IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
That's a leftover from the time where x86 supported SPARSE_IRQ=n.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20140507154338.967285614@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No more users. Remove the cruft
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20140507154336.760446122@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
ia64 and x86 share this driver. x86 is moving to a different irq
allocation and ia64 keeps its private irq_create/destroy stuff.
Use macros to redirect to one or the other. Yes, macros to avoid
include hell.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Joerg Roedel <joro@8bytes.org>
Cc: x86@kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20140507154336.372289825@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No need to expose this outside of the ioapic code. The dynamic
allocations are guaranteed not to happen in the gsi space. See commit
62a08ae2a.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20140507154335.959870037@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No functional change just less crap.
This does not replace the requirement to move x86 to irq domains, but
it limits the mess to some degree.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20140507154335.749579081@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No functional change. The request to allocate the irq above
NR_IRQS_LEGACY is completely pointless as the implementation enforces
that the dynamic allocations are above the GSI interrupts, which
includes the legacy PIT irqs.
This does not replace the requirement to move x86 to irq domains, but
it limits the mess to some degree.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20140507154335.252789823@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the new interfaces. No functional change.
This does not replace the requirement to move x86 to irq domains, but
it limits the mess to some degree.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20140507154334.991589924@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This is just a cleanup to get rid of the create/destroy_irq variants
which were designed in hell.
The long term solution for x86 is to switch over to irq domains and
cleanup the whole vector allocation mess.
The generic irq_alloc_hwirqs() interface deliberately prevents
multi-MSI vector allocation to further enforce the irq domain
conversion (aside of the desire to support ioapic hotplug).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20140507154334.482904047@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Split bpf_jit_compile() into two functions to improve readability
of for(pass++) loop. The change follows similar style of JIT compilers
for arm, powerpc, s390
The body of new do_jit() was not reformatted to reduce noise
in this patch, since the following patch replaces most of it.
Tested with BPF testsuite.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We can now enable the 64bit option for the Goldfish 64bit emulator.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
_PAGE_IOMAP is used in xen_remap_domain_mfn_range() to prevent the
pfn_pte() call in remap_area_mfn_pte_fn() from using the p2m to translate
the MFN. If mfn_pte() is used instead, the p2m look up is avoided and
the use of _PAGE_IOMAP is no longer needed.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
PCI devices may have BARs located above the end of RAM so mark such
frames as identity frames in the p2m (instead of the default of
missing).
PFNs outside the p2m (above MAX_P2M_PFN) are also considered to be
identity frames for the same reason.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
In xen_add_extra_mem(), if the WARN() checks for bad MFNs trigger it is
likely that they will trigger at lot, spamming the log.
Use WARN_ONCE() instead.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Large (multi-GB) identity ranges currently require a unique middle page
(filled with p2m_identity entries) per 1 GB region.
Similar to the common p2m_mid_missing middle page for large missing
regions, introduce a p2m_mid_identity page (filled with p2m_identity
entries) which can be used instead.
set_phys_range_identity() thus only needs to allocate new middle pages
at the beginning and end of the range.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Allow set_phys_range_identity() to work with a range that overlaps
MAX_P2M_PFN by clamping pfn_e to MAX_P2M_PFN.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
early_p2m_alloc_middle() allocates a new leaf page and
early_p2m_alloc() allocates a new middle page. This is confusing.
Swap the names so they match what the functions actually do.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Execution is not going to continue after telling Xen about the crash.
Let other panic notifiers run by postponing the final hypercall as much
as possible.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Checkin:
b3b42ac2cbae x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels
disabled 16-bit segments on 64-bit kernels due to an information
leak. However, it does seem that people are genuinely using Wine to
run old 16-bit Windows programs on Linux.
A proper fix for this ("espfix64") is coming in the upcoming merge
window, but as a temporary fix, create a sysctl to allow the
administrator to re-enable support for 16-bit segments.
It adds a "/proc/sys/abi/ldt16" sysctl that defaults to zero (off). If
you hit this issue and care about your old Windows program more than
you care about a kernel stack address information leak, you can do
echo 1 > /proc/sys/abi/ldt16
as root (add it to your startup scripts), and you should be ok.
The sysctl table is only added if you have COMPAT support enabled on
x86-64, but I assume anybody who runs old windows binaries very much
does that ;)
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/CA%2B55aFw9BPoD10U1LfHbOMpHWZkvJTkMcfCs9s3urPr1YyWBxw@mail.gmail.com
Cc: <stable@vger.kernel.org>
Updating system_time from the kernel clock once master clock
has been enabled can result in time backwards event, in case
kernel clock frequency is lower than TSC frequency.
Disable master clock in case it is necessary to update it
from the resume path.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As the mcount code gets more complex, it really does not belong
in the entry.S file. By moving it into its own file "mcount.S"
keeps things a bit cleaner.
Link: http://lkml.kernel.org/p/20140508152152.2130e8cf@gandalf.local.home
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
As the decision to what needs to be done (converting a call to the
ftrace_caller to ftrace_caller_regs or to convert from ftrace_caller_regs
to ftrace_caller) can easily be determined from the rec->flags of
FTRACE_FL_REGS and FTRACE_FL_REGS_EN, there's no need to have the
ftrace_check_record() return either a UPDATE_MODIFY_CALL_REGS or a
UPDATE_MODIFY_CALL. Just he latter is enough. This added flag causes
more complexity than is required. Remove it.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Move and rename get_ftrace_addr() and get_ftrace_addr_old() to
ftrace_get_addr_new() and ftrace_get_addr_curr() respectively.
This moves these two helper functions in the generic code out from
the arch specific code, and renames them to have a better generic
name. This will allow other archs to use them as well as makes it
a bit easier to work on getting separate trampolines for different
functions.
ftrace_get_addr_new() returns the trampoline address that the mcount
call address will be converted to.
ftrace_get_addr_curr() returns the trampoline address of what the
mcount call address currently jumps to.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The add_breakpoint() code in the ftrace updating gets the address
of what the call will become, but if the mcount address is changing
from regs to non-regs ftrace_caller or vice versa, it will use what
the record currently is.
This is rather silly as the code should always use what is currently
there regardless of if it's changing the regs function or just converting
to a nop.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If the probed insn triggers a trap, ->si_addr = regs->ip is technically
correct, but this is not what the signal handler wants; we need to pass
the address of the probed insn, not the address of xol slot.
Add the new arch-agnostic helper, uprobe_get_trap_addr(), and change
fill_trap_info() and math_error() to use it. !CONFIG_UPROBES case in
uprobes.h uses a macro to avoid include hell and ensure that it can be
compiled even if an architecture doesn't define instruction_pointer().
Test-case:
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
extern void probe_div(void);
void sigh(int sig, siginfo_t *info, void *c)
{
int passed = (info->si_addr == probe_div);
printf(passed ? "PASS\n" : "FAIL\n");
_exit(!passed);
}
int main(void)
{
struct sigaction sa = {
.sa_sigaction = sigh,
.sa_flags = SA_SIGINFO,
};
sigaction(SIGFPE, &sa, NULL);
asm (
"xor %ecx,%ecx\n"
".globl probe_div; probe_div:\n"
"idiv %ecx\n"
);
return 0;
}
it fails if probe_div() is probed.
Note: show_unhandled_signals users should probably use this helper too,
but we need to cleanup them first.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Move the callsite of fill_trap_info() into do_error_trap() and remove
the "siginfo_t *info" argument.
This obviously breaks DO_ERROR() which passed info == NULL, we simply
change fill_trap_info() to return "siginfo_t *" and add the "default"
case which returns SEND_SIG_PRIV.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Extract the fill-siginfo code from DO_ERROR_INFO() into the new helper,
fill_trap_info().
It can calculate si_code and si_addr looking at trapnr, so we can remove
these arguments from DO_ERROR_INFO() and simplify the source code. The
generated code is the same, __builtin_constant_p(trapnr) == T.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Move the common code from DO_ERROR() and DO_ERROR_INFO() into the new
helper, do_error_trap(). This simplifies define's and shaves 527 bytes
from traps.o.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
force_sig() is just force_sig_info(SEND_SIG_PRIV). Imho it should die,
we have too many ugly "send signal" helpers.
And do_trap() looks just ugly because it uses force_sig_info() or
force_sig() depending on info != NULL.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Before this patch, instructions such as div, mul, shifts with count
in CL, cmpxchg are mishandled.
This patch adds vex prefix handling. In particular, it avoids colliding
with register operand encoded in vex.vvvv field.
Since we need to avoid two possible register operands, the selection of
scratch register needs to be from at least three registers.
After looking through a lot of CPU docs, it looks like the safest choice
is SI,DI,BX. Selecting BX needs care to not collide with implicit use of
BX by cmpxchg8b.
Test-case:
#include <stdio.h>
static const char *const pass[] = { "FAIL", "pass" };
long two = 2;
void test1(void)
{
long ax = 0, dx = 0;
asm volatile("\n"
" xor %%edx,%%edx\n"
" lea 2(%%edx),%%eax\n"
// We divide 2 by 2. Result (in eax) should be 1:
" probe1: .globl probe1\n"
" divl two(%%rip)\n"
// If we have a bug (eax mangled on entry) the result will be 2,
// because eax gets restored by probe machinery.
: "=a" (ax), "=d" (dx) /*out*/
: "0" (ax), "1" (dx) /*in*/
: "memory" /*clobber*/
);
dprintf(2, "%s: %s\n", __func__,
pass[ax == 1]
);
}
long val2 = 0;
void test2(void)
{
long old_val = val2;
long ax = 0, dx = 0;
asm volatile("\n"
" mov val2,%%eax\n" // eax := val2
" lea 1(%%eax),%%edx\n" // edx := eax+1
// eax is equal to val2. cmpxchg should store edx to val2:
" probe2: .globl probe2\n"
" cmpxchg %%edx,val2(%%rip)\n"
// If we have a bug (eax mangled on entry), val2 will stay unchanged
: "=a" (ax), "=d" (dx) /*out*/
: "0" (ax), "1" (dx) /*in*/
: "memory" /*clobber*/
);
dprintf(2, "%s: %s\n", __func__,
pass[val2 == old_val + 1]
);
}
long val3[2] = {0,0};
void test3(void)
{
long old_val = val3[0];
long ax = 0, dx = 0;
asm volatile("\n"
" mov val3,%%eax\n" // edx:eax := val3
" mov val3+4,%%edx\n"
" mov %%eax,%%ebx\n" // ecx:ebx := edx:eax + 1
" mov %%edx,%%ecx\n"
" add $1,%%ebx\n"
" adc $0,%%ecx\n"
// edx:eax is equal to val3. cmpxchg8b should store ecx:ebx to val3:
" probe3: .globl probe3\n"
" cmpxchg8b val3(%%rip)\n"
// If we have a bug (edx:eax mangled on entry), val3 will stay unchanged.
// If ecx:edx in mangled, val3 will get wrong value.
: "=a" (ax), "=d" (dx) /*out*/
: "0" (ax), "1" (dx) /*in*/
: "cx", "bx", "memory" /*clobber*/
);
dprintf(2, "%s: %s\n", __func__,
pass[val3[0] == old_val + 1 && val3[1] == 0]
);
}
int main(int argc, char **argv)
{
test1();
test2();
test3();
return 0;
}
Before this change all tests fail if probe{1,2,3} are probed.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
It is possible to replace rip-relative addressing mode with addressing
mode of the same length: (reg+disp32). This eliminates the need to fix
up immediate and correct for changing instruction length.
And we can kill arch_uprobe->def.riprel_target.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
The invalidation is required in order to maintain proper semantics
under CoW conditions. In scenarios where a process clones several
threads, a thread operating on a core whose DTLB entry for a
particular hugepage has not been invalidated, will be reading from
the hugepage that belongs to the forked child process, even after
hugetlb_cow().
The thread will not see the updated page as long as the stale DTLB
entry remains cached, the thread attempts to write into the page,
the child process exits, or the thread gets migrated to a different
processor.
Signed-off-by: Anthony Iliopoulos <anthony.iliopoulos@huawei.com>
Link: http://lkml.kernel.org/r/20140514092948.GA17391@server-36.huawei.corp
Suggested-by: Shay Goikhman <shay.goikhman@huawei.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org> # v2.6.16+ (!)
bpf_alloc_binary() adds 128 bytes of room to JITed program image
and rounds it up to the nearest page size. If image size is close
to page size (like 4000), it is rounded to two pages:
round_up(4000 + 4 + 128) == 8192
then 'hole' is computed as 8192 - (4000 + 4) = 4188
If prandom_u32() % hole selects a number >= PAGE_SIZE - sizeof(*header)
then kernel will crash during bpf_jit_free():
kernel BUG at arch/x86/mm/pageattr.c:887!
Call Trace:
[<ffffffff81037285>] change_page_attr_set_clr+0x135/0x460
[<ffffffff81694cc0>] ? _raw_spin_unlock_irq+0x30/0x50
[<ffffffff810378ff>] set_memory_rw+0x2f/0x40
[<ffffffffa01a0d8d>] bpf_jit_free_deferred+0x2d/0x60
[<ffffffff8106bf98>] process_one_work+0x1d8/0x6a0
[<ffffffff8106bf38>] ? process_one_work+0x178/0x6a0
[<ffffffff8106c90c>] worker_thread+0x11c/0x370
since bpf_jit_free() does:
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
struct bpf_binary_header *header = (void *)addr;
to compute start address of 'bpf_binary_header'
and header->pages will pass junk to:
set_memory_rw(addr, header->pages);
Fix it by making sure that &header->image[prandom_u32() % hole] and &header
are in the same page
Fixes: 314beb9bcabfd ("x86: bpf_jit_comp: secure bpf jit against spraying attacks")
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
gen8_stolen_size() is missing __init, so add it.
Also all the intel_stolen_funcs structures can be marked
__initconst.
intel_stolen_ids[] can also be made const if we replace the
__initdata with __initconst.
Cc: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
CHV uses the same bits as SNB/VLV to code the Graphics Mode Select field
(GFX stolen memory size) with the addition of finer granularity modes:
4MB increments from 0x11 (8MB) to 0x1d.
Values strictly above 0x1d are either reserved or not supported.
v2: 4MB increments, not 8MB. 32MB has been omitted from the list of new
values (Ville Syrjälä)
v3: Also correctly interpret GGMS (GTT Graphics Memory Size) (Ville
Syrjälä)
v4: Don't assign a value that needs 20bits or more to a u16 (Rafael
Barbalho)
[vsyrjala: v5: Split from i915 changes and add chv_stolen_funcs]
Cc: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Jani Nikula <jani.nikula@intel.com>
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Reviewed-by: Rafael Barbalho <rafael.barbalho@intel.com>
Tested-by: Rafael Barbalho <rafael.barbalho@intel.com>
Signed-off-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Regression of 346874c9: PAE is set in long mode, but that does not mean
we have valid PDPTRs.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Conflicts:
drivers/net/ethernet/altera/altera_sgdma.c
net/netlink/af_netlink.c
net/sched/cls_api.c
net/sched/sch_api.c
The netlink conflict dealt with moving to netlink_capable() and
netlink_ns_capable() in the 'net' tree vs. supporting 'tc' operations
in non-init namespaces. These were simple transformations from
netlink_capable to netlink_ns_capable.
The Altera driver conflict was simply code removal overlapping some
void pointer cast cleanups in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
New architectures currently have to provide implementations of 5 different
functions: xen_arch_pre_suspend(), xen_arch_post_suspend(),
xen_arch_hvm_post_suspend(), xen_mm_pin_all(), and xen_mm_unpin_all().
Refactor the suspend code to only require xen_arch_pre_suspend() and
xen_arch_post_suspend().
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
One can logically expect that when the user has specified "nordrand",
the user doesn't want any use of the CPU random number generator,
neither RDRAND nor RDSEED, so disable both.
Reported-by: Stephan Mueller <smueller@chronox.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Link: http://lkml.kernel.org/r/21542339.0lFnPSyGRS@myon.chronox.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Added all the MBI units below and their associated read/write
opcodes:
- Host Bridge Arbiter
- Host Bridge
- Remote Management Unit
- Memory Manager & eSRAM
- SoC Unit
Signed-off-by: Ong Boon Leong <boon.leong.ong@intel.com>
Link: http://lkml.kernel.org/r/1399668248-24199-3-git-send-email-david.e.box@linux.intel.com
Signed-off-by: David E. Box <david.e.box@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently drivers that run on non-IOSF systems (Core/Xeon) can't use the IOSF
driver on SOC's without selecting it which forces an unnecessary and limiting
dependency. Provides dummy functions to allow these modules to conditionally
use the driver on IOSF equipped platforms without impacting their ability to
compile and load on non-IOSF platforms. Build default m to ensure availability
on x86 SOC's.
Signed-off-by: David E. Box <david.e.box@linux.intel.com>
Link: http://lkml.kernel.org/r/1399668248-24199-2-git-send-email-david.e.box@linux.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
With tk->wall_to_monotonic.tv_nsec being a 32-bit value on 32-bit
systems, (tk->wall_to_monotonic.tv_nsec << tk->shift) in update_vsyscall()
may lose upper bits or, worse, add them since compiler will do this:
(u64)(tk->wall_to_monotonic.tv_nsec << tk->shift)
instead of
((u64)tk->wall_to_monotonic.tv_nsec << tk->shift)
So if, for example, tv_nsec is 0x800000 and shift is 8 we will end up
with 0xffffffff80000000 instead of 0x80000000. And then we are stuck in
the subsequent 'while' loop.
We need an explicit cast.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/1399648287-15178-1-git-send-email-boris.ostrovsky@oracle.com
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: <stable@vger.kernel.org> # v3.14
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The spuriously added semicolon didn't have any effect because the
macro isn't currently in use.
c0a639ad0bc6b178b46996bd1f821a04643e2bde
Signed-off-by: Andres Freund <andres@anarazel.de>
Link: http://lkml.kernel.org/r/1399598957-7011-3-git-send-email-andres@anarazel.de
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Due to a typo the msr accessor function introduced in
22085a66c2fab6cf9b9393c056a3600a6b4735de didn't have any lasting
effects because they accidentally wrote the old value back.
After c0a639ad0bc6b178b46996bd1f821a04643e2bde this at the very least
this causes cpuid limits not to be lifted on some cpus leading to
missing capabilities for those.
Signed-off-by: Andres Freund <andres@anarazel.de>
Link: http://lkml.kernel.org/r/1399598957-7011-2-git-send-email-andres@anarazel.de
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Given the fact that we removed inclusion of boot.h from boot/string.c
does not look like we need misc.h inclusion in compressed/string.c. So
remove it.
misc.h was also pulling in string_32.h which in turn had macros for
memcmp and memcpy. So we don't need to #undef memcmp and memcpy anymore.
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: http://lkml.kernel.org/r/1398447972-27896-3-git-send-email-vgoyal@redhat.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>