactly
the same arch-specific position, rather than providing a unified system
call entry point across architectures.
The first patch allows architectures to handle the tls argument via
normal C parameter passing, if they opt in by selecting
HAVE_COPY_THREAD_TLS. The second patch makes 32-bit and 64-bit x86 opt
into this.
These two patches came out of the clone4 series, which isn't ready for
this merge window, but these first two cleanup patches were entirely
uncontroversial and have acks. I'd like to go ahead and submit these
two so that other architectures can begin building on top of this and
opting into HAVE_COPY_THREAD_TLS. However, I'm also happy to wait and
send these through the next merge window (along with v3 of clone4) if
anyone would prefer that.
This patch (of 2):
clone with CLONE_SETTLS accepts an argument to set the thread-local
storage area for the new thread. sys_clone declares an int argument
tls_val in the appropriate point in the argument list (based on the
various CLONE_BACKWARDS variants), but doesn't actually use or pass along
that argument. Instead, sys_clone calls do_fork, which calls
copy_process, which calls the arch-specific copy_thread, and copy_thread
pulls the corresponding syscall argument out of the pt_regs captured at
kernel entry (knowing what argument of clone that architecture passes tls
in).
Apart from being awful and inscrutable, that also only works because only
one code path into copy_thread can pass the CLONE_SETTLS flag, and that
code path comes from sys_clone with its architecture-specific
argument-passing order. This prevents introducing a new version of the
clone system call without propagating the same architecture-specific
position of the tls argument.
However, there's no reason to pull the argument out of pt_regs when
sys_clone could just pass it down via C function call arguments.
Introduce a new CONFIG_HAVE_COPY_THREAD_TLS for architectures to opt into,
and a new copy_thread_tls that accepts the tls parameter as an additional
unsigned long (syscall-argument-sized) argument. Change sys_clone's tls
argument to an unsigned long (which does not change the ABI), and pass
that down to copy_thread_tls.
Architectures that don't opt into copy_thread_tls will continue to ignore
the C argument to sys_clone in favor of the pt_regs captured at kernel
entry, and thus will be unable to introduce new versions of the clone
syscall.
Patch co-authored by Josh Triplett and Thiago Macieira.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thiago Macieira <thiago.macieira@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cgroup side of threadgroup locking uses signal_struct->group_rwsem
to synchronize against threadgroup changes. This per-process rwsem
adds small overhead to thread creation, exit and exec paths, forces
cgroup code paths to do lock-verify-unlock-retry dance in a couple
places and makes it impossible to atomically perform operations across
multiple processes.
This patch replaces signal_struct->group_rwsem with a global
percpu_rwsem cgroup_threadgroup_rwsem which is cheaper on the reader
side and contained in cgroups proper. This patch converts one-to-one.
This does make writer side heavier and lower the granularity; however,
cgroup process migration is a fairly cold path, we do want to optimize
thread operations over it and cgroup migration operations don't take
enough time for the lower granularity to matter.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
While running a database workload, we found a scalability issue with itimers.
Much of the problem was caused by the thread_group_cputimer spinlock.
Each time we account for group system/user time, we need to obtain a
thread_group_cputimer's spinlock to update the timers. On larger systems
(such as a 16 socket machine), this caused more than 30% of total time
spent trying to obtain this kernel lock to update these group timer stats.
This patch converts the timers to 64-bit atomic variables and use
atomic add to update them without a lock. With this patch, the percent
of total time spent updating thread group cputimer timers was reduced
from 30% down to less than 1%.
Note: On 32-bit systems using the generic 64-bit atomics, this causes
sample_group_cputimer() to take locks 3 times instead of just 1 time.
However, we tested this patch on a 32-bit system ARM system using the
generic atomics and did not find the overhead to be much of an issue.
An explanation for why this isn't an issue is that 32-bit systems usually
have small numbers of CPUs, and cacheline contention from extra spinlocks
called periodically is not really apparent on smaller systems.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Waiman Long <Waiman.Long@hp.com>
Link: http://lkml.kernel.org/r/1430251224-5764-4-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ACCESS_ONCE doesn't work reliably on non-scalar types. This patch removes
the rest of the existing usages of ACCESS_ONCE() in the scheduler, and use
the new READ_ONCE() and WRITE_ONCE() APIs as appropriate.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430251224-5764-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sync_buffer() needs the mmap_sem for two distinct operations, both only
occurring upon user context switch handling:
1) Dealing with the exe_file.
2) Adding the dcookie data as we need to lookup the vma that
backs it. This is done via add_sample() and add_data().
This patch isolates 1), for it will no longer need the mmap_sem for
serialization. However, for now, make of the more standard
get_mm_exe_file(), requiring only holding the mmap_sem to read the value,
and relying on reference counting to make sure that the exe file won't
dissappear underneath us while doing the get dcookie.
As a consequence, for 2) we move the mmap_sem locking into where we really
need it, in lookup_dcookie(). The benefits are twofold: reduce mmap_sem
hold times, and cleaner code.
[akpm@linux-foundation.org: export get_mm_exe_file for arch/x86/oprofile/oprofile.ko]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Robert Richter <rric@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg cleverly suggested using xchg() to set the new mm->exe_file instead
of calling set_mm_exe_file() which requires some form of serialization --
mmap_sem in this case. For archs that do not have atomic rmw instructions
we still fallback to a spinlock alternative, so this should always be
safe. As such, we only need the mmap_sem for looking up the backing
vm_file, which can be done sharing the lock. Naturally, this means we
need to manually deal with both the new and old file reference counting,
and we need not worry about the MMF_EXE_FILE_CHANGED bits, which can
probably be deleted in the future anyway.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes mm->mmap_sem from mm->exe_file read side.
Also it kills dup_mm_exe_file() and moves exe_file duplication into
dup_mmap() where both mmap_sems are locked.
[akpm@linux-foundation.org: fix comment typo]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Users can change the maximum number of threads by writing to
/proc/sys/kernel/threads-max.
With the patch the value entered is checked against the same limits that
apply when fork_init is called.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAGE_SIZE is not guaranteed to be equal to or less than 8 times the
THREAD_SIZE.
E.g. architecture hexagon may have page size 1M and thread size 4096.
This would lead to a division by zero in the calculation of max_threads.
With 32-bit calculation there is no solution which delivers valid results
for all possible combinations of the parameters. The code is only called
once. Hence a 64-bit calculation can be used as solution.
[akpm@linux-foundation.org: use clamp_t(), per Oleg]
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAGE_SIZE is not guaranteed to be equal to or less than 8 times the
THREAD_SIZE.
E.g. architecture hexagon may have page size 1M and thread size 4096.
This would lead to a division by zero in the calculation of max_threads.
With this patch the buggy code is moved to a separate function
set_max_threads. The error is not fixed.
After fixing the problem in a separate patch the new function can be
reused to adjust max_threads after adding or removing memory.
Argument mempages of function fork_init() is removed as totalram_pages is
an exported symbol.
The creation of separate patches for refactoring to a new function and for
fixing the logic was suggested by Ingo Molnar.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment explaining what value max_threads is set to is outdated. The
maximum memory consumption ratio for thread structures was 1/2 until
February 2002, then it was briefly changed to 1/16 before being set to 1/8
which we still use today. The comment was never updated to reflect that
change, it's about time.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
copy_process will report any failure in alloc_pid as ENOMEM currently
which is misleading because the pid allocation might fail not only when
the memory is short but also when the pid space is consumed already.
The current man page even mentions this case:
: EAGAIN
:
: A system-imposed limit on the number of threads was encountered.
: There are a number of limits that may trigger this error: the
: RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which
: limits the number of processes and threads for a real user ID, was
: reached; the kernel's system-wide limit on the number of processes
: and threads, /proc/sys/kernel/threads-max, was reached (see
: proc(5)); or the maximum number of PIDs, /proc/sys/kernel/pid_max,
: was reached (see proc(5)).
so the current behavior is also incorrect wrt. documentation. POSIX man
page also suggest returing EAGAIN when the process count limit is reached.
This patch simply propagates error code from alloc_pid and makes sure we
return -EAGAIN due to reservation failure. This will make behavior of
fork closer to both our documentation and POSIX.
alloc_pid might alsoo fail when the reaper in the pid namespace is dead
(the namespace basically disallows all new processes) and there is no
good error code which would match documented ones. We have traditionally
returned ENOMEM for this case which is misleading as well but as per
Eric W. Biederman this behavior is documented in man pid_namespaces(7)
: If the "init" process of a PID namespace terminates, the kernel
: terminates all of the processes in the namespace via a SIGKILL signal.
: This behavior reflects the fact that the "init" process is essential for
: the correct operation of a PID namespace. In this case, a subsequent
: fork(2) into this PID namespace will fail with the error ENOMEM; it is
: not possible to create a new processes in a PID namespace whose "init"
: process has terminated.
and introducing a new error code would be too risky so let's stick to
ENOMEM for this case.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All users of exec_domain are gone, now we can get rid
of that abandoned feature.
To not break existing userspace we keep a dummy
/proc/execdomains file which will always contain
"0-0 Linux [kernel]".
Signed-off-by: Richard Weinberger <richard@nod.at>
mm->nr_pmds doesn't make sense on !MMU configurations
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The problem is that we check nr_ptes/nr_pmds in exit_mmap() which happens
*before* pgd_free(). And if an arch does pte/pmd allocation in
pgd_alloc() and frees them in pgd_free() we see offset in counters by the
time of the checks.
We tried to workaround this by offsetting expected counter value according
to FIRST_USER_ADDRESS for both nr_pte and nr_pmd in exit_mmap(). But it
doesn't work in some cases:
1. ARM with LPAE enabled also has non-zero USER_PGTABLES_CEILING, but
upper addresses occupied with huge pmd entries, so the trick with
offsetting expected counter value will get really ugly: we will have
to apply it nr_pmds, but not nr_ptes.
2. Metag has non-zero FIRST_USER_ADDRESS, but doesn't do allocation
pte/pmd page tables allocation in pgd_alloc(), just setup a pgd entry
which is allocated at boot and shared accross all processes.
The proposal is to move the check to check_mm() which happens *after*
pgd_free() and do proper accounting during pgd_alloc() and pgd_free()
which would bring counters to zero if nothing leaked.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Tyler Baker <tyler.baker@linaro.org>
Tested-by: Tyler Baker <tyler.baker@linaro.org>
Tested-by: Nishanth Menon <nm@ti.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't create non-linear mappings anymore. Let's drop code which
handles them in rmap.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__cleanup_sighand() frees sighand without RCU grace period. This is
correct but this looks "obviously buggy" and constantly confuses the
readers, add the comments to explain how this works.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Optimized support for Intel "Cluster-on-Die" (CoD) topologies (Dave
Hansen)
- Various sched/idle refinements for better idle handling (Nicolas
Pitre, Daniel Lezcano, Chuansheng Liu, Vincent Guittot)
- sched/numa updates and optimizations (Rik van Riel)
- sysbench speedup (Vincent Guittot)
- capacity calculation cleanups/refactoring (Vincent Guittot)
- Various cleanups to thread group iteration (Oleg Nesterov)
- Double-rq-lock removal optimization and various refactorings
(Kirill Tkhai)
- various sched/deadline fixes
... and lots of other changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/dl: Use dl_bw_of() under rcu_read_lock_sched()
sched/fair: Delete resched_cpu() from idle_balance()
sched, time: Fix build error with 64 bit cputime_t on 32 bit systems
sched: Improve sysbench performance by fixing spurious active migration
sched/x86: Fix up typo in topology detection
x86, sched: Add new topology for multi-NUMA-node CPUs
sched/rt: Use resched_curr() in task_tick_rt()
sched: Use rq->rd in sched_setaffinity() under RCU read lock
sched: cleanup: Rename 'out_unlock' to 'out_free_new_mask'
sched: Use dl_bw_of() under RCU read lock
sched/fair: Remove duplicate code from can_migrate_task()
sched, mips, ia64: Remove __ARCH_WANT_UNLOCKED_CTXSW
sched: print_rq(): Don't use tasklist_lock
sched: normalize_rt_tasks(): Don't use _irqsave for tasklist_lock, use task_rq_lock()
sched: Fix the task-group check in tg_has_rt_tasks()
sched/fair: Leverage the idle state info when choosing the "idlest" cpu
sched: Let the scheduler see CPU idle states
sched/deadline: Fix inter- exclusive cpusets migrations
sched/deadline: Clear dl_entity params when setscheduling to different class
sched/numa: Kill the wrong/dead TASK_DEAD check in task_numa_fault()
...
Dump the contents of the relevant struct_mm when we hit the bug condition.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg noticed that a cleanup by Sylvain actually uncovered a bug; by
calling perf_event_free_task() when failing sched_fork() we will not yet
have done the memset() on ->perf_event_ctxp[] and will therefore try and
'free' the inherited contexts, which are still in use by the parent
process. This is bad..
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Sylvain 'ythier' Hitier <sylvain.hitier@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tasks get their end of stack set to STACK_END_MAGIC with the
aim to catch stack overruns. Currently this feature does not
apply to init_task. This patch removes this restriction.
Note that a similar patch was posted by Prarit Bhargava
some time ago but was never merged:
http://marc.info/?l=linux-kernel&m=127144305403241&w=2
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dzickus@redhat.com
Cc: bmr@redhat.com
Cc: jcastillo@redhat.com
Cc: jgh@redhat.com
Cc: minchan@kernel.org
Cc: tglx@linutronix.de
Cc: hannes@cmpxchg.org
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Daeseok Youn <daeseok.youn@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Michael Opdenacker <michael.opdenacker@free-electrons.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/1410527779-8133-2-git-send-email-atomlin@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both times() and clock_gettime(CLOCK_PROCESS_CPUTIME_ID) have scalability
issues on large systems, due to both functions being serialized with a
lock.
The lock protects against reporting a wrong value, due to a thread in the
task group exiting, its statistics reporting up to the signal struct, and
that exited task's statistics being counted twice (or not at all).
Protecting that with a lock results in times() and clock_gettime() being
completely serialized on large systems.
This can be fixed by using a seqlock around the events that gather and
propagate statistics. As an additional benefit, the protection code can
be moved into thread_group_cputime(), slightly simplifying the calling
functions.
In the case of posix_cpu_clock_get_task() things can be simplified a
lot, because the calling function already ensures that the task sticks
around, and the rest is now taken care of in thread_group_cputime().
This way the statistics reporting code can run lockless.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Daeseok Youn <daeseok.youn@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guillaume Morin <guillaume@morinfr.org>
Cc: Ionut Alexa <ionut.m.alexa@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Michal Schmidt <mschmidt@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: umgwanakikbuti@gmail.com
Cc: fweisbec@gmail.com
Cc: srao@redhat.com
Cc: lwoodman@redhat.com
Cc: atheurer@redhat.com
Link: http://lkml.kernel.org/r/20140816134010.26a9b572@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current upstream kernel hangs with mips and powerpc targets in
uniprocessor mode if SECCOMP is configured.
Bisect points to commit dbd952127d ("seccomp: introduce writer locking").
Turns out that code such as
BUG_ON(!spin_is_locked(&list_lock));
can not be used in uniprocessor mode because spin_is_locked() always
returns false in this configuration, and that assert_spin_locked()
exists for that very purpose and must be used instead.
Fixes: dbd952127d ("seccomp: introduce writer locking")
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Kees Cook <keescook@chromium.org>
This patch (of 6):
The i_mmap_writable field counts existing writable mappings of an
address_space. To allow drivers to prevent new writable mappings, make
this counter signed and prevent new writable mappings if it is negative.
This is modelled after i_writecount and DENYWRITE.
This will be required by the shmem-sealing infrastructure to prevent any
new writable mappings after the WRITE seal has been set. In case there
exists a writable mapping, this operation will fail with EBUSY.
Note that we rely on the fact that iff you already own a writable mapping,
you can increase the counter without using the helpers. This is the same
that we do for i_writecount.
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ryan Lortie <desrt@desrt.ca>
Cc: Lennart Poettering <lennart@poettering.net>
Cc: Daniel Mack <zonque@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is small set of patches our team has had kicking around for a few
versions internally that fixes tasks getting hung on shm_exit when there
are many threads hammering it at once.
Anton wrote a simple test to cause the issue:
http://ozlabs.org/~anton/junkcode/bust_shm_exit.c
Before applying this patchset, this test code will cause either hanging
tracebacks or pthread out of memory errors.
After this patchset, it will still produce output like:
root@somehost:~# ./bust_shm_exit 1024 160
...
INFO: rcu_sched detected stalls on CPUs/tasks: {} (detected by 116, t=2111 jiffies, g=241, c=240, q=7113)
INFO: Stall ended before state dump start
...
But the task will continue to run along happily, so we consider this an
improvement over hanging, even if it's a bit noisy.
This patch (of 3):
exit_shm obtains the ipc_ns shm rwsem for write and holds it while it
walks every shared memory segment in the namespace. Thus the amount of
work is related to the number of shm segments in the namespace not the
number of segments that might need to be cleaned.
In addition, this occurs after the task has been notified the thread has
exited, so the number of tasks waiting for the ns shm rwsem can grow
without bound until memory is exausted.
Add a list to the task struct of all shmids allocated by this task. Init
the list head in copy_process. Use the ns->rwsem for locking. Add
segments after id is added, remove before removing from id.
On unshare of NEW_IPCNS orphan any ids as if the task had exited, similar
to handling of semaphore undo.
I chose a define for the init sequence since its a simple list init,
otherwise it would require a function call to avoid include loops between
the semaphore code and the task struct. Converting the list_del to
list_del_init for the unshare cases would remove the exit followed by
init, but I left it blow up if not inited.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Jack Miller <millerjo@us.ibm.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Manfred Spraul <manfred@colorfullife.com>
Cc: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's only used in fork.c:mm_init().
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a forking process has a thread calling (un)mmap (silly but still),
the child process may have some of its mm's vm usage counters (total_vm
and friends) screwed up, because currently they are copied from oldmm
w/o holding any locks (memcpy in dup_mm).
This patch moves the counters initialization to dup_mmap() to be called
under oldmm->mmap_sem, which eliminates any possibility of race.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm->pinned_vm counts pages of mm's address space that were permanently
pinned in memory by increasing their reference counter. The counter was
introduced by commit bc3e53f682 ("mm: distinguish between mlocked and
pinned pages"), while before it locked_vm had been used for such pages.
Obviously, we should reset the counter on fork if !CLONE_VM, just like
we do with locked_vm, but currently we don't. Let's fix it.
This patch will fix the contents of /proc/pid/status:VmPin.
ib_umem_get[infiniband] and perf_mmap still check pinned_vm against
RLIMIT_MEMLOCK. It's left from the times when pinned pages were accounted
under locked_vm, but today it looks wrong. It isn't clear how we should
deal with it.
We still have some drivers accounting pinned pages under mm->locked_vm -
this is what commit bc3e53f682 was fighting against. It's
infiniband/usnic and vfio.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Roland Dreier <roland@kernel.org>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Hal Rosenstock <hal.rosenstock@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm initialization on fork/exec is spread all over the place, which makes
the code look inconsistent.
We have mm_init(), which is supposed to init/nullify mm's internals, but
it doesn't init all the fields it should:
- on fork ->mmap,mm_rb,vmacache_seqnum,map_count,mm_cpumask,locked_vm
are zeroed in dup_mmap();
- on fork ->pmd_huge_pte is zeroed in dup_mm(), immediately before
calling mm_init();
- ->cpu_vm_mask_var ptr is initialized by mm_init_cpumask(), which is
called before mm_init() on both fork and exec;
- ->context is initialized by init_new_context(), which is called after
mm_init() on both fork and exec;
Let's consolidate all the initializations in mm_init() to make the code
look cleaner.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages are now uncharged at release time, and all sources of batched
uncharges operate on lists of pages. Directly use those lists, and
get rid of the per-task batching state.
This also batches statistics accounting, in addition to the res
counter charges, to reduce IRQ-disabling and re-enabling.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull security subsystem updates from James Morris:
"In this release:
- PKCS#7 parser for the key management subsystem from David Howells
- appoint Kees Cook as seccomp maintainer
- bugfixes and general maintenance across the subsystem"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (94 commits)
X.509: Need to export x509_request_asymmetric_key()
netlabel: shorter names for the NetLabel catmap funcs/structs
netlabel: fix the catmap walking functions
netlabel: fix the horribly broken catmap functions
netlabel: fix a problem when setting bits below the previously lowest bit
PKCS#7: X.509 certificate issuer and subject are mandatory fields in the ASN.1
tpm: simplify code by using %*phN specifier
tpm: Provide a generic means to override the chip returned timeouts
tpm: missing tpm_chip_put in tpm_get_random()
tpm: Properly clean sysfs entries in error path
tpm: Add missing tpm_do_selftest to ST33 I2C driver
PKCS#7: Use x509_request_asymmetric_key()
Revert "selinux: fix the default socket labeling in sock_graft()"
X.509: x509_request_asymmetric_keys() doesn't need string length arguments
PKCS#7: fix sparse non static symbol warning
KEYS: revert encrypted key change
ima: add support for measuring and appraising firmware
firmware_class: perform new LSM checks
security: introduce kernel_fw_from_file hook
PKCS#7: Missing inclusion of linux/err.h
...
Pull timer and time updates from Thomas Gleixner:
"A rather large update of timers, timekeeping & co
- Core timekeeping code is year-2038 safe now for 32bit machines.
Now we just need to fix all in kernel users and the gazillion of
user space interfaces which rely on timespec/timeval :)
- Better cache layout for the timekeeping internal data structures.
- Proper nanosecond based interfaces for in kernel users.
- Tree wide cleanup of code which wants nanoseconds but does hoops
and loops to convert back and forth from timespecs. Some of it
definitely belongs into the ugly code museum.
- Consolidation of the timekeeping interface zoo.
- A fast NMI safe accessor to clock monotonic for tracing. This is a
long standing request to support correlated user/kernel space
traces. With proper NTP frequency correction it's also suitable
for correlation of traces accross separate machines.
- Checkpoint/restart support for timerfd.
- A few NOHZ[_FULL] improvements in the [hr]timer code.
- Code move from kernel to kernel/time of all time* related code.
- New clocksource/event drivers from the ARM universe. I'm really
impressed that despite an architected timer in the newer chips SoC
manufacturers insist on inventing new and differently broken SoC
specific timers.
[ Ed. "Impressed"? I don't think that word means what you think it means ]
- Another round of code move from arch to drivers. Looks like most
of the legacy mess in ARM regarding timers is sorted out except for
a few obnoxious strongholds.
- The usual updates and fixlets all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
timekeeping: Fixup typo in update_vsyscall_old definition
clocksource: document some basic timekeeping concepts
timekeeping: Use cached ntp_tick_length when accumulating error
timekeeping: Rework frequency adjustments to work better w/ nohz
timekeeping: Minor fixup for timespec64->timespec assignment
ftrace: Provide trace clocks monotonic
timekeeping: Provide fast and NMI safe access to CLOCK_MONOTONIC
seqcount: Add raw_write_seqcount_latch()
seqcount: Provide raw_read_seqcount()
timekeeping: Use tk_read_base as argument for timekeeping_get_ns()
timekeeping: Create struct tk_read_base and use it in struct timekeeper
timekeeping: Restructure the timekeeper some more
clocksource: Get rid of cycle_last
clocksource: Move cycle_last validation to core code
clocksource: Make delta calculation a function
wireless: ath9k: Get rid of timespec conversions
drm: vmwgfx: Use nsec based interfaces
drm: i915: Use nsec based interfaces
timekeeping: Provide ktime_get_raw()
hangcheck-timer: Use ktime_get_ns()
...
Simplify the timespec to nsec/usec conversions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Simplify the only user of this data by removing the timespec
conversion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Normally, task_struct.seccomp.filter is only ever read or modified by
the task that owns it (current). This property aids in fast access
during system call filtering as read access is lockless.
Updating the pointer from another task, however, opens up race
conditions. To allow cross-thread filter pointer updates, writes to the
seccomp fields are now protected by the sighand spinlock (which is shared
by all threads in the thread group). Read access remains lockless because
pointer updates themselves are atomic. However, writes (or cloning)
often entail additional checking (like maximum instruction counts)
which require locking to perform safely.
In the case of cloning threads, the child is invisible to the system
until it enters the task list. To make sure a child can't be cloned from
a thread and left in a prior state, seccomp duplication is additionally
moved under the sighand lock. Then parent and child are certain have
the same seccomp state when they exit the lock.
Based on patches by Will Drewry and David Drysdale.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJTwvRvAAoJEHm+PkMAQRiG8CoIAJucWkj+MJFFoDXjR9hfI8U7
/WeQLJP0GpWGMXd2KznX9epCuw5rsuaPAxCy1HFDNOa7OtNYacWrsIhByxOIDLwL
YjDB9+fpMMPFWsr+LPJa8Ombh/TveCS77w6Pt5VMZFwvIKujiNK/C3MdxjReH5Gr
iTGm8x7nEs2D6L2+5sQVlhXot/97phxIlBSP6wPXEiaztNZ9/JZi905Xpgq+WU16
ZOA8MlJj1TQD4xcWyUcsQ5REwIOdQ6xxPF00wv/12RFela+Puy4JLAilnV6Mc12U
fwYOZKbUNBS8rjfDDdyX3sljV1L5iFFqKkW3WFdnv/z8ZaZSo5NupWuavDnifKw=
=6Q8o
-----END PGP SIGNATURE-----
Merge tag 'v3.16-rc5' into timers/core
Reason: Bring in upstream modifications, so the pending changes which
depend on them can be queued.
syscall_regfunc() and syscall_unregfunc() should set/clear
TIF_SYSCALL_TRACEPOINT system-wide, but do_each_thread() can race
with copy_process() and miss the new child which was not added to
the process/thread lists yet.
Change copy_process() to update the child's TIF_SYSCALL_TRACEPOINT
under tasklist.
Link: http://lkml.kernel.org/p/20140413185854.GB20668@redhat.com
Cc: stable@vger.kernel.org # 2.6.33
Fixes: a871bd33a6 "tracing: Add syscall tracepoints"
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
do_posix_clock_monotonic_gettime() is a leftover from the initial
posix timer implementation which maps to ktime_get_ts().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20140611234607.427408044@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Oleg Nesterov <oleg@redhat.com>
When tracing a process in another pid namespace, it's important for fork
event messages to contain the child's pid as seen from the tracer's pid
namespace, not the parent's. Otherwise, the tracer won't be able to
correlate the fork event with later SIGTRAP signals it receives from the
child.
We still risk a race condition if a ptracer from a different pid
namespace attaches after we compute the pid_t value. However, sending a
bogus fork event message in this unlikely scenario is still a vast
improvement over the status quo where we always send bogus fork event
messages to debuggers in a different pid namespace than the forking
process.
Signed-off-by: Matthew Dempsky <mdempsky@chromium.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Julien Tinnes <jln@chromium.org>
Cc: Roland McGrath <mcgrathr@chromium.org>
Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_MM_OWNER makes no sense. It is not user-selectable, it is only
selected by CONFIG_MEMCG automatically. So we can kill this option in
init/Kconfig and do s/CONFIG_MM_OWNER/CONFIG_MEMCG/ globally.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently to allocate a page that should be charged to kmemcg (e.g.
threadinfo), we pass __GFP_KMEMCG flag to the page allocator. The page
allocated is then to be freed by free_memcg_kmem_pages. Apart from
looking asymmetrical, this also requires intrusion to the general
allocation path. So let's introduce separate functions that will
alloc/free pages charged to kmemcg.
The new functions are called alloc_kmem_pages and free_kmem_pages. They
should be used when the caller actually would like to use kmalloc, but
has to fall back to the page allocator for the allocation is large.
They only differ from alloc_pages and free_pages in that besides
allocating or freeing pages they also charge them to the kmem resource
counter of the current memory cgroup.
[sfr@canb.auug.org.au: export kmalloc_order() to modules]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To increase compiler portability there is <linux/compiler.h> which
provides convenience macros for various gcc constructs. Eg: __weak for
__attribute__((weak)). I've replaced all instances of gcc attributes
with the right macro in the kernel subsystem.
Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PF_MEMPOLICY is an unnecessary optimization for CONFIG_SLAB users.
There's no significant performance degradation to checking
current->mempolicy rather than current->flags & PF_MEMPOLICY in the
allocation path, especially since this is considered unlikely().
Running TCP_RR with netperf-2.4.5 through localhost on 16 cpu machine with
64GB of memory and without a mempolicy:
threads before after
16 1249409 1244487
32 1281786 1246783
48 1239175 1239138
64 1244642 1241841
80 1244346 1248918
96 1266436 1254316
112 1307398 1312135
128 1327607 1326502
Per-process flags are a scarce resource so we should free them up whenever
possible and make them available. We'll be using it shortly for memcg oom
reserves.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Tim Hockin <thockin@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
copy_flags() does not use the clone_flags formal and can be collapsed
into copy_process() for cleaner code.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Tim Hockin <thockin@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a continuation of efforts trying to optimize find_vma(),
avoiding potentially expensive rbtree walks to locate a vma upon faults.
The original approach (https://lkml.org/lkml/2013/11/1/410), where the
largest vma was also cached, ended up being too specific and random,
thus further comparison with other approaches were needed. There are
two things to consider when dealing with this, the cache hit rate and
the latency of find_vma(). Improving the hit-rate does not necessarily
translate in finding the vma any faster, as the overhead of any fancy
caching schemes can be too high to consider.
We currently cache the last used vma for the whole address space, which
provides a nice optimization, reducing the total cycles in find_vma() by
up to 250%, for workloads with good locality. On the other hand, this
simple scheme is pretty much useless for workloads with poor locality.
Analyzing ebizzy runs shows that, no matter how many threads are
running, the mmap_cache hit rate is less than 2%, and in many situations
below 1%.
The proposed approach is to replace this scheme with a small per-thread
cache, maximizing hit rates at a very low maintenance cost.
Invalidations are performed by simply bumping up a 32-bit sequence
number. The only expensive operation is in the rare case of a seq
number overflow, where all caches that share the same address space are
flushed. Upon a miss, the proposed replacement policy is based on the
page number that contains the virtual address in question. Concretely,
the following results are seen on an 80 core, 8 socket x86-64 box:
1) System bootup: Most programs are single threaded, so the per-thread
scheme does improve ~50% hit rate by just adding a few more slots to
the cache.
+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline | 50.61% | 19.90 |
| patched | 73.45% | 13.58 |
+----------------+----------+------------------+
2) Kernel build: This one is already pretty good with the current
approach as we're dealing with good locality.
+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline | 75.28% | 11.03 |
| patched | 88.09% | 9.31 |
+----------------+----------+------------------+
3) Oracle 11g Data Mining (4k pages): Similar to the kernel build workload.
+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline | 70.66% | 17.14 |
| patched | 91.15% | 12.57 |
+----------------+----------+------------------+
4) Ebizzy: There's a fair amount of variation from run to run, but this
approach always shows nearly perfect hit rates, while baseline is just
about non-existent. The amounts of cycles can fluctuate between
anywhere from ~60 to ~116 for the baseline scheme, but this approach
reduces it considerably. For instance, with 80 threads:
+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline | 1.06% | 91.54 |
| patched | 99.97% | 14.18 |
+----------------+----------+------------------+
[akpm@linux-foundation.org: fix nommu build, per Davidlohr]
[akpm@linux-foundation.org: document vmacache_valid() logic]
[akpm@linux-foundation.org: attempt to untangle header files]
[akpm@linux-foundation.org: add vmacache_find() BUG_ON]
[hughd@google.com: add vmacache_valid_mm() (from Oleg)]
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: adjust and enhance comments]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add VM_INIT_DEF_MASK, to allow us to set the default flags for VMs. It
also adds a prctl control which allows us to set the THP disable bit in
mm->def_flags so that VMs will pick up the setting as they are created.
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"A lot updates for cgroup:
- The biggest one is cgroup's conversion to kernfs. cgroup took
after the long abandoned vfs-entangled sysfs implementation and
made it even more convoluted over time. cgroup's internal objects
were fused with vfs objects which also brought in vfs locking and
object lifetime rules. Naturally, there are places where vfs rules
don't fit and nasty hacks, such as credential switching or lock
dance interleaving inode mutex and cgroup_mutex with object serial
number comparison thrown in to decide whether the operation is
actually necessary, needed to be employed.
After conversion to kernfs, internal object lifetime and locking
rules are mostly isolated from vfs interactions allowing shedding
of several nasty hacks and overall simplification. This will also
allow implmentation of operations which may affect multiple cgroups
which weren't possible before as it would have required nesting
i_mutexes.
- Various simplifications including dropping of module support,
easier cgroup name/path handling, simplified cgroup file type
handling and task_cg_lists optimization.
- Prepatory changes for the planned unified hierarchy, which is still
a patchset away from being actually operational. The dummy
hierarchy is updated to serve as the default unified hierarchy.
Controllers which aren't claimed by other hierarchies are
associated with it, which BTW was what the dummy hierarchy was for
anyway.
- Various fixes from Li and others. This pull request includes some
patches to add missing slab.h to various subsystems. This was
triggered xattr.h include removal from cgroup.h. cgroup.h
indirectly got included a lot of files which brought in xattr.h
which brought in slab.h.
There are several merge commits - one to pull in kernfs updates
necessary for converting cgroup (already in upstream through
driver-core), others for interfering changes in the fixes branch"
* 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (74 commits)
cgroup: remove useless argument from cgroup_exit()
cgroup: fix spurious lockdep warning in cgroup_exit()
cgroup: Use RCU_INIT_POINTER(x, NULL) in cgroup.c
cgroup: break kernfs active_ref protection in cgroup directory operations
cgroup: fix cgroup_taskset walking order
cgroup: implement CFTYPE_ONLY_ON_DFL
cgroup: make cgrp_dfl_root mountable
cgroup: drop const from @buffer of cftype->write_string()
cgroup: rename cgroup_dummy_root and related names
cgroup: move ->subsys_mask from cgroupfs_root to cgroup
cgroup: treat cgroup_dummy_root as an equivalent hierarchy during rebinding
cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}()
cgroup: use cgroup_setup_root() to initialize cgroup_dummy_root
cgroup: reorganize cgroup bootstrapping
cgroup: relocate setting of CGRP_DEAD
cpuset: use rcu_read_lock() to protect task_cs()
cgroup_freezer: document freezer_fork() subtleties
cgroup: update cgroup_transfer_tasks() to either succeed or fail
cgroup: drop task_lock() protection around task->cgroups
cgroup: update how a newly forked task gets associated with css_set
...
cgroup_exit() is called in fork and exit path. If it's called in the
failure path during fork, PF_EXITING isn't set, and then lockdep will
complain.
Fix this by removing cgroup_exit() in that failure path. cgroup_fork()
does nothing that needs cleanup.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We can kill either task->did_exec or PF_FORKNOEXEC, they are mutually
exclusive. The patch kills ->did_exec because it has a single user.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
current->mm doesn't need a NULL check in dup_mm(). Becasue dup_mm() is
used only in copy_mm() and current->mm is checked whether it is NULL or
not in copy_mm() before calling dup_mm().
Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix errors reported by checkpatch.pl. One error is parentheses, the other
is a whitespace issue.
Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dup_mm() is used only in kernel/fork.c
Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
while_each_thread() and next_thread() should die, almost every lockless
usage is wrong.
1. Unless g == current, the lockless while_each_thread() is not safe.
while_each_thread(g, t) can loop forever if g exits, next_thread()
can't reach the unhashed thread in this case. Note that this can
happen even if g is the group leader, it can exec.
2. Even if while_each_thread() itself was correct, people often use
it wrongly.
It was never safe to just take rcu_read_lock() and loop unless
you verify that pid_alive(g) == T, even the first next_thread()
can point to the already freed/reused memory.
This patch adds signal_struct->thread_head and task->thread_node to
create the normal rcu-safe list with the stable head. The new
for_each_thread(g, t) helper is always safe under rcu_read_lock() as
long as this task_struct can't go away.
Note: of course it is ugly to have both task_struct->thread_node and the
old task_struct->thread_group, we will kill it later, after we change
the users of while_each_thread() to use for_each_thread().
Perhaps we can kill it even before we convert all users, we can
reimplement next_thread(t) using the new thread_head/thread_node. But
we can't do this right now because this will lead to subtle behavioural
changes. For example, do/while_each_thread() always sees at least one
task, while for_each_thread() can do nothing if the whole thread group
has died. Or thread_group_empty(), currently its semantics is not clear
unless thread_group_leader(p) and we need to audit the callers before we
can change it.
So this patch adds the new interface which has to coexist with the old
one for some time, hopefully the next changes will be more or less
straightforward and the old one will go away soon.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sergey Dyasly <dserrg@gmail.com>
Tested-by: Sergey Dyasly <dserrg@gmail.com>
Reviewed-by: Sameer Nanda <snanda@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler changes from Ingo Molnar:
- Add the initial implementation of SCHED_DEADLINE support: a real-time
scheduling policy where tasks that meet their deadlines and
periodically execute their instances in less than their runtime quota
see real-time scheduling and won't miss any of their deadlines.
Tasks that go over their quota get delayed (Available to privileged
users for now)
- Clean up and fix preempt_enable_no_resched() abuse all around the
tree
- Do sched_clock() performance optimizations on x86 and elsewhere
- Fix and improve auto-NUMA balancing
- Fix and clean up the idle loop
- Apply various cleanups and fixes
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
sched: Fix __sched_setscheduler() nice test
sched: Move SCHED_RESET_ON_FORK into attr::sched_flags
sched: Fix up attr::sched_priority warning
sched: Fix up scheduler syscall LTP fails
sched: Preserve the nice level over sched_setscheduler() and sched_setparam() calls
sched/core: Fix htmldocs warnings
sched/deadline: No need to check p if dl_se is valid
sched/deadline: Remove unused variables
sched/deadline: Fix sparse static warnings
m68k: Fix build warning in mac_via.h
sched, thermal: Clean up preempt_enable_no_resched() abuse
sched, net: Fixup busy_loop_us_clock()
sched, net: Clean up preempt_enable_no_resched() abuse
sched/preempt: Fix up missed PREEMPT_NEED_RESCHED folding
sched/preempt, locking: Rework local_bh_{dis,en}able()
sched/clock, x86: Avoid a runtime condition in native_sched_clock()
sched/clock: Fix up clear_sched_clock_stable()
sched/clock, x86: Use a static_key for sched_clock_stable
sched/clock: Remove local_irq_disable() from the clocks
sched/clock, x86: Rewrite cyc2ns() to avoid the need to disable IRQs
...
Pull namespace fixes from Eric Biederman:
"This is a set of 3 regression fixes.
This fixes /proc/mounts when using "ip netns add <netns>" to display
the actual mount point.
This fixes a regression in clone that broke lxc-attach.
This fixes a regression in the permission checks for mounting /proc
that made proc unmountable if binfmt_misc was in use. Oops.
My apologies for sending this pull request so late. Al Viro gave
interesting review comments about the d_path fix that I wanted to
address in detail before I sent this pull request. Unfortunately a
bad round of colds kept from addressing that in detail until today.
The executive summary of the review was:
Al: Is patching d_path really sufficient?
The prepend_path, d_path, d_absolute_path, and __d_path family of
functions is a really mess.
Me: Yes, patching d_path is really sufficient. Yes, the code is mess.
No it is not appropriate to rewrite all of d_path for a regression
that has existed for entirely too long already, when a two line
change will do"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
vfs: Fix a regression in mounting proc
fork: Allow CLONE_PARENT after setns(CLONE_NEWPID)
vfs: In d_path don't call d_dname on a mount point
Some method to deal with rt-mutexes and make sched_dl interact with
the current PI-coded is needed, raising all but trivial issues, that
needs (according to us) to be solved with some restructuring of
the pi-code (i.e., going toward a proxy execution-ish implementation).
This is under development, in the meanwhile, as a temporary solution,
what this commits does is:
- ensure a pi-lock owner with waiters is never throttled down. Instead,
when it runs out of runtime, it immediately gets replenished and it's
deadline is postponed;
- the scheduling parameters (relative deadline and default runtime)
used for that replenishments --during the whole period it holds the
pi-lock-- are the ones of the waiting task with earliest deadline.
Acting this way, we provide some kind of boosting to the lock-owner,
still by using the existing (actually, slightly modified by the previous
commit) pi-architecture.
We would stress the fact that this is only a surely needed, all but
clean solution to the problem. In the end it's only a way to re-start
discussion within the community. So, as always, comments, ideas, rants,
etc.. are welcome! :-)
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
[ Added !RT_MUTEXES build fix. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-11-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Turn the pi-chains from plist to rb-tree, in the rt_mutex code,
and provide a proper comparison function for -deadline and
-priority tasks.
This is done mainly because:
- classical prio field of the plist is just an int, which might
not be enough for representing a deadline;
- manipulating such a list would become O(nr_deadline_tasks),
which might be to much, as the number of -deadline task increases.
Therefore, an rb-tree is used, and tasks are queued in it according
to the following logic:
- among two -priority (i.e., SCHED_BATCH/OTHER/RR/FIFO) tasks, the
one with the higher (lower, actually!) prio wins;
- among a -priority and a -deadline task, the latter always wins;
- among two -deadline tasks, the one with the earliest deadline
wins.
Queueing and dequeueing functions are changed accordingly, for both
the list of a task's pi-waiters and the list of tasks blocked on
a pi-lock.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-again-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-10-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduces the data structures, constants and symbols needed for
SCHED_DEADLINE implementation.
Core data structure of SCHED_DEADLINE are defined, along with their
initializers. Hooks for checking if a task belong to the new policy
are also added where they are needed.
Adds a scheduling class, in sched/dl.c and a new policy called
SCHED_DEADLINE. It is an implementation of the Earliest Deadline
First (EDF) scheduling algorithm, augmented with a mechanism (called
Constant Bandwidth Server, CBS) that makes it possible to isolate
the behaviour of tasks between each other.
The typical -deadline task will be made up of a computation phase
(instance) which is activated on a periodic or sporadic fashion. The
expected (maximum) duration of such computation is called the task's
runtime; the time interval by which each instance need to be completed
is called the task's relative deadline. The task's absolute deadline
is dynamically calculated as the time instant a task (better, an
instance) activates plus the relative deadline.
The EDF algorithms selects the task with the smallest absolute
deadline as the one to be executed first, while the CBS ensures each
task to run for at most its runtime every (relative) deadline
length time interval, avoiding any interference between different
tasks (bandwidth isolation).
Thanks to this feature, also tasks that do not strictly comply with
the computational model sketched above can effectively use the new
policy.
To summarize, this patch:
- introduces the data structures, constants and symbols needed;
- implements the core logic of the scheduling algorithm in the new
scheduling class file;
- provides all the glue code between the new scheduling class and
the core scheduler and refines the interactions between sched/dl
and the other existing scheduling classes.
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com>
Signed-off-by: Fabio Checconi <fchecconi@gmail.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are a few subtle races, between change_protection_range (used by
mprotect and change_prot_numa) on one side, and NUMA page migration and
compaction on the other side.
The basic race is that there is a time window between when the PTE gets
made non-present (PROT_NONE or NUMA), and the TLB is flushed.
During that time, a CPU may continue writing to the page.
This is fine most of the time, however compaction or the NUMA migration
code may come in, and migrate the page away.
When that happens, the CPU may continue writing, through the cached
translation, to what is no longer the current memory location of the
process.
This only affects x86, which has a somewhat optimistic pte_accessible.
All other architectures appear to be safe, and will either always flush,
or flush whenever there is a valid mapping, even with no permissions
(SPARC).
The basic race looks like this:
CPU A CPU B CPU C
load TLB entry
make entry PTE/PMD_NUMA
fault on entry
read/write old page
start migrating page
change PTE/PMD to new page
read/write old page [*]
flush TLB
reload TLB from new entry
read/write new page
lose data
[*] the old page may belong to a new user at this point!
The obvious fix is to flush remote TLB entries, by making sure that
pte_accessible aware of the fact that PROT_NONE and PROT_NUMA memory may
still be accessible if there is a TLB flush pending for the mm.
This should fix both NUMA migration and compaction.
[mgorman@suse.de: fix build]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A zombie task obviously can't fork(), remove the unnecessary
initialization of child->exit_state. It is zero anyway after
dup_task_struct().
Note: copy_process() is huge and it has a lot of chaotic
initializations, probably it makes sense to move them into the
new helper called by dup_task_struct().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131113143612.GA10540@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Serge Hallyn <serge.hallyn@ubuntu.com> writes:
> Hi Oleg,
>
> commit 40a0d32d1e :
> "fork: unify and tighten up CLONE_NEWUSER/CLONE_NEWPID checks"
> breaks lxc-attach in 3.12. That code forks a child which does
> setns() and then does a clone(CLONE_PARENT). That way the
> grandchild can be in the right namespaces (which the child was
> not) and be a child of the original task, which is the monitor.
>
> lxc-attach in 3.11 was working fine with no side effects that I
> could see. Is there a real danger in allowing CLONE_PARENT
> when current->nsproxy->pidns_for_children is not our pidns,
> or was this done out of an "over-abundance of caution"? Can we
> safely revert that new extra check?
The two fundamental things I know we can not allow are:
- A shared signal queue aka CLONE_THREAD. Because we compute the pid
and uid of the signal when we place it in the queue.
- Changing the pid and by extention pid_namespace of an existing
process.
From a parents perspective there is nothing special about the pid
namespace, to deny CLONE_PARENT, because the parent simply won't know or
care.
From the childs perspective all that is special really are shared signal
queues.
User mode threading with CLONE_PARENT|CLONE_VM|CLONE_SIGHAND and tasks
in different pid namespaces is almost certainly going to break because
it is complicated. But shared signal handlers can look at per thread
information to know which pid namespace a process is in, so I don't know
of any reason not to support CLONE_PARENT|CLONE_VM|CLONE_SIGHAND threads
at the kernel level. It would be absolutely stupid to implement but
that is a different thing.
So hmm.
Because it can do no harm, and because it is a regression let's remove
the CLONE_PARENT check and send it stable.
Cc: stable@vger.kernel.org
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The basic idea is the same as with PTE level: the lock is embedded into
struct page of table's page.
We can't use mm->pmd_huge_pte to store pgtables for THP, since we don't
take mm->page_table_lock anymore. Let's reuse page->lru of table's page
for that.
pgtable_pmd_page_ctor() returns true, if initialization is successful
and false otherwise. Current implementation never fails, but assumption
that constructor can fail will help to port it to -rt where spinlock_t
is rather huge and cannot be embedded into struct page -- dynamic
allocation is required.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler changes from Ingo Molnar:
"The main changes in this cycle are:
- (much) improved CONFIG_NUMA_BALANCING support from Mel Gorman, Rik
van Riel, Peter Zijlstra et al. Yay!
- optimize preemption counter handling: merge the NEED_RESCHED flag
into the preempt_count variable, by Peter Zijlstra.
- wait.h fixes and code reorganization from Peter Zijlstra
- cfs_bandwidth fixes from Ben Segall
- SMP load-balancer cleanups from Peter Zijstra
- idle balancer improvements from Jason Low
- other fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (129 commits)
ftrace, sched: Add TRACE_FLAG_PREEMPT_RESCHED
stop_machine: Fix race between stop_two_cpus() and stop_cpus()
sched: Remove unnecessary iteration over sched domains to update nr_busy_cpus
sched: Fix asymmetric scheduling for POWER7
sched: Move completion code from core.c to completion.c
sched: Move wait code from core.c to wait.c
sched: Move wait.c into kernel/sched/
sched/wait: Fix __wait_event_interruptible_lock_irq_timeout()
sched: Avoid throttle_cfs_rq() racing with period_timer stopping
sched: Guarantee new group-entities always have weight
sched: Fix hrtimer_cancel()/rq->lock deadlock
sched: Fix cfs_bandwidth misuse of hrtimer_expires_remaining
sched: Fix race on toggling cfs_bandwidth_used
sched: Remove extra put_online_cpus() inside sched_setaffinity()
sched/rt: Fix task_tick_rt() comment
sched/wait: Fix build breakage
sched/wait: Introduce prepare_to_wait_event()
sched/wait: Add ___wait_cond_timeout() to wait_event*_timeout() too
sched: Remove get_online_cpus() usage
sched: Fix race in migrate_swap_stop()
...
uprobe_copy_process() does nothing if the child shares ->mm with
the forking process, but there is a special case: CLONE_VFORK.
In this case it would be more correct to do dup_utask() but avoid
dup_xol(). This is not that important, the child should not unwind
its stack too much, this can corrupt the parent's stack, but at
least we need this to allow to ret-probe __vfork() itself.
Note: in theory, it would be better to check task_pt_regs(p)->sp
instead of CLONE_VFORK, we need to dup_utask() if and only if the
child can return from the function called by the parent. But this
needs the arch-dependant helper, and I think that nobody actually
does clone(same_stack, CLONE_VM).
Reported-by: Martin Cermak <mcermak@redhat.com>
Reported-by: David Smith <dsmith@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Preparation for the next patches.
Move the callsite of uprobe_copy_process() in copy_process() down
to the succesfull return. We do not care if copy_process() fails,
uprobe_free_utask() won't be called in this case so the wrong
->utask != NULL doesn't matter.
OTOH, with this change we know that copy_process() can't fail when
uprobe_copy_process() is called, the new task should either return
to user-mode or call do_exit(). This way uprobe_copy_process() can:
1. setup p->utask != NULL if necessary
2. setup uprobes_state.xol_area
3. use task_work_add(p)
Also, move the definition of uprobe_copy_process() down so that it
can see get_utask().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
A newly spawned thread inside a process should stay on the same
NUMA node as its parent. This prevents processes from being "torn"
across multiple NUMA nodes every time they spawn a new thread.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-49-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PTE scanning and NUMA hinting fault handling is expensive so commit
5bca2303 ("mm: sched: numa: Delay PTE scanning until a task is scheduled
on a new node") deferred the PTE scan until a task had been scheduled on
another node. The problem is that in the purely shared memory case that
this may never happen and no NUMA hinting fault information will be
captured. We are not ruling out the possibility that something better
can be done here but for now, this patch needs to be reverted and depend
entirely on the scan_delay to avoid punishing short-lived processes.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-16-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull aio changes from Ben LaHaise:
"First off, sorry for this pull request being late in the merge window.
Al had raised a couple of concerns about 2 items in the series below.
I addressed the first issue (the race introduced by Gu's use of
mm_populate()), but he has not provided any further details on how he
wants to rework the anon_inode.c changes (which were sent out months
ago but have yet to be commented on).
The bulk of the changes have been sitting in the -next tree for a few
months, with all the issues raised being addressed"
* git://git.kvack.org/~bcrl/aio-next: (22 commits)
aio: rcu_read_lock protection for new rcu_dereference calls
aio: fix race in ring buffer page lookup introduced by page migration support
aio: fix rcu sparse warnings introduced by ioctx table lookup patch
aio: remove unnecessary debugging from aio_free_ring()
aio: table lookup: verify ctx pointer
staging/lustre: kiocb->ki_left is removed
aio: fix error handling and rcu usage in "convert the ioctx list to table lookup v3"
aio: be defensive to ensure request batching is non-zero instead of BUG_ON()
aio: convert the ioctx list to table lookup v3
aio: double aio_max_nr in calculations
aio: Kill ki_dtor
aio: Kill ki_users
aio: Kill unneeded kiocb members
aio: Kill aio_rw_vect_retry()
aio: Don't use ctx->tail unnecessarily
aio: io_cancel() no longer returns the io_event
aio: percpu ioctx refcount
aio: percpu reqs_available
aio: reqs_active -> reqs_available
aio: fix build when migration is disabled
...
Simple cleanup. Every user of vma_set_policy() does the same work, this
looks a bit annoying imho. And the new trivial helper which does
mpol_dup() + vma_set_policy() to simplify the callers.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_fork() denies CLONE_THREAD | CLONE_PARENT if NEWUSER | NEWPID.
Then later copy_process() denies CLONE_SIGHAND if the new process will
be in a different pid namespace (task_active_pid_ns() doesn't match
current->nsproxy->pid_ns).
This looks confusing and inconsistent. CLONE_NEWPID is very similar to
the case when ->pid_ns was already unshared, we want the same
restrictions so copy_process() should also nack CLONE_PARENT.
And it would be better to deny CLONE_NEWUSER && CLONE_SIGHAND as well
just for consistency.
Kill the "CLONE_NEWUSER | CLONE_NEWPID" check in do_fork() and change
copy_process() to do the same check along with ->pid_ns check we already
have.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Colin Walters <walters@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 8382fcac1b ("pidns: Outlaw thread creation after
unshare(CLONE_NEWPID)") nacks CLONE_NEWPID if the forking process
unshared pid_ns. This is correct but unnecessary, copy_pid_ns() does
the same check.
Remove the CLONE_NEWPID check to cleanup the code and prepare for the
next change.
Test-case:
static int child(void *arg)
{
return 0;
}
static char stack[16 * 1024];
int main(void)
{
pid_t pid;
assert(unshare(CLONE_NEWUSER | CLONE_NEWPID) == 0);
pid = clone(child, stack + sizeof(stack) / 2,
CLONE_NEWPID | SIGCHLD, NULL);
assert(pid < 0 && errno == EINVAL);
return 0;
}
clone(CLONE_NEWPID) correctly fails with or without this change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Colin Walters <walters@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 8382fcac1b ("pidns: Outlaw thread creation after
unshare(CLONE_NEWPID)") nacks CLONE_VM if the forking process unshared
pid_ns, this obviously breaks vfork:
int main(void)
{
assert(unshare(CLONE_NEWUSER | CLONE_NEWPID) == 0);
assert(vfork() >= 0);
_exit(0);
return 0;
}
fails without this patch.
Change this check to use CLONE_SIGHAND instead. This also forbids
CLONE_THREAD automatically, and this is what the comment implies.
We could probably even drop CLONE_SIGHAND and use CLONE_THREAD, but it
would be safer to not do this. The current check denies CLONE_SIGHAND
implicitely and there is no reason to change this.
Eric said "CLONE_SIGHAND is fine. CLONE_THREAD would be even better.
Having shared signal handling between two different pid namespaces is
the case that we are fundamentally guarding against."
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Colin Walters <walters@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull namespace changes from Eric Biederman:
"This is an assorted mishmash of small cleanups, enhancements and bug
fixes.
The major theme is user namespace mount restrictions. nsown_capable
is killed as it encourages not thinking about details that need to be
considered. A very hard to hit pid namespace exiting bug was finally
tracked and fixed. A couple of cleanups to the basic namespace
infrastructure.
Finally there is an enhancement that makes per user namespace
capabilities usable as capabilities, and an enhancement that allows
the per userns root to nice other processes in the user namespace"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
userns: Kill nsown_capable it makes the wrong thing easy
capabilities: allow nice if we are privileged
pidns: Don't have unshare(CLONE_NEWPID) imply CLONE_THREAD
userns: Allow PR_CAPBSET_DROP in a user namespace.
namespaces: Simplify copy_namespaces so it is clear what is going on.
pidns: Fix hang in zap_pid_ns_processes by sending a potentially extra wakeup
sysfs: Restrict mounting sysfs
userns: Better restrictions on when proc and sysfs can be mounted
vfs: Don't copy mount bind mounts of /proc/<pid>/ns/mnt between namespaces
kernel/nsproxy.c: Improving a snippet of code.
proc: Restrict mounting the proc filesystem
vfs: Lock in place mounts from more privileged users
I goofed when I made unshare(CLONE_NEWPID) only work in a
single-threaded process. There is no need for that requirement and in
fact I analyzied things right for setns. The hard requirement
is for tasks that share a VM to all be in the pid namespace and
we properly prevent that in do_fork.
Just to be certain I took a look through do_wait and
forget_original_parent and there are no cases that make it any harder
for children to be in the multiple pid namespaces than it is for
children to be in the same pid namespace. I also performed a check to
see if there were in uses of task->nsproxy_pid_ns I was not familiar
with, but it is only used when allocating a new pid for a new task,
and in checks to prevent craziness from happening.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
nsproxy.pid_ns is *not* the task's pid namespace. The name should clarify
that.
This makes it more obvious that setns on a pid namespace is weird --
it won't change the pid namespace shown in procfs.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix inadvertent breakage in the clone syscall ABI for Microblaze that
was introduced in commit f3268edbe6 ("microblaze: switch to generic
fork/vfork/clone").
The Microblaze syscall ABI for clone takes the parent tid address in the
4th argument; the third argument slot is used for the stack size. The
incorrectly-used CLONE_BACKWARDS type assigned parent tid to the 3rd
slot.
This commit restores the original ABI so that existing userspace libc
code will work correctly.
All kernel versions from v3.8-rc1 were affected.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On Wed, Jun 12, 2013 at 11:14:40AM -0700, Kent Overstreet wrote:
> On Mon, Apr 15, 2013 at 02:40:55PM +0300, Octavian Purdila wrote:
> > When using a large number of threads performing AIO operations the
> > IOCTX list may get a significant number of entries which will cause
> > significant overhead. For example, when running this fio script:
> >
> > rw=randrw; size=256k ;directory=/mnt/fio; ioengine=libaio; iodepth=1
> > blocksize=1024; numjobs=512; thread; loops=100
> >
> > on an EXT2 filesystem mounted on top of a ramdisk we can observe up to
> > 30% CPU time spent by lookup_ioctx:
> >
> > 32.51% [guest.kernel] [g] lookup_ioctx
> > 9.19% [guest.kernel] [g] __lock_acquire.isra.28
> > 4.40% [guest.kernel] [g] lock_release
> > 4.19% [guest.kernel] [g] sched_clock_local
> > 3.86% [guest.kernel] [g] local_clock
> > 3.68% [guest.kernel] [g] native_sched_clock
> > 3.08% [guest.kernel] [g] sched_clock_cpu
> > 2.64% [guest.kernel] [g] lock_release_holdtime.part.11
> > 2.60% [guest.kernel] [g] memcpy
> > 2.33% [guest.kernel] [g] lock_acquired
> > 2.25% [guest.kernel] [g] lock_acquire
> > 1.84% [guest.kernel] [g] do_io_submit
> >
> > This patchs converts the ioctx list to a radix tree. For a performance
> > comparison the above FIO script was run on a 2 sockets 8 core
> > machine. This are the results (average and %rsd of 10 runs) for the
> > original list based implementation and for the radix tree based
> > implementation:
> >
> > cores 1 2 4 8 16 32
> > list 109376 ms 69119 ms 35682 ms 22671 ms 19724 ms 16408 ms
> > %rsd 0.69% 1.15% 1.17% 1.21% 1.71% 1.43%
> > radix 73651 ms 41748 ms 23028 ms 16766 ms 15232 ms 13787 ms
> > %rsd 1.19% 0.98% 0.69% 1.13% 0.72% 0.75%
> > % of radix
> > relative 66.12% 65.59% 66.63% 72.31% 77.26% 83.66%
> > to list
> >
> > To consider the impact of the patch on the typical case of having
> > only one ctx per process the following FIO script was run:
> >
> > rw=randrw; size=100m ;directory=/mnt/fio; ioengine=libaio; iodepth=1
> > blocksize=1024; numjobs=1; thread; loops=100
> >
> > on the same system and the results are the following:
> >
> > list 58892 ms
> > %rsd 0.91%
> > radix 59404 ms
> > %rsd 0.81%
> > % of radix
> > relative 100.87%
> > to list
>
> So, I was just doing some benchmarking/profiling to get ready to send
> out the aio patches I've got for 3.11 - and it looks like your patch is
> causing a ~1.5% throughput regression in my testing :/
... <snip>
I've got an alternate approach for fixing this wart in lookup_ioctx()...
Instead of using an rbtree, just use the reserved id in the ring buffer
header to index an array pointing the ioctx. It's not finished yet, and
it needs to be tidied up, but is most of the way there.
-ben
--
"Thought is the essence of where you are now."
--
kmo> And, a rework of Ben's code, but this was entirely his idea
kmo> -Kent
bcrl> And fix the code to use the right mm_struct in kill_ioctx(), actually
free memory.
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Since all architectures have been converted to use vm_unmapped_area(),
there is no remaining use for the free_area_cache.
Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Richard Henderson <rth@twiddle.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
copy_process() does a lot of "chaotic" initializations and checks
CLONE_THREAD twice before it takes tasklist. In particular it sets
"p->group_leader = p" and then changes it again under tasklist if
!thread_group_leader(p).
This looks a bit confusing, lets create a single "if (CLONE_THREAD)" block
which initializes ->exit_signal, ->group_leader, and ->tgid.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Sergey Dyasly <dserrg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
copy_process() adds the new child to thread_group/init_task.tasks list and
then does attach_pid(child, PIDTYPE_PID). This means that the lockless
next_thread() or next_task() can see this thread with the wrong pid. Say,
"ls /proc/pid/task" can list the same inode twice.
We could move attach_pid(child, PIDTYPE_PID) up, but in this case
find_task_by_vpid() can find the new thread before it was fully
initialized.
And this is already true for PIDTYPE_PGID/PIDTYPE_SID, With this patch
copy_process() initializes child->pids[*].pid first, then calls
attach_pid() to insert the task into the pid->tasks list.
attach_pid() no longer need the "struct pid*" argument, it is always
called after pid_link->pid was already set.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Sergey Dyasly <dserrg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup and preparation for the next changes.
Move the "if (clone_flags & CLONE_THREAD)" code down under "if
(likely(p->pid))" and turn it into into the "else" branch. This makes the
process/thread initialization more symmetrical and removes one check.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Sergey Dyasly <dserrg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a task is attempting to violate the RLIMIT_NPROC limit we have a
check to see if the task is sufficiently priviledged. The check first
looks at CAP_SYS_ADMIN, then CAP_SYS_RESOURCE, then if the task is uid=0.
A result is that tasks which are allowed by the uid=0 check are first
checked against the security subsystem. This results in the security
subsystem auditting a denial for sys_admin and sys_resource and then the
task passing the uid=0 check.
This patch rearranges the code to first check uid=0, since if we pass that
we shouldn't hit the security system at all. We then check sys_resource,
since it is the smallest capability which will solve the problem. Lastly
we check the fallback everything cap_sysadmin. We don't want to give this
capability many places since it is so powerful.
This will eliminate many of the false positive/needless denial messages we
get when a root task tries to violate the nproc limit. (note that
kthreads count against root, so on a sufficiently large machine we can
actually get past the default limits before any userspace tasks are
launched.)
Signed-off-by: Eric Paris <eparis@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull block driver updates from Jens Axboe:
"It might look big in volume, but when categorized, not a lot of
drivers are touched. The pull request contains:
- mtip32xx fixes from Micron.
- A slew of drbd updates, this time in a nicer series.
- bcache, a flash/ssd caching framework from Kent.
- Fixes for cciss"
* 'for-3.10/drivers' of git://git.kernel.dk/linux-block: (66 commits)
bcache: Use bd_link_disk_holder()
bcache: Allocator cleanup/fixes
cciss: bug fix to prevent cciss from loading in kdump crash kernel
cciss: add cciss_allow_hpsa module parameter
drivers/block/mg_disk.c: add CONFIG_PM_SLEEP to suspend/resume functions
mtip32xx: Workaround for unaligned writes
bcache: Make sure blocksize isn't smaller than device blocksize
bcache: Fix merge_bvec_fn usage for when it modifies the bvm
bcache: Correctly check against BIO_MAX_PAGES
bcache: Hack around stuff that clones up to bi_max_vecs
bcache: Set ra_pages based on backing device's ra_pages
bcache: Take data offset from the bdev superblock.
mtip32xx: mtip32xx: Disable TRIM support
mtip32xx: fix a smatch warning
bcache: Disable broken btree fuzz tester
bcache: Fix a format string overflow
bcache: Fix a minor memory leak on device teardown
bcache: Documentation updates
bcache: Use WARN_ONCE() instead of __WARN()
bcache: Add missing #include <linux/prefetch.h>
...
Pull compat cleanup from Al Viro:
"Mostly about syscall wrappers this time; there will be another pile
with patches in the same general area from various people, but I'd
rather push those after both that and vfs.git pile are in."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal:
syscalls.h: slightly reduce the jungles of macros
get rid of union semop in sys_semctl(2) arguments
make do_mremap() static
sparc: no need to sign-extend in sync_file_range() wrapper
ppc compat wrappers for add_key(2) and request_key(2) are pointless
x86: trim sys_ia32.h
x86: sys32_kill and sys32_mprotect are pointless
get rid of compat_sys_semctl() and friends in case of ARCH_WANT_OLD_COMPAT_IPC
merge compat sys_ipc instances
consolidate compat lookup_dcookie()
convert vmsplice to COMPAT_SYSCALL_DEFINE
switch getrusage() to COMPAT_SYSCALL_DEFINE
switch epoll_pwait to COMPAT_SYSCALL_DEFINE
convert sendfile{,64} to COMPAT_SYSCALL_DEFINE
switch signalfd{,4}() to COMPAT_SYSCALL_DEFINE
make SYSCALL_DEFINE<n>-generated wrappers do asmlinkage_protect
make HAVE_SYSCALL_WRAPPERS unconditional
consolidate cond_syscall and SYSCALL_ALIAS declarations
teach SYSCALL_DEFINE<n> how to deal with long long/unsigned long long
get rid of duplicate logics in __SC_....[1-6] definitions
Pull scheduler changes from Ingo Molnar:
"The main changes in this development cycle were:
- full dynticks preparatory work by Frederic Weisbecker
- factor out the cpu time accounting code better, by Li Zefan
- multi-CPU load balancer cleanups and improvements by Joonsoo Kim
- various smaller fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
sched: Fix init NOHZ_IDLE flag
sched: Prevent to re-select dst-cpu in load_balance()
sched: Rename load_balance_tmpmask to load_balance_mask
sched: Move up affinity check to mitigate useless redoing overhead
sched: Don't consider other cpus in our group in case of NEWLY_IDLE
sched: Explicitly cpu_idle_type checking in rebalance_domains()
sched: Change position of resched_cpu() in load_balance()
sched: Fix wrong rq's runnable_avg update with rt tasks
sched: Document task_struct::personality field
sched/cpuacct/UML: Fix header file dependency bug on the UML build
cgroup: Kill subsys.active flag
sched/cpuacct: No need to check subsys active state
sched/cpuacct: Initialize cpuacct subsystem earlier
sched/cpuacct: Initialize root cpuacct earlier
sched/cpuacct: Allocate per_cpu cpuusage for root cpuacct statically
sched/cpuacct: Clean up cpuacct.h
sched/cpuacct: Remove redundant NULL checks in cpuacct_acount_field()
sched/cpuacct: Remove redundant NULL checks in cpuacct_charge()
sched/cpuacct: Add cpuacct_acount_field()
sched/cpuacct: Add cpuacct_init()
...
Does writethrough and writeback caching, handles unclean shutdown, and
has a bunch of other nifty features motivated by real world usage.
See the wiki at http://bcache.evilpiepirate.org for more.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
Don't allowing sharing the root directory with processes in a
different user namespace. There doesn't seem to be any point, and to
allow it would require the overhead of putting a user namespace
reference in fs_struct (for permission checks) and incrementing that
reference count on practically every call to fork.
So just perform the inexpensive test of forbidding sharing fs_struct
acrosss processes in different user namespaces. We already disallow
other forms of threading when unsharing a user namespace so this
should be no real burden in practice.
This updates setns, clone, and unshare to disallow multiple user
namespaces sharing an fs_struct.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The full dynticks cputime accounting is able to account either
using the tick or the context tracking subsystem. This way
the housekeeping CPU can keep the low overhead tick based
solution.
This latter mode has a low jiffies resolution granularity and
need to be scaled against CFS precise runtime accounting to
improve its result. We are doing this for CONFIG_TICK_CPU_ACCOUNTING,
now we also need to expand it to full dynticks accounting dynamic
off-case as well.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Mats Liljegren <mats.liljegren@enea.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
... and switch i386 to HAVE_SYSCALL_WRAPPERS, killing open-coded
uses of asmlinkage_protect() in a bunch of syscalls.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If new_nsproxy is set we will always call switch_task_namespaces and
then set new_nsproxy back to NULL so the reassignment and fall through
check are redundant
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs pile (part one) from Al Viro:
"Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
locking violations, etc.
The most visible changes here are death of FS_REVAL_DOT (replaced with
"has ->d_weak_revalidate()") and a new helper getting from struct file
to inode. Some bits of preparation to xattr method interface changes.
Misc patches by various people sent this cycle *and* ocfs2 fixes from
several cycles ago that should've been upstream right then.
PS: the next vfs pile will be xattr stuff."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
saner proc_get_inode() calling conventions
proc: avoid extra pde_put() in proc_fill_super()
fs: change return values from -EACCES to -EPERM
fs/exec.c: make bprm_mm_init() static
ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
ocfs2: fix possible use-after-free with AIO
ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
target: writev() on single-element vector is pointless
export kernel_write(), convert open-coded instances
fs: encode_fh: return FILEID_INVALID if invalid fid_type
kill f_vfsmnt
vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
nfsd: handle vfs_getattr errors in acl protocol
switch vfs_getattr() to struct path
default SET_PERSONALITY() in linux/elf.h
ceph: prepopulate inodes only when request is aborted
d_hash_and_lookup(): export, switch open-coded instances
9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
9p: split dropping the acls from v9fs_set_create_acl()
...
Typical cputime stats infrastructure relies on the timer tick and
its periodic polling on the CPU to account the amount of time
spent by the CPUs and the tasks per high level domains such as
userspace, kernelspace, guest, ...
Now we are preparing to implement full dynticks capability on
Linux for Real Time and HPC users who want full CPU isolation.
This feature requires a cputime accounting that doesn't depend
on the timer tick.
To implement it, this new cputime infrastructure plugs into
kernel/user/guest boundaries to take snapshots of cputime and
flush these to the stats when needed. This performs pretty
much like CONFIG_VIRT_CPU_ACCOUNTING except that context location
and cputime snaphots are synchronized between write and read
side such that the latter can safely retrieve the pending tickless
cputime of a task and add it to its latest cputime snapshot to
return the correct result to the user.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJRBsKnAAoJEIUkVEdQjox3lMgP/2R6DU2f8PyGIao3hne4M3Pu
L3q+mAG53b24Dy014KeW7gd8yv45fE7wp/rs8CGLte9VzbLkRCDSFQPgBuXVagRj
tV5nfAuqD0wHTnA+HhBE3l3C2RKAPGIu79rBpnIR/QIPPl8Z3Dby8YgmxEQKDf8G
j7MEBu2LthSuqEi2ZXemnO5r0oEnQAzAp4TTi/M38k0Fmt59nOGyjLnI+xHYCBMa
1pnz7j3jjR9NJExGu8iVvbo+jupuQngP8qmkLXHvYnj/TEJNwzO1hHVoSwOpjYpS
9ycl+T8IKQLbAkBywLtq3Mzde43xt/t8wYyGZ0oAV+Z7MIpz/9YIfDJwqQeqoNbD
dAdbNjKMbsxCgmrnyqSagfMQg/r3CPZ4vf40TMCaN4gNUJC4Ie+E4kPRKRh59+PB
Ukthmqujn0f40LAa+HXTUuzafd3b0s/ewH+8FuQ6LAG9b5+WnoN8JTJ5u6+ydokO
ZleeOowuRZZEg+abQ8Sm2GRm/BzN29gi/npb//I+ZDXWv/+3yccgsiPjCRzCAAaO
g1RmYryFSRUwHQbGNNypVWVuOLWvrBQ4jqbGO7BBuBByZMSHryKxR6mb+inH3qLE
xIDM9SdSJisc292OzoFKwVZki4MaXaadJXJduVvqYlZQvXXs7eAa4wo3euhtVITD
NLQO5OZXE4oIQmDFb0FV
=1Tzp
-----END PGP SIGNATURE-----
Merge tag 'full-dynticks-cputime-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into sched/core
Pull full-dynticks (user-space execution is undisturbed and
receives no timer IRQs) preparation changes that convert the
cputime accounting code to be full-dynticks ready,
from Frederic Weisbecker:
"This implements the cputime accounting on full dynticks CPUs.
Typical cputime stats infrastructure relies on the timer tick and
its periodic polling on the CPU to account the amount of time
spent by the CPUs and the tasks per high level domains such as
userspace, kernelspace, guest, ...
Now we are preparing to implement full dynticks capability on
Linux for Real Time and HPC users who want full CPU isolation.
This feature requires a cputime accounting that doesn't depend
on the timer tick.
To implement it, this new cputime infrastructure plugs into
kernel/user/guest boundaries to take snapshots of cputime and
flush these to the stats when needed. This performs pretty
much like CONFIG_VIRT_CPU_ACCOUNTING except that context location
and cputime snaphots are synchronized between write and read
side such that the latter can safely retrieve the pending tickless
cputime of a task and add it to its latest cputime snapshot to
return the correct result to the user."
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While remotely reading the cputime of a task running in a
full dynticks CPU, the values stored in utime/stime fields
of struct task_struct may be stale. Its values may be those
of the last kernel <-> user transition time snapshot and
we need to add the tickless time spent since this snapshot.
To fix this, flush the cputime of the dynticks CPUs on
kernel <-> user transition and record the time / context
where we did this. Then on top of this snapshot and the current
time, perform the fixup on the reader side from task_times()
accessors.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
[fixed kvm module related build errors]
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Pull misc syscall fixes from Al Viro:
- compat syscall fixes (discussed back in December)
- a couple of "make life easier for sigaltstack stuff by reducing
inter-tree dependencies"
- fix up compiler/asmlinkage calling convention disagreement of
sys_clone()
- misc
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal:
sys_clone() needs asmlinkage_protect
make sure that /linuxrc has std{in,out,err}
x32: fix sigtimedwait
x32: fix waitid()
switch compat_sys_wait4() and compat_sys_waitid() to COMPAT_SYSCALL_DEFINE
switch compat_sys_sigaltstack() to COMPAT_SYSCALL_DEFINE
CONFIG_GENERIC_SIGALTSTACK build breakage with asm-generic/syscalls.h
Ensure that kernel_init_freeable() is not inlined into non __init code
The sequence:
unshare(CLONE_NEWPID)
clone(CLONE_THREAD|CLONE_SIGHAND|CLONE_VM)
Creates a new process in the new pid namespace without setting
pid_ns->child_reaper. After forking this results in a NULL
pointer dereference.
Avoid this and other nonsense scenarios that can show up after
creating a new pid namespace with unshare by adding a new
check in copy_prodcess.
Pointed-out-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull signal handling cleanups from Al Viro:
"sigaltstack infrastructure + conversion for x86, alpha and um,
COMPAT_SYSCALL_DEFINE infrastructure.
Note that there are several conflicts between "unify
SS_ONSTACK/SS_DISABLE definitions" and UAPI patches in mainline;
resolution is trivial - just remove definitions of SS_ONSTACK and
SS_DISABLED from arch/*/uapi/asm/signal.h; they are all identical and
include/uapi/linux/signal.h contains the unified variant."
Fixed up conflicts as per Al.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal:
alpha: switch to generic sigaltstack
new helpers: __save_altstack/__compat_save_altstack, switch x86 and um to those
generic compat_sys_sigaltstack()
introduce generic sys_sigaltstack(), switch x86 and um to it
new helper: compat_user_stack_pointer()
new helper: restore_altstack()
unify SS_ONSTACK/SS_DISABLE definitions
new helper: current_user_stack_pointer()
missing user_stack_pointer() instances
Bury the conditionals from kernel_thread/kernel_execve series
COMPAT_SYSCALL_DEFINE: infrastructure
All architectures have
CONFIG_GENERIC_KERNEL_THREAD
CONFIG_GENERIC_KERNEL_EXECVE
__ARCH_WANT_SYS_EXECVE
None of them have __ARCH_WANT_KERNEL_EXECVE and there are only two callers
of kernel_execve() (which is a trivial wrapper for do_execve() now) left.
Kill the conditionals and make both callers use do_execve().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Because those architectures will draw their stacks directly from the page
allocator, rather than the slab cache, we can directly pass __GFP_KMEMCG
flag, and issue the corresponding free_pages.
This code path is taken when the architecture doesn't define
CONFIG_ARCH_THREAD_INFO_ALLOCATOR (only ia64 seems to), and has
THREAD_SIZE >= PAGE_SIZE. Luckily, most - if not all - of the remaining
architectures fall in this category.
This will guarantee that every stack page is accounted to the memcg the
process currently lives on, and will have the allocations to fail if they
go over limit.
For the time being, I am defining a new variant of THREADINFO_GFP, not to
mess with the other path. Once the slab is also tracked by memcg, we can
get rid of that flag.
Tested to successfully protect against :(){ :|:& };:
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Frederic Weisbecker <fweisbec@redhat.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull user namespace changes from Eric Biederman:
"While small this set of changes is very significant with respect to
containers in general and user namespaces in particular. The user
space interface is now complete.
This set of changes adds support for unprivileged users to create user
namespaces and as a user namespace root to create other namespaces.
The tyranny of supporting suid root preventing unprivileged users from
using cool new kernel features is broken.
This set of changes completes the work on setns, adding support for
the pid, user, mount namespaces.
This set of changes includes a bunch of basic pid namespace
cleanups/simplifications. Of particular significance is the rework of
the pid namespace cleanup so it no longer requires sending out
tendrils into all kinds of unexpected cleanup paths for operation. At
least one case of broken error handling is fixed by this cleanup.
The files under /proc/<pid>/ns/ have been converted from regular files
to magic symlinks which prevents incorrect caching by the VFS,
ensuring the files always refer to the namespace the process is
currently using and ensuring that the ptrace_mayaccess permission
checks are always applied.
The files under /proc/<pid>/ns/ have been given stable inode numbers
so it is now possible to see if different processes share the same
namespaces.
Through the David Miller's net tree are changes to relax many of the
permission checks in the networking stack to allowing the user
namespace root to usefully use the networking stack. Similar changes
for the mount namespace and the pid namespace are coming through my
tree.
Two small changes to add user namespace support were commited here adn
in David Miller's -net tree so that I could complete the work on the
/proc/<pid>/ns/ files in this tree.
Work remains to make it safe to build user namespaces and 9p, afs,
ceph, cifs, coda, gfs2, ncpfs, nfs, nfsd, ocfs2, and xfs so the
Kconfig guard remains in place preventing that user namespaces from
being built when any of those filesystems are enabled.
Future design work remains to allow root users outside of the initial
user namespace to mount more than just /proc and /sys."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (38 commits)
proc: Usable inode numbers for the namespace file descriptors.
proc: Fix the namespace inode permission checks.
proc: Generalize proc inode allocation
userns: Allow unprivilged mounts of proc and sysfs
userns: For /proc/self/{uid,gid}_map derive the lower userns from the struct file
procfs: Print task uids and gids in the userns that opened the proc file
userns: Implement unshare of the user namespace
userns: Implent proc namespace operations
userns: Kill task_user_ns
userns: Make create_new_namespaces take a user_ns parameter
userns: Allow unprivileged use of setns.
userns: Allow unprivileged users to create new namespaces
userns: Allow setting a userns mapping to your current uid.
userns: Allow chown and setgid preservation
userns: Allow unprivileged users to create user namespaces.
userns: Ignore suid and sgid on binaries if the uid or gid can not be mapped
userns: fix return value on mntns_install() failure
vfs: Allow unprivileged manipulation of the mount namespace.
vfs: Only support slave subtrees across different user namespaces
vfs: Add a user namespace reference from struct mnt_namespace
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
Pull big execve/kernel_thread/fork unification series from Al Viro:
"All architectures are converted to new model. Quite a bit of that
stuff is actually shared with architecture trees; in such cases it's
literally shared branch pulled by both, not a cherry-pick.
A lot of ugliness and black magic is gone (-3KLoC total in this one):
- kernel_thread()/kernel_execve()/sys_execve() redesign.
We don't do syscalls from kernel anymore for either kernel_thread()
or kernel_execve():
kernel_thread() is essentially clone(2) with callback run before we
return to userland, the callbacks either never return or do
successful do_execve() before returning.
kernel_execve() is a wrapper for do_execve() - it doesn't need to
do transition to user mode anymore.
As a result kernel_thread() and kernel_execve() are
arch-independent now - they live in kernel/fork.c and fs/exec.c
resp. sys_execve() is also in fs/exec.c and it's completely
architecture-independent.
- daemonize() is gone, along with its parts in fs/*.c
- struct pt_regs * is no longer passed to do_fork/copy_process/
copy_thread/do_execve/search_binary_handler/->load_binary/do_coredump.
- sys_fork()/sys_vfork()/sys_clone() unified; some architectures
still need wrappers (ones with callee-saved registers not saved in
pt_regs on syscall entry), but the main part of those suckers is in
kernel/fork.c now."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (113 commits)
do_coredump(): get rid of pt_regs argument
print_fatal_signal(): get rid of pt_regs argument
ptrace_signal(): get rid of unused arguments
get rid of ptrace_signal_deliver() arguments
new helper: signal_pt_regs()
unify default ptrace_signal_deliver
flagday: kill pt_regs argument of do_fork()
death to idle_regs()
don't pass regs to copy_process()
flagday: don't pass regs to copy_thread()
bfin: switch to generic vfork, get rid of pointless wrappers
xtensa: switch to generic clone()
openrisc: switch to use of generic fork and clone
unicore32: switch to generic clone(2)
score: switch to generic fork/vfork/clone
c6x: sanitize copy_thread(), get rid of clone(2) wrapper, switch to generic clone()
take sys_fork/sys_vfork/sys_clone prototypes to linux/syscalls.h
mn10300: switch to generic fork/vfork/clone
h8300: switch to generic fork/vfork/clone
tile: switch to generic clone()
...
Conflicts:
arch/microblaze/include/asm/Kbuild
Pull cgroup changes from Tejun Heo:
"A lot of activities on cgroup side. The big changes are focused on
making cgroup hierarchy handling saner.
- cgroup_rmdir() had peculiar semantics - it allowed cgroup
destruction to be vetoed by individual controllers and tried to
drain refcnt synchronously. The vetoing never worked properly and
caused good deal of contortions in cgroup. memcg was the last
reamining user. Michal Hocko removed the usage and cgroup_rmdir()
path has been simplified significantly. This was done in a
separate branch so that the memcg people can base further memcg
changes on top.
- The above allowed cleaning up cgroup lifecycle management and
implementation of generic cgroup iterators which are used to
improve hierarchy support.
- cgroup_freezer updated to allow migration in and out of a frozen
cgroup and handle hierarchy. If a cgroup is frozen, all descendant
cgroups are frozen.
- netcls_cgroup and netprio_cgroup updated to handle hierarchy
properly.
- Various fixes and cleanups.
- Two merge commits. One to pull in memcg and rmdir cleanups (needed
to build iterators). The other pulled in cgroup/for-3.7-fixes for
device_cgroup fixes so that further device_cgroup patches can be
stacked on top."
Fixed up a trivial conflict in mm/memcontrol.c as per Tejun (due to
commit bea8c150a7 ("memcg: fix hotplugged memory zone oops") in master
touching code close to commit 2ef37d3fe4 ("memcg: Simplify
mem_cgroup_force_empty_list error handling") in for-3.8)
* 'for-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (65 commits)
cgroup: update Documentation/cgroups/00-INDEX
cgroup_rm_file: don't delete the uncreated files
cgroup: remove subsystem files when remounting cgroup
cgroup: use cgroup_addrm_files() in cgroup_clear_directory()
cgroup: warn about broken hierarchies only after css_online
cgroup: list_del_init() on removed events
cgroup: fix lockdep warning for event_control
cgroup: move list add after list head initilization
netprio_cgroup: allow nesting and inherit config on cgroup creation
netprio_cgroup: implement netprio[_set]_prio() helpers
netprio_cgroup: use cgroup->id instead of cgroup_netprio_state->prioidx
netprio_cgroup: reimplement priomap expansion
netprio_cgroup: shorten variable names in extend_netdev_table()
netprio_cgroup: simplify write_priomap()
netcls_cgroup: move config inheritance to ->css_online() and remove .broken_hierarchy marking
cgroup: remove obsolete guarantee from cgroup_task_migrate.
cgroup: add cgroup->id
cgroup, cpuset: remove cgroup_subsys->post_clone()
cgroup: s/CGRP_CLONE_CHILDREN/CGRP_CPUSET_CLONE_CHILDREN/
cgroup: rename ->create/post_create/pre_destroy/destroy() to ->css_alloc/online/offline/free()
...
Pull scheduler updates from Ingo Molnar:
"The biggest change affects group scheduling: we now track the runnable
average on a per-task entity basis, allowing a smoother, exponential
decay average based load/weight estimation instead of the previous
binary on-the-runqueue/off-the-runqueue load weight method.
This will inevitably disturb workloads that were in some sort of
borderline balancing state or unstable equilibrium, so an eye has to
be kept on regressions.
For that reason the new load average is only limited to group
scheduling (shares distribution) at the moment (which was also hurting
the most from the prior, crude weight calculation and whose scheduling
quality wins most from this change) - but we plan to extend this to
regular SMP balancing as well in the future, which will simplify and
speed up things a bit.
Other changes involve ongoing preparatory work to extend NOHZ to the
scheduler as well, eventually allowing completely irq-free user-space
execution."
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
Revert "sched/autogroup: Fix crash on reboot when autogroup is disabled"
cputime: Comment cputime's adjusting code
cputime: Consolidate cputime adjustment code
cputime: Rename thread_group_times to thread_group_cputime_adjusted
cputime: Move thread_group_cputime() to sched code
vtime: Warn if irqs aren't disabled on system time accounting APIs
vtime: No need to disable irqs on vtime_account()
vtime: Consolidate a bit the ctx switch code
vtime: Explicitly account pending user time on process tick
vtime: Remove the underscore prefix invasion
sched/autogroup: Fix crash on reboot when autogroup is disabled
cputime: Separate irqtime accounting from generic vtime
cputime: Specialize irq vtime hooks
kvm: Directly account vtime to system on guest switch
vtime: Make vtime_account_system() irqsafe
vtime: Gather vtime declarations to their own header file
sched: Describe CFS load-balancer
sched: Introduce temporary FAIR_GROUP_SCHED dependency for load-tracking
sched: Make __update_entity_runnable_avg() fast
sched: Update_cfs_shares at period edge
...
Due to the fact that migrations are driven by the CPU a task is running
on there is no point tracking NUMA faults until one task runs on a new
node. This patch tracks the first node used by an address space. Until
it changes, PTE scanning is disabled and no NUMA hinting faults are
trapped. This should help workloads that are short-lived, do not care
about NUMA placement or have bound themselves to a single node.
This takes advantage of the logic in "mm: sched: numa: Implement slow
start for working set sampling" to delay when the checks are made. This
will take advantage of processes that set their CPU and node bindings
early in their lifetime. It will also potentially allow any initial load
balancing to take place.
Signed-off-by: Mel Gorman <mgorman@suse.de>