IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This patch includes many places, that only required
replacing the ctl_table-s with appropriate ctl_paths
and call register_sysctl_paths().
Nothing special was done with them.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This one is used in quite many places in the networking code and
seems to big to be inline.
After the patch net/ipv4/build-in.o loses ~650 bytes:
add/remove: 2/0 grow/shrink: 0/5 up/down: 461/-1114 (-653)
function old new delta
__inet_hash_nolisten - 282 +282
__inet_hash - 179 +179
tcp_sacktag_write_queue 2255 2254 -1
__inet_lookup_listener 284 274 -10
tcp_v4_syn_recv_sock 755 493 -262
tcp_v4_hash 389 35 -354
inet_hash_connect 1086 599 -487
This version addresses the issue pointed by Eric, that
while being inline this function was optimized by gcc
in respect to the 'listen_possible' argument.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The function follows48(), which is a special-case of dccp_delta_seqno(),
is nowhere used in the DCCP code, thus removed by this patch.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This implements the changes to the nofeedback timer handling suggested
in draft rfc3448bis00, section 4.4. In particular, these changes mean:
* better handling of the lossless case (p == 0)
* the timestamp for computing t_ld becomes obsolete
* much more recent document (RFC 3448 is almost 5 years old)
* concepts in rfc3448bis arose from a real, working implementation
(cf. sec. 12)
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This implements the algorithm to update the allowed sending rate X upon
receiving feedback packets, as described in draft rfc3448bis, 4.2/4.3.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
* the NO_SENT state is only triggered in bidirectional mode,
costing unnecessary processing.
* the TERM (terminating) state is irrelevant.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch
1) concentrates previously scattered computation of p_inv into one function;
2) removes the `p' element of the CCID3 RX sock (it is redundant);
3) makes the tfrc_rx_info structure standalone, only used on demand.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This introduces a CCMPS field for setting a CCID-specific upper bound on the application payload
size, as is defined in RFC 4340, section 14.
Only the TX CCID is considered in setting this limit, since the RX CCID generates comparatively
small (DCCP-Ack) feedback packets. The CCMPS field includes network and transport layer header
lengths. The only current CCMPS customer is CCID4 (via RFC 4828).
A wrapper is used to allow querying the CCMPS even at times where the CCID modules may not have
been fully negotiated yet.
In dccp_sync_mss() the variable `mss_now' has been renamed into `cur_mps', to reflect that we are
dealing with an MPS, but not an MSS.
Since the DCCP code closely follows the TCP code, the identifiers `dccp_sync_mss' and
`dccps_mss_cache' have been kept, as they have direct TCP counterparts.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The patch makes the registration messages of CCID 2/3 a bit more
informative: instead of repeating the CCID number as currently done,
"CCID: Registered CCID 2 (ccid2)" or
"CCID: Registered CCID 3 (ccid3)",
the descriptive names of the CCID's (from RFCs) are now used:
"CCID: Registered CCID 2 (TCP-like)" and
"CCID: Registered CCID 3 (TCP-Friendly Rate Control)".
To allow spaces in the name, the slab name string has been changed to
refer to the numeric CCID identifier, using the same format as before.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds documentation for the ccid_operations structure.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This implements [RFC 4340, p. 32]: "any feature negotiation options received
on DCCP-Data packets MUST be ignored".
Also added a FIXME for further processing, since the code currently (wrongly)
classifies empty Confirm options as invalid - this needs to be resolved in
a separate patch.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This removes several `XXX' references which indicate a missing support
for non-1-byte feature values: this is unnecessary, as all currently known
(standardised) SP feature values are 1-byte quantities.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This removes two inlines which were both called in a single function only:
1) dccp_feat_change() is always called with either DCCPO_CHANGE_L or DCCPO_CHANGE_R as argument
* from dccp_set_socktopt_change() via do_dccp_setsockopt() with DCCP_SOCKOPT_CHANGE_R/L
* from __dccp_feat_init() via dccp_feat_init() also with DCCP_SOCKOPT_CHANGE_R/L.
Hence the dccp_feat_is_valid_type() is completely unnecessary and always returns true.
2) Due to (1), the length test reduces to 'len >= 4', which in turn makes
dccp_feat_is_valid_length() unnecessary.
Furthermore, the inline function dccp_feat_is_reserved() was unfolded,
since only called in a single place.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This provides a separate routine to insert options during the initial handshake.
The main purpose is to conduct feature negotiation, for the moment the only user
is the timestamp echo needed for the (CCID3) handshake RTT sample.
Padding of options has been put into a small separate routine, to be shared among
the two functions. This could also be used as a generic routine to finish inserting
options.
Also removed an `XXX' comment since its content was obvious.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In DCCP, timestamps can occur on packets anytime, CCID3 uses a timestamp(/echo) on the Request/Response
exchange. This patch addresses the following situation:
* timestamps are recorded on the listening socket;
* Responses are sent from dccp_request_sockets;
* suppose two connections reach the listening socket with very small time in between:
* the first timestamp value gets overwritten by the second connection request.
This is not really good, so this patch separates timestamps into
* those which are received by the server during the initial handshake (on dccp_request_sock);
* those which are received by the client or the client after connection establishment.
As before, a timestamp of 0 is regarded as indicating that no (meaningful) timestamp has been
received (in addition, a warning message is printed if hosts send 0-valued timestamps).
The timestamp-echoing now works as follows:
* when a timestamp is present on the initial Request, it is placed into dreq, due to the
call to dccp_parse_options in dccp_v{4,6}_conn_request;
* when a timestamp is present on the Ack leading from RESPOND => OPEN, it is copied over
from the request_sock into the child cocket in dccp_create_openreq_child;
* timestamps received on an (established) dccp_sock are treated as before.
Since Elapsed Time is measured in hundredths of milliseconds (13.2), the new dccp_timestamp()
function is used, as it is expected that the time between receiving the timestamp and
sending the timestamp echo will be very small against the wrap-around time. As a byproduct,
this allows smaller timestamping-time fields.
Furthermore, inserting the Timestamp Echo option has been taken out of the block starting with
'!dccp_packet_without_ack()', since Timestamp Echo can be carried on any packet (5.8 and 13.3).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds option-parsing code to processing of Acks in the listening state
on request_socks on the server, serving two purposes
(i) resolves a FIXME (removed);
(ii) paves the way for feature-negotiation during connection-setup.
There is an intended subtlety here with regard to dccp_check_req:
Parsing options happens only after testing whether the received packet is
a retransmitted Request. Otherwise, if the Request contained (a possibly
large number of) feature-negotiation options, recomputing state would have to
happen each time a retransmitted Request arrives, which opens the door to an
easy DoS attack. Since in a genuine retransmission the options should not be
different from the original, reusing the already computed state seems better.
The other point is - if there are timestamp options on the Request, they will
not be answered; which means that in the presence of retransmission (likely
due to loss and/or other problems), the use of Request/Response RTT sampling
is suspended, so that startup problems here do not propagate.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The option parsing code currently only parses on full sk's. This causes a problem for
options sent during the initial handshake (in particular timestamps and feature-negotiation
options). Therefore, this patch extends the option parsing code with an additional argument
for request_socks: if it is non-NULL, options are parsed on the request socket, otherwise
the normal path (parsing on the sk) is used.
Subsequent patches, which implement feature negotiation during connection setup, make use
of this facility.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This replaces 4 individual assignments for `len' with a single
one, placed where the control flow of those 4 leads to.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds a socket option and signalling support for the case where the server
holds timewait state on closing the connection, as described in RFC 4340, 8.3.
Since holding timewait state at the server is the non-usual case, it is enabled
via a socket option. Documentation for this socket option has been added.
The setsockopt statement has been made resilient against different possible cases
of expressing boolean `true' values using a suggestion by Ian McDonald.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This removes another Fixme, using the TCP maximum RTO rather than the value
specified by the DCCP specification. Across the sections in RFC 4340, 64
seconds is consistently suggested as maximum RTO backoff value; and this is
the value which is now used.
I have checked both termination cases for retransmissions of Close/CloseReq:
with the default value 15 of `retries2', and an initial icsk_retransmit = 0,
it takes about 614 seconds to declare a non-responding peer as dead, after
which the final terminating Reset is sent. With the TCP maximum RTO value of
120 seconds it takes (as might be expected) almost twice as long, about 23
minutes.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When performing active close, RFC 4340, 8.3. requires to retransmit the
Close/CloseReq with a backoff-retransmit timer starting at intially 2 RTTs.
This patch shifts the existing code for active-close retransmit timer
into output.c, so that the retransmit timer is started when the first
Close/CloseReq is sent. Previously, the timer was started when, after
releasing the socket in dccp_close(), the actively-closing side had not yet
reached the CLOSED/TIMEWAIT state.
The patch further reduces the initial timeout from 3 seconds to the required
2 RTTs, where - in absence of a known RTT - the fallback value specified in
RFC 4340, 3.4 is used.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch performs two changes:
1) Close the write-end in addition to the read-end when a fin-like segment
(Close or CloseReq) is received by DCCP. This accounts for the fact that DCCP,
in contrast to TCP, does not have a half-close. RFC 4340 says in this respect
that when a fin-like segment has been sent there is no guarantee at all that
any further data will be processed.
Thus this patch performs SHUT_WR in addition to the SHUT_RD when a fin-like
segment is encountered.
2) Minor change: I noted that code appears twice in different places and think it
makes sense to put this into a self-contained function (dccp_enqueue()).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch converts all callers of xfrm_lookup that used an
explicit value of 1 to indiciate blocking to use the new flag
XFRM_LOOKUP_WAIT.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This hooks up the TFRC Loss Interval database with CCID 3 packet reception.
In addition, it makes the CCID-specific computation of the first loss
interval (which requires access to all the guts of CCID3) local to ccid3.c.
The patch also fixes an omission in the DCCP code, that of a default /
fallback RTT value (defined in section 3.4 of RFC 4340 as 0.2 sec); while
at it, the upper bound of 4 seconds for an RTT sample has been reduced to
match the initial TCP RTO value of 3 seconds from[RFC 1122, 4.2.3.1].
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This moves two inlines back to packet_history.h: these are not private
to packet_history.c, but are needed by CCID3/4 to detect whether a new
loss is indicated, or whether a loss is already pending.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Each time feedback is sent two lines are printed:
ccid3_hc_rx_send_feedback: client ... - entry
ccid3_hc_rx_send_feedback: Interval ...usec, X_recv=..., 1/p=...
The first line is redundant and thus removed.
Further, documentation of ccid3_hc_rx_sock (capitalisation) is made consistent.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A ringbuffer-based implementation of loss interval history is easier to
maintain, allocate, and update.
The `swap' routine to keep the RX history sorted is due to and was written
by Arnaldo Carvalho de Melo, simplifying an earlier macro-based variant.
Details:
* access to the Loss Interval Records via macro wrappers (with safety checks);
* simplified, on-demand allocation of entries (no extra memory consumption on
lossless links); cache allocation is local to the module / exported as service;
* provision of RFC-compliant algorithm to re-compute average loss interval;
* provision of comprehensive, new loss detection algorithm
- support for all cases of loss, including re-ordered/duplicate packets;
- waiting for NDUPACK=3 packets to fill the hole;
- updating loss records when a late-arriving packet fills a hole.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This moves the inlines (which were previously declared as macros) back into
packet_history.h since the loss detection code needs to be able to read entries
from the RX history in order to create the relevant loss entries: it needs at
least tfrc_rx_hist_loss_prev() and tfrc_rx_hist_last_rcv(), which in turn
require the definition of the other inlines (macros).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This separates RX/TX initialisation and puts all packet history / loss intervals
initialisation into tfrc.c.
The organisation is uniform: slab declaration -> {rx,tx}_init() -> {rx,tx}_exit()
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Moved up the comment "Receiver routines" above the first occurrence of
RX history routines.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Credit here goes to Gerrit Renker, that provided the initial implementation for
this new codebase.
I modified it just to try to make it closer to the existing API, renaming some
functions, add namespacing and fix one bug where the tfrc_rx_hist_alloc was not
freeing the allocated ring entries on the error path.
Original changeset comment from Gerrit:
-----------
This provides a new, self-contained and generic RX history service for TFRC
based protocols.
Details:
* new data structure, initialisation and cleanup routines;
* allocation of dccp_rx_hist entries local to packet_history.c,
as a service exported by the dccp_tfrc_lib module.
* interface to automatically track highest-received seqno;
* receiver-based RTT estimation (needed for instance by RFC 3448, 6.3.1);
* a generic function to test for `data packets' as per RFC 4340, sec. 7.7.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Only the sender sets window counters [RFC 4342, sections 5 and 8.1].
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is in preparation for merging the new rx history code written by Gerrit Renker.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is in preparation for merging the new rx history code written by Gerrit Renker.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
as per RFC 4340, sec. 7.7.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch changes the tfrc_lib module in the following manner:
(1) a dedicated tfrc source file to call the packet history &
loss interval init/exit functions.
(2) a dedicated tfrc_pr_debug macro with toggle switch `tfrc_debug'.
Commiter note: renamed tfrc_module.c to tfrc.c, and made CONFIG_IP_DCCP_CCID3
select IP_DCCP_TFRC_LIB.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on a previous patch by Gerrit Renker.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This removes a redundant test for unexpected packet types. In dccp_rcv_state_process
it is tested twice whether a DCCP-server has received a CloseReq (Step 7):
* first in the combined if-statement,
* then in the call to dccp_rcv_closereq().
The latter is necesssary since dccp_rcv_closereq() is also called from
__dccp_rcv_established().
This patch removes the duplicate test.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds the necessary state transitions for the two forms of passive-close
* PASSIVE_CLOSE - which is entered when a host receives a Close;
* PASSIVE_CLOSEREQ - which is entered when a client receives a CloseReq.
Here is a detailed account of what the patch does in each state.
1) Receiving CloseReq
The pseudo-code in 8.5 says:
Step 13: Process CloseReq
If P.type == CloseReq and S.state < CLOSEREQ,
Generate Close
S.state := CLOSING
Set CLOSING timer.
This means we need to address what to do in CLOSED, LISTEN, REQUEST, RESPOND, PARTOPEN, and OPEN.
* CLOSED: silently ignore - it may be a late or duplicate CloseReq;
* LISTEN/RESPOND: will not appear, since Step 7 is performed first (we know we are the client);
* REQUEST: perform Step 13 directly (no need to enqueue packet);
* OPEN/PARTOPEN: enter PASSIVE_CLOSEREQ so that the application has a chance to process unread data.
When already in PASSIVE_CLOSEREQ, no second CloseReq is enqueued. In any other state, the CloseReq is ignored.
I think that this offers some robustness against rare and pathological cases: e.g. a simultaneous close where
the client sends a Close and the server a CloseReq. The client will then be retransmitting its Close until it
gets the Reset, so ignoring the CloseReq while in state CLOSING is sane.
2) Receiving Close
The code below from 8.5 is unconditional.
Step 14: Process Close
If P.type == Close,
Generate Reset(Closed)
Tear down connection
Drop packet and return
Thus we need to consider all states:
* CLOSED: silently ignore, since this can happen when a retransmitted or late Close arrives;
* LISTEN: dccp_rcv_state_process() will generate a Reset ("No Connection");
* REQUEST: perform Step 14 directly (no need to enqueue packet);
* RESPOND: dccp_check_req() will generate a Reset ("Packet Error") -- left it at that;
* OPEN/PARTOPEN: enter PASSIVE_CLOSE so that application has a chance to process unread data;
* CLOSEREQ: server performed active-close -- perform Step 14;
* CLOSING: simultaneous-close: use a tie-breaker to avoid message ping-pong (see comment);
* PASSIVE_CLOSEREQ: ignore - the peer has a bug (sending first a CloseReq and now a Close);
* TIMEWAIT: packet is ignored.
Note that the condition of receiving a packet in state CLOSED here is different from the condition "there
is no socket for such a connection": the socket still exists, but its state indicates it is unusable.
Last, dccp_finish_passive_close sets either DCCP_CLOSED or DCCP_CLOSING = TCP_CLOSING, so that
sk_stream_wait_close() will wait for the final Reset (which will trigger CLOSING => CLOSED).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds two auxiliary states to deal with passive closes:
* PASSIVE_CLOSE (reached from OPEN via reception of Close) and
* PASSIVE_CLOSEREQ (reached from OPEN via reception of CloseReq)
as internal intermediate states.
These states are used to allow a receiver to process unread data before
acknowledging the received connection-termination-request (the Close/CloseReq).
Without such support, it will happen that passively-closed sockets enter CLOSED
state while there is still unprocessed data in the queue; leading to unexpected
and erratic API behaviour.
PASSIVE_CLOSE has been mapped into TCPF_CLOSE_WAIT, so that the code will
seamlessly work with inet_accept() (which tests for this state).
The state names are thanks to Arnaldo, who suggested this naming scheme
following an earlier revision of this patch.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This fixes a nasty bug: dccp_send_reset() is called by both DCCPv4 and DCCPv6, but uses
inet_sk_rebuild_header() in each case. This leads to unpredictable and weird behaviour:
under some conditions, DCCPv6 Resets were sent, in other not.
The fix is to use the AF-independent rebuild_header routine.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch was based on another made by Gerrit Renker, his changelog was:
------------------------------------------------------
The patch set migrates TFRC TX history to a singly-linked list.
The details are:
* use of a consistent naming scheme (all TFRC functions now begin with `tfrc_');
* allocation and cleanup are taken care of internally;
* provision of a lookup function, which is used by the CCID TX infrastructure
to determine the time a packet was sent (in turn used for RTT sampling);
* integration of the new interface with the present use in CCID3.
------------------------------------------------------
Simplifications I did:
. removing the tfrc_tx_hist_head that had a pointer to the list head and
another for the slabcache.
. No need for creating a slabcache for each CCID that wants to use the TFRC
tx history routines, create a single slabcache when the dccp_tfrc_lib module
init routine is called.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The sock_wake_async() performs a bit different actions
depending on "how" argument. Unfortunately this argument
ony has numerical magic values.
I propose to give names to their constants to help people
reading this function callers understand what's going on
without looking into this function all the time.
I suppose this is 2.6.25 material, but if it's not (or the
naming seems poor/bad/awful), I can rework it against the
current net-2.6 tree.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This continues from the previous patch and adds support for actively aborting
a DCCP connection, using a Reset Code 2, "Aborted" to inform the peer of an
abortive release.
I have tried this in various client/server settings and it works as expected.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This removes one FIXME with regard to close when there is still unread data.
The mechanism is implemented similar to TCP: with regard to DCCP-specifics,
a Reset with Code 2, "Aborted" is sent to the peer.
This corresponds in part to RFC 4340, 8.1.1 and 8.1.5.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>