IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zone->lock is quite an "inner" lock and mostly constrained to page alloc as
well, so like slab locks, it probably isn't something that is critically
important to document here. However unlike slab locks, zone lock could be
used more widely in future, and page_alloc.c might possibly have more
business to do tricky things with pagecache than does slab. So... I don't
think it hurts to document it.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
prepare/commit_write no longer returns AOP_TRUNCATED_PAGE since OCFS2 and
GFS2 were converted to the new aops, so we can make some simplifications
for that.
[michal.k.k.piotrowski@gmail.com: fix warning]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Michal Piotrowski <michal.k.k.piotrowski@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rework the generic block "cont" routines to handle the new aops. Supporting
cont_prepare_write would take quite a lot of code to support, so remove it
instead (and we later convert all filesystems to use it).
write_begin gets passed AOP_FLAG_CONT_EXPAND when called from
generic_cont_expand, so filesystems can avoid the old hacks they used.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Restore the KERNEL_DS optimisation, especially helpful to the 2copy write
path.
This may be a pretty questionable gain in most cases, especially after the
legacy 2copy write path is removed, but it doesn't cost much.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These are intended to replace prepare_write and commit_write with more
flexible alternatives that are also able to avoid the buffered write
deadlock problems efficiently (which prepare_write is unable to do).
[mark.fasheh@oracle.com: API design contributions, code review and fixes]
[akpm@linux-foundation.org: various fixes]
[dmonakhov@sw.ru: new aop block_write_begin fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Dmitriy Monakhov <dmonakhov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an iterator data structure to operate over an iovec. Add usercopy
operators needed by generic_file_buffered_write, and convert that function
over.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Modify the core write() code so that it won't take a pagefault while holding a
lock on the pagecache page. There are a number of different deadlocks possible
if we try to do such a thing:
1. generic_buffered_write
2. lock_page
3. prepare_write
4. unlock_page+vmtruncate
5. copy_from_user
6. mmap_sem(r)
7. handle_mm_fault
8. lock_page (filemap_nopage)
9. commit_write
10. unlock_page
a. sys_munmap / sys_mlock / others
b. mmap_sem(w)
c. make_pages_present
d. get_user_pages
e. handle_mm_fault
f. lock_page (filemap_nopage)
2,8 - recursive deadlock if page is same
2,8;2,8 - ABBA deadlock is page is different
2,6;b,f - ABBA deadlock if page is same
The solution is as follows:
1. If we find the destination page is uptodate, continue as normal, but use
atomic usercopies which do not take pagefaults and do not zero the uncopied
tail of the destination. The destination is already uptodate, so we can
commit_write the full length even if there was a partial copy: it does not
matter that the tail was not modified, because if it is dirtied and written
back to disk it will not cause any problems (uptodate *means* that the
destination page is as new or newer than the copy on disk).
1a. The above requires that fault_in_pages_readable correctly returns access
information, because atomic usercopies cannot distinguish between
non-present pages in a readable mapping, from lack of a readable mapping.
2. If we find the destination page is non uptodate, unlock it (this could be
made slightly more optimal), then allocate a temporary page to copy the
source data into. Relock the destination page and continue with the copy.
However, instead of a usercopy (which might take a fault), copy the data
from the pinned temporary page via the kernel address space.
(also, rename maxlen to seglen, because it was confusing)
This increases the CPU/memory copy cost by almost 50% on the affected
workloads. That will be solved by introducing a new set of pagecache write
aops in a subsequent patch.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hide some of the open-coded nr_segs tests into the iovec helpers. This is all
to simplify generic_file_buffered_write, because that gets more complex in the
next patch.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Quite a bit of code is used in maintaining these "cached pages" that are
probably pretty unlikely to get used. It would require a narrow race where
the page is inserted concurrently while this process is allocating a page
in order to create the spare page. Then a multi-page write into an uncached
part of the file, to make use of it.
Next, the buffered write path (and others) uses its own LRU pagevec when it
should be just using the per-CPU LRU pagevec (which will cut down on both data
and code size cacheline footprint). Also, these private LRU pagevecs are
emptied after just a very short time, in contrast with the per-CPU pagevecs
that are persistent. Net result: 7.3 times fewer lru_lock acquisitions required
to add the pages to pagecache for a bulk write (in 4K chunks).
[this gets rid of some cond_resched() calls in readahead.c and mpage.c due
to clashes in -mm. What put them there, and why? ]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If prepare_write fails with AOP_TRUNCATED_PAGE, or if commit_write fails, then
we may have failed the write operation despite prepare_write having
instantiated blocks past i_size. Fix this, and consolidate the trimming into
one place.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow CONFIG_DEBUG_VM to switch off the prefaulting logic, to simulate the
Makes the race much easier to hit.
This is useful for demonstration and testing purposes, but is removed in a
subsequent patch.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename some variables and fix some types.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 6527c2bdf1, which
fixed the following bug:
When prefaulting in the pages in generic_file_buffered_write(), we only
faulted in the pages for the firts segment of the iovec. If the second of
successive segment described a mmapping of the page into which we're
write()ing, and that page is not up-to-date, the fault handler tries to lock
the already-locked page (to bring it up to date) and deadlocks.
An exploit for this bug is in writev-deadlock-demo.c, in
http://www.zip.com.au/~akpm/linux/patches/stuff/ext3-tools.tar.gz.
(These demos assume blocksize < PAGE_CACHE_SIZE).
The problem with this fix is that it takes the kernel back to doing a single
prepare_write()/commit_write() per iovec segment. So in the worst case we'll
run prepare_write+commit_write 1024 times where we previously would have run
it once. The other problem with the fix is that it fix all the locking problems.
<insert numbers obtained via ext3-tools's writev-speed.c here>
And apparently this change killed NFS overwrite performance, because, I
suppose, it talks to the server for each prepare_write+commit_write.
So just back that patch out - we'll be fixing the deadlock by other means.
Nick says: also it only ever actually papered over the bug, because after
faulting in the pages, they might be unmapped or reclaimed.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 81b0c87133, which was
a bugfix against 6527c2bdf1 ("[PATCH]
generic_file_buffered_write(): deadlock on vectored write"), which we
also revert.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert the patch from Neil Brown to optimise NFSD writev handling.
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
find_lock_page does not need to recheck ->index because if the page is in the
right mapping then the index must be the same. Also, tree_lock does not need
to be retaken after the page is locked in order to test that ->mapping has not
changed, because holding the page lock pins its mapping.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The local copy of ra in do_generic_mapping_read() can now go away.
It predates readanead(req_size). In a time when the readahead code was called
on *every* single page. Hence a local has to be made to reduce the chance of
the readahead state being overwritten by a concurrent reader. More details
in: Linux: Random File I/O Regressions In 2.6
<http://kerneltrap.org/node/3039>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Combine the file_ra_state members
unsigned long prev_index
unsigned int prev_offset
into
loff_t prev_pos
It is more consistent and better supports huge files.
Thanks to Peter for the nice proposal!
[akpm@linux-foundation.org: fix shift overflow]
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fold file_ra_state.mmap_hit into file_ra_state.mmap_miss and make it an int.
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
find_lock_page increases page's usage count, we should decrease it
before return VM_FAULT_SIGBUS
Signed-off-by: Yan Zheng<yanzheng@21cn.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
BLOCK: Hide the contents of linux/bio.h if CONFIG_BLOCK=n
sysace: HDIO_GETGEO has it's own method for ages
drivers/block/cpqarray.c: better error handling and kmalloc + memset conversion to k[cz]alloc
drivers/block/cciss.c: kmalloc + memset conversion to kzalloc
Clean up duplicate includes in drivers/block/
Fix remap handling by blktrace
[PATCH] remove mm/filemap.c:file_send_actor()
Minor docbook error since argument name in comment doesn't match function
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix kernel-doc warning:
Warning(linux-2.6.23-rc1-mm1//mm/filemap.c:864): No description found for parameter 'ra'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split ondemand readahead interface into two functions. I think this makes it
a little clearer for non-readahead experts (like Rusty).
Internally they both call ondemand_readahead(), but the page argument is
changed to an obvious boolean flag.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert filemap reads to use on-demand readahead.
The new call scheme is to
- call readahead on non-cached page
- call readahead on look-ahead page
- update prev_index when finished with the read request
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Steven Pratt <slpratt@austin.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch completes Linus's wish that the fault return codes be made into
bit flags, which I agree makes everything nicer. This requires requires
all handle_mm_fault callers to be modified (possibly the modifications
should go further and do things like fault accounting in handle_mm_fault --
however that would be for another patch).
[akpm@linux-foundation.org: fix alpha build]
[akpm@linux-foundation.org: fix s390 build]
[akpm@linux-foundation.org: fix sparc build]
[akpm@linux-foundation.org: fix sparc64 build]
[akpm@linux-foundation.org: fix ia64 build]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Bryan Wu <bryan.wu@analog.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Matthew Wilcox <willy@debian.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Still apparently needs some ARM and PPC loving - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change ->fault prototype. We now return an int, which contains
VM_FAULT_xxx code in the low byte, and FAULT_RET_xxx code in the next byte.
FAULT_RET_ code tells the VM whether a page was found, whether it has been
locked, and potentially other things. This is not quite the way he wanted
it yet, but that's changed in the next patch (which requires changes to
arch code).
This means we no longer set VM_CAN_INVALIDATE in the vma in order to say
that a page is locked which requires filemap_nopage to go away (because we
can no longer remain backward compatible without that flag), but we were
going to do that anyway.
struct fault_data is renamed to struct vm_fault as Linus asked. address
is now a void __user * that we should firmly encourage drivers not to use
without really good reason.
The page is now returned via a page pointer in the vm_fault struct.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes
the virtual address -> file offset differently from linear mappings.
->populate is a layering violation because the filesystem/pagecache code
should need to know anything about the virtual memory mapping. The hitch here
is that the ->nopage handler didn't pass down enough information (ie. pgoff).
But it is more logical to pass pgoff rather than have the ->nopage function
calculate it itself anyway (because that's a similar layering violation).
Having the populate handler install the pte itself is likewise a nasty thing
to be doing.
This patch introduces a new fault handler that replaces ->nopage and
->populate and (later) ->nopfn. Most of the old mechanism is still in place
so there is a lot of duplication and nice cleanups that can be removed if
everyone switches over.
The rationale for doing this in the first place is that nonlinear mappings are
subject to the pagefault vs invalidate/truncate race too, and it seemed stupid
to duplicate the synchronisation logic rather than just consolidate the two.
After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in
pagecache. Seems like a fringe functionality anyway.
NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no
users have hit mainline yet.
[akpm@linux-foundation.org: cleanup]
[randy.dunlap@oracle.com: doc. fixes for readahead]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the race between invalidate_inode_pages and do_no_page.
Andrea Arcangeli identified a subtle race between invalidation of pages from
pagecache with userspace mappings, and do_no_page.
The issue is that invalidation has to shoot down all mappings to the page,
before it can be discarded from the pagecache. Between shooting down ptes to
a particular page, and actually dropping the struct page from the pagecache,
do_no_page from any process might fault on that page and establish a new
mapping to the page just before it gets discarded from the pagecache.
The most common case where such invalidation is used is in file truncation.
This case was catered for by doing a sort of open-coded seqlock between the
file's i_size, and its truncate_count.
Truncation will decrease i_size, then increment truncate_count before
unmapping userspace pages; do_no_page will read truncate_count, then find the
page if it is within i_size, and then check truncate_count under the page
table lock and back out and retry if it had subsequently been changed (ptl
will serialise against unmapping, and ensure a potentially updated
truncate_count is actually visible).
Complexity and documentation issues aside, the locking protocol fails in the
case where we would like to invalidate pagecache inside i_size. do_no_page
can come in anytime and filemap_nopage is not aware of the invalidation in
progress (as it is when it is outside i_size). The end result is that
dangling (->mapping == NULL) pages that appear to be from a particular file
may be mapped into userspace with nonsense data. Valid mappings to the same
place will see a different page.
Andrea implemented two working fixes, one using a real seqlock, another using
a page->flags bit. He also proposed using the page lock in do_no_page, but
that was initially considered too heavyweight. However, it is not a global or
per-file lock, and the page cacheline is modified in do_no_page to increment
_count and _mapcount anyway, so a further modification should not be a large
performance hit. Scalability is not an issue.
This patch implements this latter approach. ->nopage implementations return
with the page locked if it is possible for their underlying file to be
invalidated (in that case, they must set a special vm_flags bit to indicate
so). do_no_page only unlocks the page after setting up the mapping
completely. invalidation is excluded because it holds the page lock during
invalidation of each page (and ensures that the page is not mapped while
holding the lock).
This also allows significant simplifications in do_no_page, because we have
the page locked in the right place in the pagecache from the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_generic_mapping_read currently samples the i_size at the start and doesn't
do so again unless it needs to call ->readpage to load a page. After
->readpage it has to re-sample i_size as a truncate may have caused that page
to be filled with zeros, and the read() call should not see these.
However there are other activities that might cause ->readpage to be called on
a page between the time that do_generic_mapping_read samples i_size and when
it finds that it has an uptodate page. These include at least read-ahead and
possibly another thread performing a read.
So do_generic_mapping_read must sample i_size *after* it has an uptodate page.
Thus the current sampling at the start and after a read can be replaced with
a sampling before the copy-out.
The same change applied to __generic_file_splice_read.
Note that this fixes any race with truncate_complete_page, but does not fix a
possible race with truncate_partial_page. If a partial truncate happens after
do_generic_mapping_read samples i_size and before the copy_out, the nuls that
truncate_partial_page place in the page could be copied out incorrectly.
I think the best fix for that is to *not* zero out parts of the page in
truncate_partial_page, but rather to zero out the tail of a page when
increasing i_size.
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Jens Axboe <jens.axboe@oracle.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some users have been having problems with utilities like cp or dd dumping
core when they try to copy a file that's too large for the destination
filesystem (typically, > 4gb). Apparently, some defunct standards required
SIGXFSZ to be sent in such circumstances, but SUS only requires/allows it
for when a written file exceeds the process's resource limits. I'd like to
limit SIGXFSZs to the bare minimum required by SUS.
Patch sent per http://lkml.org/lkml/2007/4/10/302
Signed-off-by: Micah Cowan <micahcowan@ubuntu.com>
Acked-by: Alan Cox <alan@redhat.com>
Cc: <reiserfs-dev@namesys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The do_loop_readv_writev implementation of readv breaks out of the loop as
soon as a single read request didn't fill it's buffer:
if (nr != len)
break;
The generic_file_aio_read version doesn't. So if it hits EOF before the end
of the list of buffers, it will try again on the next buffer. If the file was
extended in the mean time, this will produce a bad result.
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a bugcheck for Andrea's pagefault vs invalidate race. This is triggerable
for both linear and nonlinear pages with a userspace test harness (using
direct IO and truncate, respectively).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a post-2.6.21 regression.
read_cache_page_async() has two invocations of mark_page_accessed() which will
launch pages right onto the active list.
Remove the first one, keeping the latter one. This avoids marking unwanted
pages active (in the retry loop).
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We call alloc_page where we should be calling __page_cache_alloc.
__page_cache_alloc performs cpuset memory spreading. alloc_page does not.
There is no reason that pages allocated via find_or_create should be
exempt.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 6fe6900e1e introduced a nasty bug
in read_cache_page_async().
It added a "mark_page_accessed(page)" at the final return path in
read_cache_page_async(). But in error cases, 'page' holds the error
code, and you can't mark it accessed.
[ and Glauber de Oliveira Costa points out that we can use a return
instead of adding more goto's ]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Export a couple of core functions for AFS write support to use:
find_get_pages_contig()
find_get_pages_tag()
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove do_sync_file_range() and convert callers to just use
do_sync_mapping_range().
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename file_ra_state.prev_page to prev_index and file_ra_state.offset to
prev_offset. Also update of prev_index in do_generic_mapping_read() is now
moved close to the update of prev_offset.
[wfg@mail.ustc.edu.cn: fix it]
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce ra.offset and store in it an offset where the previous read
ended. This way we can detect whether reads are really sequential (and
thus we should not mark the page as accessed repeatedly) or whether they
are random and just happen to be in the same page (and the page should
really be marked accessed again).
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Identical block is duplicated twice: contrary to the comment, we have been
re-reading the page *twice* in filemap_nopage rather than once.
If any retry logic or anything is needed, it belongs in lower levels anyway.
Only retry once. Linus agrees.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ensure pages are uptodate after returning from read_cache_page, which allows
us to cut out most of the filesystem-internal PageUptodate calls.
I didn't have a great look down the call chains, but this appears to fixes 7
possible use-before uptodate in hfs, 2 in hfsplus, 1 in jfs, a few in
ecryptfs, 1 in jffs2, and a possible cleared data overwritten with readpage in
block2mtd. All depending on whether the filler is async and/or can return
with a !uptodate page.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes a user-triggerable oops that was reported by Leonid
Ananiev as archived at http://lkml.org/lkml/2007/2/8/337.
dio writes invalidate clean pages that intersect the written region so that
subsequent buffered reads go to disk to read the new data. If this fails
the interface tries to tell the caller that the cache is inconsistent by
returning EIO.
Before this patch we had the problem where this invalidation failure would
clobber -EIOCBQUEUED as it made its way from fs/direct-io.c to fs/aio.c.
Both fs/aio.c and bio completion call aio_complete() and we reference freed
memory, usually oopsing.
This patch addresses this problem by invalidating before the write so that
we can cleanly return -EIO before ->direct_IO() has had a chance to return
-EIOCBQUEUED.
There is a compromise here. During the dio write we can fault in mmap()ed
pages which intersect the written range with get_user_pages() if the user
provided them for the source buffer. This is a crazy thing to do, but we
can make it mostly work in most cases by trying the invalidation again.
The compromise is that we won't return an error if this second invalidation
fails if it's an AIO write and we have -EIOCBQUEUED.
This was tested by having two processes race performing large O_DIRECT and
buffered ordered writes. Within minutes ext3 would see a race between
ext3_releasepage() and jbd holding a reference on ordered data buffers and
would cause invalidation to fail, panicing the box. The test can be found
in the 'aio_dio_bugs' test group in test.kernel.org/autotest. After this
patch the test passes.
Signed-off-by: Zach Brown <zach.brown@oracle.com>
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
Cc: Leonid Ananiev <leonid.i.ananiev@linux.intel.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When NFSD receives a write request, the data is typically in a number of
1448 byte segments and writev is used to collect them together.
Unfortunately, generic_file_buffered_write passes these to the filesystem
one at a time, so an e.g. 32K over-write becomes a series of partial-page
writes to each page, causing the filesystem to have to pre-read those pages
- wasted effort.
generic_file_buffered_write handles one segment of the vector at a time as
it has to pre-fault in each segment to avoid deadlocks. When writing from
kernel-space (and nfsd does) this is not an issue, so
generic_file_buffered_write does not need to break and iovec from nfsd into
little pieces.
This patch avoids the splitting when get_fs is KERNEL_DS as it is
from NFSd.
This issue was introduced by commit 6527c2bdf1
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Norman Weathers <norman.r.weathers@conocophillips.com>
Cc: Vladimir V. Saveliev <vs@namesys.com>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>