Commit Graph

564 Commits

Author SHA1 Message Date
Michal Hocko
ebd6372358 hugetlb, mempolicy: fix the mbind hugetlb migration
do_mbind migration code relies on alloc_huge_page_noerr for hugetlb
pages.  alloc_huge_page_noerr uses alloc_huge_page which is a highlevel
allocation function which has to take care of reserves, overcommit or
hugetlb cgroup accounting.  None of that is really required for the page
migration because the new page is only temporal and either will replace
the original page or it will be dropped.  This is essentially as for
other migration call paths and there shouldn't be any reason to handle
mbind in a special way.

The current implementation is even suboptimal because the migration
might fail just because the hugetlb cgroup limit is reached, or the
overcommit is saturated.

Fix this by making mbind like other hugetlb migration paths.  Add a new
migration helper alloc_huge_page_vma as a wrapper around
alloc_huge_page_nodemask with additional mempolicy handling.

alloc_huge_page_noerr has no more users and it can go.

Link: http://lkml.kernel.org/r/20180103093213.26329-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
0c397daea1 mm, hugetlb: further simplify hugetlb allocation API
Hugetlb allocator has several layer of allocation functions depending
and the purpose of the allocation.  There are two allocators depending
on whether the page can be allocated from the page allocator or we need
a contiguous allocator.  This is currently opencoded in
alloc_fresh_huge_page which is the only path that might allocate giga
pages which require the later allocator.  Create alloc_fresh_huge_page
which hides this implementation detail and use it in all callers which
hardcoded the buddy allocator path (__hugetlb_alloc_buddy_huge_page).
This shouldn't introduce any funtional change because both migration and
surplus allocators exlude giga pages explicitly.

While we are at it let's do some renaming.  The current scheme is not
consistent and overly painfull to read and understand.  Get rid of
prefix underscores from most functions.  There is no real reason to make
names longer.

* alloc_fresh_huge_page is the new layer to abstract underlying
  allocator
* __hugetlb_alloc_buddy_huge_page becomes shorter and neater
  alloc_buddy_huge_page.
* Former alloc_fresh_huge_page becomes alloc_pool_huge_page because we put
  the new page directly to the pool
* alloc_surplus_huge_page can drop the opencoded prep_new_huge_page code
  as it uses alloc_fresh_huge_page now
* others lose their excessive prefix underscores to make names shorter

[dan.carpenter@oracle.com: fix double unlock bug in alloc_surplus_huge_page()]
  Link: http://lkml.kernel.org/r/20180109200559.g3iz5kvbdrz7yydp@mwanda
Link: http://lkml.kernel.org/r/20180103093213.26329-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
9980d744a0 mm, hugetlb: get rid of surplus page accounting tricks
alloc_surplus_huge_page increases the pool size and the number of
surplus pages opportunistically to prevent from races with the pool size
change.  See commit d1c3fb1f8f ("hugetlb: introduce
nr_overcommit_hugepages sysctl") for more details.

The resulting code is unnecessarily hairy, cause code duplication and
doesn't allow to share the allocation paths.  Moreover pool size changes
tend to be very seldom so optimizing for them is not really reasonable.
Simplify the code and allow to allocate a fresh surplus page as long as
we are under the overcommit limit and then recheck the condition after
the allocation and drop the new page if the situation has changed.  This
should provide a reasonable guarantee that an abrupt allocation requests
will not go way off the limit.

If we consider races with the pool shrinking and enlarging then we
should be reasonably safe as well.  In the first case we are off by one
in the worst case and the second case should work OK because the page is
not yet visible.  We can waste CPU cycles for the allocation but that
should be acceptable for a relatively rare condition.

Link: http://lkml.kernel.org/r/20180103093213.26329-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
ab5ac90aec mm, hugetlb: do not rely on overcommit limit during migration
hugepage migration relies on __alloc_buddy_huge_page to get a new page.
This has 2 main disadvantages.

1) it doesn't allow to migrate any huge page if the pool is used
   completely which is not an exceptional case as the pool is static and
   unused memory is just wasted.

2) it leads to a weird semantic when migration between two numa nodes
   might increase the pool size of the destination NUMA node while the
   page is in use.  The issue is caused by per NUMA node surplus pages
   tracking (see free_huge_page).

Address both issues by changing the way how we allocate and account
pages allocated for migration.  Those should temporal by definition.  So
we mark them that way (we will abuse page flags in the 3rd page) and
update free_huge_page to free such pages to the page allocator.  Page
migration path then just transfers the temporal status from the new page
to the old one which will be freed on the last reference.  The global
surplus count will never change during this path but we still have to be
careful when migrating a per-node suprlus page.  This is now handled in
move_hugetlb_state which is called from the migration path and it copies
the hugetlb specific page state and fixes up the accounting when needed

Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better
reflect its purpose.  The new allocation routine for the migration path
is __alloc_migrate_huge_page.

The user visible effect of this patch is that migrated pages are really
temporal and they travel between NUMA nodes as per the migration
request:

Before migration
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0

After
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0

with the previous implementation, both nodes would have nr_hugepages:1
until the page is freed.

Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
d9cc948f6f mm, hugetlb: integrate giga hugetlb more naturally to the allocation path
Gigantic hugetlb pages were ingrown to the hugetlb code as an alien
specie with a lot of special casing.  The allocation path is not an
exception.  Unnecessarily so to be honest.  It is true that the
underlying allocator is different but that is an implementation detail.

This patch unifies the hugetlb allocation path that a prepares fresh
pool pages.  alloc_fresh_gigantic_page basically copies
alloc_fresh_huge_page logic so we can move everything there.  This will
simplify set_max_huge_pages which doesn't have to care about what kind
of huge page we allocate.

Link: http://lkml.kernel.org/r/20180103093213.26329-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
af0fb9df78 mm, hugetlb: unify core page allocation accounting and initialization
Patch series "mm, hugetlb: allocation API and migration improvements"

Motivation:

this is a follow up for [3] for the allocation API and [4] for the
hugetlb migration.  It wasn't really easy to split those into two
separate patch series as they share some code.

My primary motivation to touch this code is to make the gigantic pages
migration working.  The giga pages allocation code is just too fragile
and hacked into the hugetlb code now.  This series tries to move giga
pages closer to the first class citizen.  We are not there yet but
having 5 patches is quite a lot already and it will already make the
code much easier to follow.  I will come with other changes on top after
this sees some review.

The first two patches should be trivial to review.  The third patch
changes the way how we migrate huge pages.  Newly allocated pages are a
subject of the overcommit check and they participate surplus accounting
which is quite unfortunate as the changelog explains.  This patch
doesn't change anything wrt.  giga pages.

Patch #4 removes the surplus accounting hack from
__alloc_surplus_huge_page.  I hope I didn't miss anything there and a
deeper review is really due there.

Patch #5 finally unifies allocation paths and giga pages shouldn't be
any special anymore.  There is also some renaming going on as well.

This patch (of 6):

hugetlb allocator has two entry points to the page allocator
 - alloc_fresh_huge_page_node
 - __hugetlb_alloc_buddy_huge_page

The two differ very subtly in two aspects.  The first one doesn't care
about HTLB_BUDDY_* stats and it doesn't initialize the huge page.
prep_new_huge_page is not used because it not only initializes hugetlb
specific stuff but because it also put_page and releases the page to the
hugetlb pool which is not what is required in some contexts.  This makes
things more complicated than necessary.

Simplify things by a) removing the page allocator entry point duplicity
and only keep __hugetlb_alloc_buddy_huge_page and b) make
prep_new_huge_page more reusable by removing the put_page which moves
the page to the allocator pool.  All current callers are updated to call
put_page explicitly.  Later patches will add new callers which won't
need it.

This patch shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20180103093213.26329-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Michal Hocko
d6cb41cc44 mm, hugetlb: remove hugepages_treat_as_movable sysctl
hugepages_treat_as_movable has been introduced by 396faf0303 ("Allow
huge page allocations to use GFP_HIGH_MOVABLE") to allow hugetlb
allocations from ZONE_MOVABLE even when hugetlb pages were not
migrateable.  The purpose of the movable zone was different at the time.
It aimed at reducing memory fragmentation and hugetlb pages being long
lived and large werre not contributing to the fragmentation so it was
acceptable to use the zone back then.

Things have changed though and the primary purpose of the zone became
migratability guarantee.  If we allow non migrateable hugetlb pages to
be in ZONE_MOVABLE memory hotplug might fail to offline the memory.

Remove the knob and only rely on hugepage_migration_supported to allow
movable zones.

Mel said:

: Primarily it was aimed at allowing the hugetlb pool to safely shrink with
: the ability to grow it again.  The use case was for batched jobs, some of
: which needed huge pages and others that did not but didn't want the memory
: useless pinned in the huge pages pool.
:
: I suspect that more users rely on THP than hugetlbfs for flexible use of
: huge pages with fallback options so I think that removing the option
: should be ok.

Link: http://lkml.kernel.org/r/20171003072619.8654-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Alexandru Moise <00moses.alexander00@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Alexandru Moise <00moses.alexander00@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:37 -08:00
Roman Gushchin
fcb2b0c577 mm: show total hugetlb memory consumption in /proc/meminfo
Currently we display some hugepage statistics (total, free, etc) in
/proc/meminfo, but only for default hugepage size (e.g.  2Mb).

If hugepages of different sizes are used (like 2Mb and 1Gb on x86-64),
/proc/meminfo output can be confusing, as non-default sized hugepages
are not reflected at all, and there are no signs that they are existing
and consuming system memory.

To solve this problem, let's display the total amount of memory,
consumed by hugetlb pages of all sized (both free and used).  Let's call
it "Hugetlb", and display size in kB to match generic /proc/meminfo
style.

For example, (1024 2Mb pages and 2 1Gb pages are pre-allocated):
  $ cat /proc/meminfo
  MemTotal:        8168984 kB
  MemFree:         3789276 kB
  <...>
  CmaFree:               0 kB
  HugePages_Total:    1024
  HugePages_Free:     1024
  HugePages_Rsvd:        0
  HugePages_Surp:        0
  Hugepagesize:       2048 kB
  Hugetlb:         4194304 kB
  DirectMap4k:       32632 kB
  DirectMap2M:     4161536 kB
  DirectMap1G:     6291456 kB

Also, this patch updates corresponding docs to reflect Hugetlb entry
meaning and difference between Hugetlb and HugePages_Total * Hugepagesize.

Link: http://lkml.kernel.org/r/20171115231409.12131-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Kirill A. Shutemov
f4f0a3d85b mm/hugetlb: fix NULL-pointer dereference on 5-level paging machine
I made a mistake during converting hugetlb code to 5-level paging: in
huge_pte_alloc() we have to use p4d_alloc(), not p4d_offset().

Otherwise it leads to crash -- NULL-pointer dereference in pud_alloc()
if p4d table is not yet allocated.

It only can happen in 5-level paging mode.  In 4-level paging mode
p4d_offset() always returns pgd, so we are fine.

Link: http://lkml.kernel.org/r/20171122121921.64822-1-kirill.shutemov@linux.intel.com
Fixes: c2febafc67 ("mm: convert generic code to 5-level paging")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>	[4.11+]

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-29 18:40:43 -08:00
Dan Williams
31383c6865 mm, hugetlbfs: introduce ->split() to vm_operations_struct
Patch series "device-dax: fix unaligned munmap handling"

When device-dax is operating in huge-page mode we want it to behave like
hugetlbfs and fail attempts to split vmas into unaligned ranges.  It
would be messy to teach the munmap path about device-dax alignment
constraints in the same (hstate) way that hugetlbfs communicates this
constraint.  Instead, these patches introduce a new ->split() vm
operation.

This patch (of 2):

The device-dax interface has similar constraints as hugetlbfs in that it
requires the munmap path to unmap in huge page aligned units.  Rather
than add more custom vma handling code in __split_vma() introduce a new
vm operation to perform this vma specific check.

Link: http://lkml.kernel.org/r/151130418135.4029.6783191281930729710.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: dee4107924 ("/dev/dax, core: file operations and dax-mmap")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-29 18:40:42 -08:00
Jérôme Glisse
0f10851ea4 mm/mmu_notifier: avoid double notification when it is useless
This patch only affects users of mmu_notifier->invalidate_range callback
which are device drivers related to ATS/PASID, CAPI, IOMMUv2, SVM ...
and it is an optimization for those users.  Everyone else is unaffected
by it.

When clearing a pte/pmd we are given a choice to notify the event under
the page table lock (notify version of *_clear_flush helpers do call the
mmu_notifier_invalidate_range).  But that notification is not necessary
in all cases.

This patch removes almost all cases where it is useless to have a call
to mmu_notifier_invalidate_range before
mmu_notifier_invalidate_range_end.  It also adds documentation in all
those cases explaining why.

Below is a more in depth analysis of why this is fine to do this:

For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when
device use thing like ATS/PASID to get the IOMMU to walk the CPU page
table to access a process virtual address space).  There is only 2 cases
when you need to notify those secondary TLB while holding page table
lock when clearing a pte/pmd:

  A) page backing address is free before mmu_notifier_invalidate_range_end
  B) a page table entry is updated to point to a new page (COW, write fault
     on zero page, __replace_page(), ...)

Case A is obvious you do not want to take the risk for the device to write
to a page that might now be used by something completely different.

Case B is more subtle. For correctness it requires the following sequence
to happen:
  - take page table lock
  - clear page table entry and notify (pmd/pte_huge_clear_flush_notify())
  - set page table entry to point to new page

If clearing the page table entry is not followed by a notify before setting
the new pte/pmd value then you can break memory model like C11 or C++11 for
the device.

Consider the following scenario (device use a feature similar to ATS/
PASID):

Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we
assume they are write protected for COW (other case of B apply too).

[Time N] -----------------------------------------------------------------
CPU-thread-0  {try to write to addrA}
CPU-thread-1  {try to write to addrB}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {read addrA and populate device TLB}
DEV-thread-2  {read addrB and populate device TLB}
[Time N+1] ---------------------------------------------------------------
CPU-thread-0  {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}}
CPU-thread-1  {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+2] ---------------------------------------------------------------
CPU-thread-0  {COW_step1: {update page table point to new page for addrA}}
CPU-thread-1  {COW_step1: {update page table point to new page for addrB}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {preempted}
CPU-thread-2  {write to addrA which is a write to new page}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+3] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {preempted}
CPU-thread-2  {}
CPU-thread-3  {write to addrB which is a write to new page}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+4] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+5] ---------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {read addrA from old page}
DEV-thread-2  {read addrB from new page}

So here because at time N+2 the clear page table entry was not pair with a
notification to invalidate the secondary TLB, the device see the new value
for addrB before seing the new value for addrA.  This break total memory
ordering for the device.

When changing a pte to write protect or to point to a new write protected
page with same content (KSM) it is ok to delay invalidate_range callback
to mmu_notifier_invalidate_range_end() outside the page table lock.  This
is true even if the thread doing page table update is preempted right
after releasing page table lock before calling
mmu_notifier_invalidate_range_end

Thanks to Andrea for thinking of a problematic scenario for COW.

[jglisse@redhat.com: v2]
  Link: http://lkml.kernel.org/r/20171017031003.7481-2-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170901173011.10745-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Alistair Popple <alistair@popple.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:03 -08:00
Andrea Arcangeli
1e39214713 userfaultfd: hugetlbfs: prevent UFFDIO_COPY to fill beyond the end of i_size
This oops:

  kernel BUG at fs/hugetlbfs/inode.c:484!
  RIP: remove_inode_hugepages+0x3d0/0x410
  Call Trace:
    hugetlbfs_setattr+0xd9/0x130
    notify_change+0x292/0x410
    do_truncate+0x65/0xa0
    do_sys_ftruncate.constprop.3+0x11a/0x180
    SyS_ftruncate+0xe/0x10
    tracesys+0xd9/0xde

was caused by the lack of i_size check in hugetlb_mcopy_atomic_pte.

mmap() can still succeed beyond the end of the i_size after vmtruncate
zapped vmas in those ranges, but the faults must not succeed, and that
includes UFFDIO_COPY.

We could differentiate the retval to userland to represent a SIGBUS like
a page fault would do (vs SIGSEGV), but it doesn't seem very useful and
we'd need to pick a random retval as there's no meaningful syscall
retval that would differentiate from SIGSEGV and SIGBUS, there's just
-EFAULT.

Link: http://lkml.kernel.org/r/20171016223914.2421-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-03 07:39:19 -07:00
Linus Torvalds
bac65d9d87 powerpc updates for 4.14
Nothing really major this release, despite quite a lot of activity. Just lots of
 things all over the place.
 
 Some things of note include:
 
  - Access via perf to a new type of PMU (IMC) on Power9, which can count both
    core events as well as nest unit events (Memory controller etc).
 
  - Optimisations to the radix MMU TLB flushing, mostly to avoid unnecessary Page
    Walk Cache (PWC) flushes when the structure of the tree is not changing.
 
  - Reworks/cleanups of do_page_fault() to modernise it and bring it closer to
    other architectures where possible.
 
  - Rework of our page table walking so that THP updates only need to send IPIs
    to CPUs where the affected mm has run, rather than all CPUs.
 
  - The size of our vmalloc area is increased to 56T on 64-bit hash MMU systems.
    This avoids problems with the percpu allocator on systems with very sparse
    NUMA layouts.
 
  - STRICT_KERNEL_RWX support on PPC32.
 
  - A new sched domain topology for Power9, to capture the fact that pairs of
    cores may share an L2 cache.
 
  - Power9 support for VAS, which is a new mechanism for accessing coprocessors,
    and initial support for using it with the NX compression accelerator.
 
  - Major work on the instruction emulation support, adding support for many new
    instructions, and reworking it so it can be used to implement the emulation
    needed to fixup alignment faults.
 
  - Support for guests under PowerVM to use the Power9 XIVE interrupt controller.
 
 And probably that many things again that are almost as interesting, but I had to
 keep the list short. Plus the usual fixes and cleanups as always.
 
 Thanks to:
   Alexey Kardashevskiy, Alistair Popple, Andreas Schwab, Aneesh Kumar K.V, Anju
   T Sudhakar, Arvind Yadav, Balbir Singh, Benjamin Herrenschmidt, Bhumika Goyal,
   Breno Leitao, Bryant G. Ly, Christophe Leroy, Cédric Le Goater, Dan Carpenter,
   Dou Liyang, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand,
   Hannes Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall, LABBE
   Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring, Masahiro
   Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo, Nathan Fontenot,
   Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Rashmica
   Gupta, Rob Herring, Rui Teng, Sam Bobroff, Santosh Sivaraj, Scott Wood,
   Shilpasri G Bhat, Sukadev Bhattiprolu, Suraj Jitindar Singh, Tobin C. Harding,
   Victor Aoqui.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJZr83SAAoJEFHr6jzI4aWA6pUP/3CEaj2bSxNzWIwidqyYjuoS
 O1moEsP0oYH7eBEWVHalYxvo0QPIIAhbFPaFyrOrgtfDH01Szwu9LcCALGb8orC5
 Hg3IY8mpNG3Q1T8wEtTa56Ik4b5ZFty35S5+X9qLNSFoDUqSvGlSsLzhPNN7f2tl
 XFm2hWqd8wXCwDsuVSFBCF61M3SAm+g6NMVNJ+VL2KIDCwBrOZLhKDPRoxLTAuMa
 jjSdjVIozWyXjUrBFi8HVcoOWLxcT1HsNF0tRs51LwY/+Mlj2jAtFtsx+a06HZa6
 f2p/Kcp/MEispSTk064Ap9cC1seXWI18zwZKpCUFqu0Ec2yTAiGdjOWDyYQldIp+
 ttVPSHQ01YrVKwDFTtM9CiA0EET6fVPhWgAPkPfvH5TvtKwGkNdy0b+nQLuWrYip
 BUmOXmjdIG3nujCzA9sv6/uNNhjhj2y+HWwuV7Qo002VFkhgZFL67u2SSUQLpYPj
 PxdkY8pPVq+O+in94oDV3c36dYFF6+g6A6505Vn6eKUm/TLpszRFGkS3bKKA5vtn
 74FR+guV/5RwYJcdZbfm04DgAocl7AfUDxpwRxibt6KtAK2VZKQuw4ugUTgYEd7W
 mL2+AMmPKuajWXAMTHjCZPbUp9gFNyYyBQTFfGVX/XLiM8erKBnGfoa1/KzUJkhr
 fVZLYIO/gzl34PiTIfgD
 =UJtt
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "Nothing really major this release, despite quite a lot of activity.
  Just lots of things all over the place.

  Some things of note include:

   - Access via perf to a new type of PMU (IMC) on Power9, which can
     count both core events as well as nest unit events (Memory
     controller etc).

   - Optimisations to the radix MMU TLB flushing, mostly to avoid
     unnecessary Page Walk Cache (PWC) flushes when the structure of the
     tree is not changing.

   - Reworks/cleanups of do_page_fault() to modernise it and bring it
     closer to other architectures where possible.

   - Rework of our page table walking so that THP updates only need to
     send IPIs to CPUs where the affected mm has run, rather than all
     CPUs.

   - The size of our vmalloc area is increased to 56T on 64-bit hash MMU
     systems. This avoids problems with the percpu allocator on systems
     with very sparse NUMA layouts.

   - STRICT_KERNEL_RWX support on PPC32.

   - A new sched domain topology for Power9, to capture the fact that
     pairs of cores may share an L2 cache.

   - Power9 support for VAS, which is a new mechanism for accessing
     coprocessors, and initial support for using it with the NX
     compression accelerator.

   - Major work on the instruction emulation support, adding support for
     many new instructions, and reworking it so it can be used to
     implement the emulation needed to fixup alignment faults.

   - Support for guests under PowerVM to use the Power9 XIVE interrupt
     controller.

  And probably that many things again that are almost as interesting,
  but I had to keep the list short. Plus the usual fixes and cleanups as
  always.

  Thanks to: Alexey Kardashevskiy, Alistair Popple, Andreas Schwab,
  Aneesh Kumar K.V, Anju T Sudhakar, Arvind Yadav, Balbir Singh,
  Benjamin Herrenschmidt, Bhumika Goyal, Breno Leitao, Bryant G. Ly,
  Christophe Leroy, Cédric Le Goater, Dan Carpenter, Dou Liyang,
  Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand, Hannes
  Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall,
  LABBE Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring,
  Masahiro Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo,
  Nathan Fontenot, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
  Paul Mackerras, Rashmica Gupta, Rob Herring, Rui Teng, Sam Bobroff,
  Santosh Sivaraj, Scott Wood, Shilpasri G Bhat, Sukadev Bhattiprolu,
  Suraj Jitindar Singh, Tobin C. Harding, Victor Aoqui"

* tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (321 commits)
  powerpc/xive: Fix section __init warning
  powerpc: Fix kernel crash in emulation of vector loads and stores
  powerpc/xive: improve debugging macros
  powerpc/xive: add XIVE Exploitation Mode to CAS
  powerpc/xive: introduce H_INT_ESB hcall
  powerpc/xive: add the HW IRQ number under xive_irq_data
  powerpc/xive: introduce xive_esb_write()
  powerpc/xive: rename xive_poke_esb() in xive_esb_read()
  powerpc/xive: guest exploitation of the XIVE interrupt controller
  powerpc/xive: introduce a common routine xive_queue_page_alloc()
  powerpc/sstep: Avoid used uninitialized error
  axonram: Return directly after a failed kzalloc() in axon_ram_probe()
  axonram: Improve a size determination in axon_ram_probe()
  axonram: Delete an error message for a failed memory allocation in axon_ram_probe()
  powerpc/powernv/npu: Move tlb flush before launching ATSD
  powerpc/macintosh: constify wf_sensor_ops structures
  powerpc/iommu: Use permission-specific DEVICE_ATTR variants
  powerpc/eeh: Delete an error out of memory message at init time
  powerpc/mm: Use seq_putc() in two functions
  macintosh: Convert to using %pOF instead of full_name
  ...
2017-09-07 10:15:40 -07:00
Michal Hocko
79b63f12ab mm, hugetlb: do not allocate non-migrateable gigantic pages from movable zones
alloc_gigantic_page doesn't consider movability of the gigantic hugetlb
when scanning eligible ranges for the allocation.  As 1GB hugetlb pages
are not movable currently this can break the movable zone assumption
that all allocations are migrateable and as such break memory hotplug.

Reorganize the code and use the standard zonelist allocations scheme
that we use for standard hugetbl pages.  htlb_alloc_mask will ensure
that only migratable hugetlb pages will ever see a movable zone.

Link: http://lkml.kernel.org/r/20170803083549.21407-1-mhocko@kernel.org
Fixes: 944d9fec8d ("hugetlb: add support for gigantic page allocation at runtime")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:29 -07:00
Arvind Yadav
67e5ed9699 mm/hugetlb.c: constify attribute_group structures
attribute_group are not supposed to change at runtime.  All functions
working with attribute_group provided by <linux/sysfs.h> work with const
attribute_group.  So mark the non-const structs as const.

Link: http://lkml.kernel.org/r/1501157260-3922-1-git-send-email-arvind.yadav.cs@gmail.com
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Punit Agrawal
9b19df292c mm/hugetlb.c: make huge_pte_offset() consistent and document behaviour
When walking the page tables to resolve an address that points to
!p*d_present() entry, huge_pte_offset() returns inconsistent values
depending on the level of page table (PUD or PMD).

It returns NULL in the case of a PUD entry while in the case of a PMD
entry, it returns a pointer to the page table entry.

A similar inconsitency exists when handling swap entries - returns NULL
for a PUD entry while a pointer to the pte_t is retured for the PMD
entry.

Update huge_pte_offset() to make the behaviour consistent - return a
pointer to the pte_t for hugepage or swap entries.  Only return NULL in
instances where we have a p*d_none() entry and the size parameter
doesn't match the hugepage size at this level of the page table.

Document the behaviour to clarify the expected behaviour of this
function.  This is to set clear semantics for architecture specific
implementations of huge_pte_offset().

Discussions on the arm64 implementation of huge_pte_offset()
(http://www.spinics.net/lists/linux-mm/msg133699.html) showed that there
is benefit from returning a pte_t* in the case of p*d_none().

The fault handling code in hugetlb_fault() can handle p*d_none() entries
and saves an extra round trip to huge_pte_alloc().  Other callers of
huge_pte_offset() should be ok as well.

[punit.agrawal@arm.com: v2]
Link: http://lkml.kernel.org/r/20170725154114.24131-2-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:26 -07:00
Aneesh Kumar K.V
e24a1307ba mm/hugetlb: Allow arch to override and call the weak function
When running in guest mode ppc64 supports a different mechanism for hugetlb
allocation/reservation. The LPAR management application called HMC can
be used to reserve a set of hugepages and we pass the details of
reserved pages via device tree to the guest. (more details in
htab_dt_scan_hugepage_blocks()) . We do the memblock_reserve of the range
and later in the boot sequence, we add the reserved range to huge_boot_pages.

But to enable 16G hugetlb on baremetal config (when we are not running as guest)
we want to do memblock reservation during boot. Generic code already does this

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-08-15 23:20:30 +10:00
Andrea Arcangeli
5af10dfd0a userfaultfd: hugetlbfs: remove superfluous page unlock in VM_SHARED case
huge_add_to_page_cache->add_to_page_cache implicitly unlocks the page
before returning in case of errors.

The error returned was -EEXIST by running UFFDIO_COPY on a non-hole
offset of a VM_SHARED hugetlbfs mapping.  It was an userland bug that
triggered it and the kernel must cope with it returning -EEXIST from
ioctl(UFFDIO_COPY) as expected.

  page dumped because: VM_BUG_ON_PAGE(!PageLocked(page))
  kernel BUG at mm/filemap.c:964!
  invalid opcode: 0000 [#1] SMP
  CPU: 1 PID: 22582 Comm: qemu-system-x86 Not tainted 4.11.11-300.fc26.x86_64 #1
  RIP: unlock_page+0x4a/0x50
  Call Trace:
    hugetlb_mcopy_atomic_pte+0xc0/0x320
    mcopy_atomic+0x96f/0xbe0
    userfaultfd_ioctl+0x218/0xe90
    do_vfs_ioctl+0xa5/0x600
    SyS_ioctl+0x79/0x90
    entry_SYSCALL_64_fastpath+0x1a/0xa9

Link: http://lkml.kernel.org/r/20170802165145.22628-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alexey Perevalov <a.perevalov@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10 15:54:06 -07:00
Daniel Jordan
2be7cfed99 mm/hugetlb.c: __get_user_pages ignores certain follow_hugetlb_page errors
Commit 9a291a7c94 ("mm/hugetlb: report -EHWPOISON not -EFAULT when
FOLL_HWPOISON is specified") causes __get_user_pages to ignore certain
errors from follow_hugetlb_page.  After such error, __get_user_pages
subsequently calls faultin_page on the same VMA and start address that
follow_hugetlb_page failed on instead of returning the error immediately
as it should.

In follow_hugetlb_page, when hugetlb_fault returns a value covered under
VM_FAULT_ERROR, follow_hugetlb_page returns it without setting nr_pages
to 0 as __get_user_pages expects in this case, which causes the
following to happen in __get_user_pages: the "while (nr_pages)" check
succeeds, we skip the "if (!vma..." check because we got a VMA the last
time around, we find no page with follow_page_mask, and we call
faultin_page, which calls hugetlb_fault for the second time.

This issue also slightly changes how __get_user_pages works.  Before, it
only returned error if it had made no progress (i = 0).  But now,
follow_hugetlb_page can clobber "i" with an error code since its new
return path doesn't check for progress.  So if "i" is nonzero before a
failing call to follow_hugetlb_page, that indication of progress is lost
and __get_user_pages can return error even if some pages were
successfully pinned.

To fix this, change follow_hugetlb_page so that it updates nr_pages,
allowing __get_user_pages to fail immediately and restoring the "error
only if no progress" behavior to __get_user_pages.

Tested that __get_user_pages returns when expected on error from
hugetlb_fault in follow_hugetlb_page.

Fixes: 9a291a7c94 ("mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified")
Link: http://lkml.kernel.org/r/1500406795-58462-1-git-send-email-daniel.m.jordan@oracle.com
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: James Morse <james.morse@arm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: <stable@vger.kernel.org>	[4.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-02 16:34:46 -07:00
Michal Hocko
dcda9b0471 mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator.  This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER.  It has been always
ignored for smaller sizes.  This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.

Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic.  Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success.  This will work independent of the order and overrides the
default allocator behavior.  Page allocator users have several levels of
guarantee vs.  cost options (take GFP_KERNEL as an example)

 - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
   attempt to free memory at all. The most light weight mode which even
   doesn't kick the background reclaim. Should be used carefully because
   it might deplete the memory and the next user might hit the more
   aggressive reclaim

 - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
   allocation without any attempt to free memory from the current
   context but can wake kswapd to reclaim memory if the zone is below
   the low watermark. Can be used from either atomic contexts or when
   the request is a performance optimization and there is another
   fallback for a slow path.

 - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
   non sleeping allocation with an expensive fallback so it can access
   some portion of memory reserves. Usually used from interrupt/bh
   context with an expensive slow path fallback.

 - GFP_KERNEL - both background and direct reclaim are allowed and the
   _default_ page allocator behavior is used. That means that !costly
   allocation requests are basically nofail but there is no guarantee of
   that behavior so failures have to be checked properly by callers
   (e.g. OOM killer victim is allowed to fail currently).

 - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
   and all allocation requests fail early rather than cause disruptive
   reclaim (one round of reclaim in this implementation). The OOM killer
   is not invoked.

 - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
   behavior and all allocation requests try really hard. The request
   will fail if the reclaim cannot make any progress. The OOM killer
   won't be triggered.

 - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
   and all allocation requests will loop endlessly until they succeed.
   This might be really dangerous especially for larger orders.

Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic.  No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.

This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.

[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
  Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
  Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00
Michal Hocko
3e59fcb0e8 hugetlb: add support for preferred node to alloc_huge_page_nodemask
alloc_huge_page_nodemask tries to allocate from any numa node in the
allowed node mask starting from lower numa nodes.  This might lead to
filling up those low NUMA nodes while others are not used.  We can
reduce this risk by introducing a concept of the preferred node similar
to what we have in the regular page allocator.  We will start allocating
from the preferred nid and then iterate over all allowed nodes in the
zonelist order until we try them all.

This is mimicing the page allocator logic except it operates on per-node
mempools.  dequeue_huge_page_vma already does this so distill the
zonelist logic into a more generic dequeue_huge_page_nodemask and use it
in alloc_huge_page_nodemask.

This will allow us to use proper per numa distance fallback also for
alloc_huge_page_node which can use alloc_huge_page_nodemask now and we
can get rid of alloc_huge_page_node helper which doesn't have any user
anymore.

Link: http://lkml.kernel.org/r/20170622193034.28972-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
Michal Hocko
aaf14e40a3 mm, hugetlb: unclutter hugetlb allocation layers
Patch series "mm, hugetlb: allow proper node fallback dequeue".

While working on a hugetlb migration issue addressed in a separate
patchset[1] I have noticed that the hugetlb allocations from the
preallocated pool are quite subotimal.

 [1] //lkml.kernel.org/r/20170608074553.22152-1-mhocko@kernel.org

There is no fallback mechanism implemented and no notion of preferred
node.  I have tried to work around it but Vlastimil was right to push
back for a more robust solution.  It seems that such a solution is to
reuse zonelist approach we use for the page alloctor.

This series has 3 patches.  The first one tries to make hugetlb
allocation layers more clear.  The second one implements the zonelist
hugetlb pool allocation and introduces a preferred node semantic which
is used by the migration callbacks.  The last patch is a clean up.

This patch (of 3):

Hugetlb allocation path for fresh huge pages is unnecessarily complex
and it mixes different interfaces between layers.

__alloc_buddy_huge_page is the central place to perform a new
allocation.  It checks for the hugetlb overcommit and then relies on
__hugetlb_alloc_buddy_huge_page to invoke the page allocator.  This is
all good except that __alloc_buddy_huge_page pushes vma and address down
the callchain and so __hugetlb_alloc_buddy_huge_page has to deal with
two different allocation modes - one for memory policy and other node
specific (or to make it more obscure node non-specific) requests.

This just screams for a reorganization.

This patch pulls out all the vma specific handling up to
__alloc_buddy_huge_page_with_mpol where it belongs.
__alloc_buddy_huge_page will get nodemask argument and
__hugetlb_alloc_buddy_huge_page will become a trivial wrapper over the
page allocator.

In short:
__alloc_buddy_huge_page_with_mpol - memory policy handling
  __alloc_buddy_huge_page - overcommit handling and accounting
    __hugetlb_alloc_buddy_huge_page - page allocator layer

Also note that __hugetlb_alloc_buddy_huge_page and its cpuset retry loop
is not really needed because the page allocator already handles the
cpusets update.

Finally __hugetlb_alloc_buddy_huge_page had a special case for node
specific allocations (when no policy is applied and there is a node
given).  This has relied on __GFP_THISNODE to not fallback to a different
node.  alloc_huge_page_node is the only caller which relies on this
behavior so move the __GFP_THISNODE there.

Not only does this remove quite some code it also should make those
layers easier to follow and clear wrt responsibilities.

Link: http://lkml.kernel.org/r/20170622193034.28972-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
Matthew Wilcox
c6247f72d4 mm/hugetlb.c: replace memfmt with string_get_size
The hugetlb code has its own function to report human-readable sizes.
Convert it to use the shared string_get_size() function.  This will lead
to a minor difference in user visible output (MiB/GiB instead of MB/GB),
but some would argue that's desirable anyway.

Link: http://lkml.kernel.org/r/20170606190350.GA20010@bombadil.infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
David Rientjes
69ed779a14 mm, hugetlb: schedule when potentially allocating many hugepages
A few hugetlb allocators loop while calling the page allocator and can
potentially prevent rescheduling if the page allocator slowpath is not
utilized.

Conditionally schedule when large numbers of hugepages can be allocated.

Anshuman:
 "Fixes a task which was getting hung while writing like 10000 hugepages
  (16MB on POWER8) into /proc/sys/vm/nr_hugepages."

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1706091535300.66176@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Michal Hocko
4db9b2efe9 hugetlb, memory_hotplug: prefer to use reserved pages for migration
new_node_page will try to use the origin's next NUMA node as the
migration destination for hugetlb pages.  If such a node doesn't have
any preallocated pool it falls back to __alloc_buddy_huge_page_no_mpol
to allocate a surplus page instead.  This is quite subotpimal for any
configuration when hugetlb pages are no distributed to all NUMA nodes
evenly.  Say we have a hotplugable node 4 and spare hugetlb pages are
node 0

  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:10000
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node3/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node4/hugepages/hugepages-2048kB/nr_hugepages:10000
  /sys/devices/system/node/node5/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node6/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node7/hugepages/hugepages-2048kB/nr_hugepages:0

Now we consume the whole pool on node 4 and try to offline this node.
All the allocated pages should be moved to node0 which has enough
preallocated pages to hold them.  With the current implementation
offlining very likely fails because hugetlb allocations during runtime
are much less reliable.

Fix this by reusing the nodemask which excludes migration source and try
to find a first node which has a page in the preallocated pool first and
fall back to __alloc_buddy_huge_page_no_mpol only when the whole pool is
consumed.

[akpm@linux-foundation.org: remove bogus arg from alloc_huge_page_nodemask() stub]
Link: http://lkml.kernel.org/r/20170608074553.22152-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Liam R. Howlett
d715cf804a mm/hugetlb.c: warn the user when issues arise on boot due to hugepages
When the user specifies too many hugepages or an invalid
default_hugepagesz the communication to the user is implicit in the
allocation message.  This patch adds a warning when the desired page
count is not allocated and prints an error when the default_hugepagesz
is invalid on boot.

During boot hugepages will allocate until there is a fraction of the
hugepage size left.  That is, we allocate until either the request is
satisfied or memory for the pages is exhausted.  When memory for the
pages is exhausted, it will most likely lead to the system failing with
the OOM manager not finding enough (or anything) to kill (unless you're
using really big hugepages in the order of 100s of MB or in the GBs).
The user will most likely see the OOM messages much later in the boot
sequence than the implicitly stated message.  Worse yet, you may even
get an OOM for each processor which causes many pages of OOMs on modern
systems.  Although these messages will be printed earlier than the OOM
messages, at least giving the user errors and warnings will highlight
the configuration as an issue.  I'm trying to point the user in the
right direction by providing a more robust statement of what is failing.

During the sysctl or echo command, the user can check the results much
easier than if the system hangs during boot and the scenario of having
nothing to OOM for kernel memory is highly unlikely.

Mike said:
 "Before sending out this patch, I asked Liam off list why he was doing
  it. Was it something he just thought would be useful? Or, was there
  some type of user situation/need. He said that he had been called in
  to assist on several occasions when a system OOMed during boot. In
  almost all of these situations, the user had grossly misconfigured
  huge pages.

  DB users want to pre-allocate just the right amount of huge pages, but
  sometimes they can be really off. In such situations, the huge page
  init code just allocates as many huge pages as it can and reports the
  number allocated. There is no indication that it quit allocating
  because it ran out of memory. Of course, a user could compare the
  number in the message to what they requested on the command line to
  determine if they got all the huge pages they requested. The thought
  was that it would be useful to at least flag this situation. That way,
  the user might be able to better relate the huge page allocation
  failure to the OOM.

  I'm not sure if the e-mail discussion made it obvious that this is
  something he has seen on several occasions.

  I see Michal's point that this will only flag the situation where
  someone configures huge pages very badly. And, a more extensive look
  at the situation of misconfiguring huge pages might be in order. But,
  this has happened on several occasions which led to the creation of
  this patch"

[akpm@linux-foundation.org: reposition memfmt() to avoid forward declaration]
Link: http://lkml.kernel.org/r/20170603005413.10380-1-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: zhongjiang <zhongjiang@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Naoya Horiguchi
ddd40d8a2c mm: hugetlb: delete dequeue_hwpoisoned_huge_page()
dequeue_hwpoisoned_huge_page() is no longer used, so let's remove it.

Link: http://lkml.kernel.org/r/1496305019-5493-9-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Anshuman Khandual
c3114a84f7 mm: hugetlb: soft-offline: dissolve source hugepage after successful migration
Currently hugepage migrated by soft-offline (i.e.  due to correctable
memory errors) is contained as a hugepage, which means many non-error
pages in it are unreusable, i.e.  wasted.

This patch solves this issue by dissolving source hugepages into buddy.
As done in previous patch, PageHWPoison is set only on a head page of
the error hugepage.  Then in dissoliving we move the PageHWPoison flag
to the raw error page so that all healthy subpages return back to buddy.

[arnd@arndb.de: fix warnings: replace some macros with inline functions]
  Link: http://lkml.kernel.org/r/20170609102544.2947326-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/1496305019-5493-5-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Naoya Horiguchi
243abd5b78 mm: hugetlb: prevent reuse of hwpoisoned free hugepages
Patch series "mm: hwpoison: fixlet for hugetlb migration".

This patchset updates the hwpoison/hugetlb code to address 2 reported
issues.

One is madvise(MADV_HWPOISON) failure reported by Intel's lkp robot (see
http://lkml.kernel.org/r/20170417055948.GM31394@yexl-desktop.) First
half was already fixed in mainline, and another half about hugetlb cases
are solved in this series.

Another issue is "narrow-down error affected region into a single 4kB
page instead of a whole hugetlb page" issue, which was tried by Anshuman
(http://lkml.kernel.org/r/20170420110627.12307-1-khandual@linux.vnet.ibm.com)
and I updated it to apply it more widely.

This patch (of 9):

We no longer use MIGRATE_ISOLATE to prevent reuse of hwpoison hugepages
as we did before.  So current dequeue_huge_page_node() doesn't work as
intended because it still uses is_migrate_isolate_page() for this check.
This patch fixes it with PageHWPoison flag.

Link: http://lkml.kernel.org/r/1496305019-5493-2-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Vlastimil Babka
04ec6264f2 mm, page_alloc: pass preferred nid instead of zonelist to allocator
The main allocator function __alloc_pages_nodemask() takes a zonelist
pointer as one of its parameters.  All of its callers directly or
indirectly obtain the zonelist via node_zonelist() using a preferred
node id and gfp_mask.  We can make the code a bit simpler by doing the
zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node
id instead (gfp_mask is already another parameter).

There are some code size benefits thanks to removal of inlined
node_zonelist():

  bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952)

This will also make things simpler if we proceed with converting cpusets
to zonelists.

Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Punit Agrawal
e5251fd430 mm/hugetlb: introduce set_huge_swap_pte_at() helper
set_huge_pte_at(), an architecture callback to populate hugepage ptes,
does not provide the range of virtual memory that is targeted.  This
leads to ambiguity when dealing with swap entries on architectures that
support hugepages consisting of contiguous ptes.

Fix the problem by introducing an overridable helper that is called when
populating the page tables with swap entries.  The size of the targeted
region is provided to the helper to help determine the number of entries
to be updated.

Provide a default implementation that maintains the current behaviour.

[punit.agrawal@arm.com: v4]
  Link: http://lkml.kernel.org/r/20170524115409.31309-8-punit.agrawal@arm.com
[punit.agrawal@arm.com: add an empty definition for set_huge_swap_pte_at()]
  Link: http://lkml.kernel.org/r/20170525171331.31469-1-punit.agrawal@arm.com
Link: http://lkml.kernel.org/r/20170522133604.11392-6-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Punit Agrawal
9386fac34c mm/hugetlb: allow architectures to override huge_pte_clear()
When unmapping a hugepage range, huge_pte_clear() is used to clear the
page table entries that are marked as not present.  huge_pte_clear()
internally just ends up calling pte_clear() which does not correctly
deal with hugepages consisting of contiguous page table entries.

Add a size argument to address this issue and allow architectures to
override huge_pte_clear() by wrapping it in a #ifndef block.

Update s390 implementation with the size parameter as well.

Note that the change only affects huge_pte_clear() - the other generic
hugetlb functions don't need any change.

Link: http://lkml.kernel.org/r/20170522162555.4313-1-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>	[s390 bits]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Punit Agrawal
7868a2087e mm/hugetlb: add size parameter to huge_pte_offset()
A poisoned or migrated hugepage is stored as a swap entry in the page
tables.  On architectures that support hugepages consisting of
contiguous page table entries (such as on arm64) this leads to ambiguity
in determining the page table entry to return in huge_pte_offset() when
a poisoned entry is encountered.

Let's remove the ambiguity by adding a size parameter to convey
additional information about the requested address.  Also fixup the
definition/usage of huge_pte_offset() throughout the tree.

Link: http://lkml.kernel.org/r/20170522133604.11392-4-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Hogan <james.hogan@imgtec.com> (odd fixer:METAG ARCHITECTURE)
Cc: Ralf Baechle <ralf@linux-mips.org> (supporter:MIPS)
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Aneesh Kumar K.V
e1073d1e79 mm/hugetlb: clean up ARCH_HAS_GIGANTIC_PAGE
This moves the #ifdef in C code to a Kconfig dependency.  Also we move
the gigantic_page_supported() function to be arch specific.

This allows architectures to conditionally enable runtime allocation of
gigantic huge page.  Architectures like ppc64 supports different
gigantic huge page size (16G and 1G) based on the translation mode
selected.  This provides an opportunity for ppc64 to enable runtime
allocation only w.r.t 1G hugepage.

No functional change in this patch.

Link: http://lkml.kernel.org/r/1494995292-4443-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:33 -07:00
Aneesh Kumar K.V
4dc71451a2 mm/follow_page_mask: add support for hugepage directory entry
Architectures like ppc64 supports hugepage size that is not mapped to
any of of the page table levels.  Instead they add an alternate page
table entry format called hugepage directory (hugepd).  hugepd indicates
that the page table entry maps to a set of hugetlb pages.  Add support
for this in generic follow_page_mask code.  We already support this
format in the generic gup code.

The default implementation prints warning and returns NULL.  We will add
ppc64 support in later patches

Link: http://lkml.kernel.org/r/1494926612-23928-7-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:33 -07:00
Anshuman Khandual
faaa5b62d3 mm/follow_page_mask: add support for hugetlb pgd entries
ppc64 supports pgd hugetlb entries.  Add code to handle hugetlb pgd
entries to follow_page_mask so that ppc64 can switch to it to handle
hugetlbe entries.

Link: http://lkml.kernel.org/r/1494926612-23928-5-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:33 -07:00
Aneesh Kumar K.V
d5ed7444da mm/hugetlb: export hugetlb_entry_migration helper
We will be using this later from the ppc64 code.  Change the return type
to bool.

Link: http://lkml.kernel.org/r/1494926612-23928-4-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:33 -07:00
Anshuman Khandual
94310cbcaa mm/madvise: enable (soft|hard) offline of HugeTLB pages at PGD level
Though migrating gigantic HugeTLB pages does not sound much like real
world use case, they can be affected by memory errors.  Hence migration
at the PGD level HugeTLB pages should be supported just to enable soft
and hard offline use cases.

While allocating the new gigantic HugeTLB page, it should not matter
whether new page comes from the same node or not.  There would be very
few gigantic pages on the system afterall, we should not be bothered
about node locality when trying to save a big page from crashing.

This change renames dequeu_huge_page_node() function as dequeue_huge
_page_node_exact() preserving it's original functionality.  Now the new
dequeue_huge_page_node() function scans through all available online nodes
to allocate a huge page for the NUMA_NO_NODE case and just falls back
calling dequeu_huge_page_node_exact() for all other cases.

[arnd@arndb.de: make hstate_is_gigantic() inline]
  Link: http://lkml.kernel.org/r/20170522124748.3911296-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170516100509.20122-1-khandual@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:33 -07:00
James Morse
9a291a7c94 mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified
KVM uses get_user_pages() to resolve its stage2 faults.  KVM sets the
FOLL_HWPOISON flag causing faultin_page() to return -EHWPOISON when it
finds a VM_FAULT_HWPOISON.  KVM handles these hwpoison pages as a
special case.  (check_user_page_hwpoison())

When huge pages are involved, this doesn't work so well.
get_user_pages() calls follow_hugetlb_page(), which stops early if it
receives VM_FAULT_HWPOISON from hugetlb_fault(), eventually returning
-EFAULT to the caller.  The step to map this to -EHWPOISON based on the
FOLL_ flags is missing.  The hwpoison special case is skipped, and
-EFAULT is returned to user-space, causing Qemu or kvmtool to exit.

Instead, move this VM_FAULT_ to errno mapping code into a header file
and use it from faultin_page() and follow_hugetlb_page().

With this, KVM works as expected.

This isn't a problem for arm64 today as we haven't enabled
MEMORY_FAILURE, but I can't see any reason this doesn't happen on x86
too, so I think this should be a fix.  This doesn't apply earlier than
stable's v4.11.1 due to all sorts of cleanup.

[james.morse@arm.com: add vm_fault_to_errno() call to faultin_page()]
suggested.
  Link: http://lkml.kernel.org/r/20170525171035.16359-1-james.morse@arm.com
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20170524160900.28786-1-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>	[4.11.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 15:07:38 -07:00
Mike Kravetz
ff8c0c53c4 mm/hugetlb.c: don't call region_abort if region_chg fails
Changes to hugetlbfs reservation maps is a two step process.  The first
step is a call to region_chg to determine what needs to be changed, and
prepare that change.  This should be followed by a call to call to
region_add to commit the change, or region_abort to abort the change.

The error path in hugetlb_reserve_pages called region_abort after a
failed call to region_chg.  As a result, the adds_in_progress counter in
the reservation map is off by 1.  This is caught by a VM_BUG_ON in
resv_map_release when the reservation map is freed.

syzkaller fuzzer (when using an injected kmalloc failure) found this
bug, that resulted in the following:

 kernel BUG at mm/hugetlb.c:742!
 Call Trace:
  hugetlbfs_evict_inode+0x7b/0xa0 fs/hugetlbfs/inode.c:493
  evict+0x481/0x920 fs/inode.c:553
  iput_final fs/inode.c:1515 [inline]
  iput+0x62b/0xa20 fs/inode.c:1542
  hugetlb_file_setup+0x593/0x9f0 fs/hugetlbfs/inode.c:1306
  newseg+0x422/0xd30 ipc/shm.c:575
  ipcget_new ipc/util.c:285 [inline]
  ipcget+0x21e/0x580 ipc/util.c:639
  SYSC_shmget ipc/shm.c:673 [inline]
  SyS_shmget+0x158/0x230 ipc/shm.c:657
  entry_SYSCALL_64_fastpath+0x1f/0xc2
 RIP: resv_map_release+0x265/0x330 mm/hugetlb.c:742

Link: http://lkml.kernel.org/r/1490821682-23228-1-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-31 17:13:30 -07:00
Naoya Horiguchi
c9d398fa23 mm, hugetlb: use pte_present() instead of pmd_present() in follow_huge_pmd()
I found the race condition which triggers the following bug when
move_pages() and soft offline are called on a single hugetlb page
concurrently.

    Soft offlining page 0x119400 at 0x700000000000
    BUG: unable to handle kernel paging request at ffffea0011943820
    IP: follow_huge_pmd+0x143/0x190
    PGD 7ffd2067
    PUD 7ffd1067
    PMD 0
        [61163.582052] Oops: 0000 [#1] SMP
    Modules linked in: binfmt_misc ppdev virtio_balloon parport_pc pcspkr i2c_piix4 parport i2c_core acpi_cpufreq ip_tables xfs libcrc32c ata_generic pata_acpi virtio_blk 8139too crc32c_intel ata_piix serio_raw libata virtio_pci 8139cp virtio_ring virtio mii floppy dm_mirror dm_region_hash dm_log dm_mod [last unloaded: cap_check]
    CPU: 0 PID: 22573 Comm: iterate_numa_mo Tainted: P           OE   4.11.0-rc2-mm1+ #2
    Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
    RIP: 0010:follow_huge_pmd+0x143/0x190
    RSP: 0018:ffffc90004bdbcd0 EFLAGS: 00010202
    RAX: 0000000465003e80 RBX: ffffea0004e34d30 RCX: 00003ffffffff000
    RDX: 0000000011943800 RSI: 0000000000080001 RDI: 0000000465003e80
    RBP: ffffc90004bdbd18 R08: 0000000000000000 R09: ffff880138d34000
    R10: ffffea0004650000 R11: 0000000000c363b0 R12: ffffea0011943800
    R13: ffff8801b8d34000 R14: ffffea0000000000 R15: 000077ff80000000
    FS:  00007fc977710740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: ffffea0011943820 CR3: 000000007a746000 CR4: 00000000001406f0
    Call Trace:
     follow_page_mask+0x270/0x550
     SYSC_move_pages+0x4ea/0x8f0
     SyS_move_pages+0xe/0x10
     do_syscall_64+0x67/0x180
     entry_SYSCALL64_slow_path+0x25/0x25
    RIP: 0033:0x7fc976e03949
    RSP: 002b:00007ffe72221d88 EFLAGS: 00000246 ORIG_RAX: 0000000000000117
    RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fc976e03949
    RDX: 0000000000c22390 RSI: 0000000000001400 RDI: 0000000000005827
    RBP: 00007ffe72221e00 R08: 0000000000c2c3a0 R09: 0000000000000004
    R10: 0000000000c363b0 R11: 0000000000000246 R12: 0000000000400650
    R13: 00007ffe72221ee0 R14: 0000000000000000 R15: 0000000000000000
    Code: 81 e4 ff ff 1f 00 48 21 c2 49 c1 ec 0c 48 c1 ea 0c 4c 01 e2 49 bc 00 00 00 00 00 ea ff ff 48 c1 e2 06 49 01 d4 f6 45 bc 04 74 90 <49> 8b 7c 24 20 40 f6 c7 01 75 2b 4c 89 e7 8b 47 1c 85 c0 7e 2a
    RIP: follow_huge_pmd+0x143/0x190 RSP: ffffc90004bdbcd0
    CR2: ffffea0011943820
    ---[ end trace e4f81353a2d23232 ]---
    Kernel panic - not syncing: Fatal exception
    Kernel Offset: disabled

This bug is triggered when pmd_present() returns true for non-present
hugetlb, so fixing the present check in follow_huge_pmd() prevents it.
Using pmd_present() to determine present/non-present for hugetlb is not
correct, because pmd_present() checks multiple bits (not only
_PAGE_PRESENT) for historical reason and it can misjudge hugetlb state.

Fixes: e66f17ff71 ("mm/hugetlb: take page table lock in follow_huge_pmd()")
Link: http://lkml.kernel.org/r/1490149898-20231-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: <stable@vger.kernel.org>        [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-31 17:13:30 -07:00
Kirill A. Shutemov
c2febafc67 mm: convert generic code to 5-level paging
Convert all non-architecture-specific code to 5-level paging.

It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09 11:48:47 -08:00
Ingo Molnar
174cd4b1e5 sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:32 +01:00
Lucas Stach
ca96b62534 mm: alloc_contig_range: allow to specify GFP mask
Currently alloc_contig_range assumes that the compaction should be done
with the default GFP_KERNEL flags.  This is probably right for all
current uses of this interface, but may change as CMA is used in more
use-cases (including being the default DMA memory allocator on some
platforms).

Change the function prototype, to allow for passing through the GFP mask
set by upper layers.

Also respect global restrictions by applying memalloc_noio_flags to the
passed in flags.

Link: http://lkml.kernel.org/r/20170127172328.18574-1-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alexander Graf <agraf@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:55 -08:00
Dave Jiang
11bac80004 mm, fs: reduce fault, page_mkwrite, and pfn_mkwrite to take only vmf
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.

Remove the vma parameter to simplify things.

[arnd@arndb.de: fix ARM build]
  Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:54 -08:00
Mike Kravetz
1c9e8def43 userfaultfd: hugetlbfs: add UFFDIO_COPY support for shared mappings
When userfaultfd hugetlbfs support was originally added, it followed the
pattern of anon mappings and did not support any vmas marked VM_SHARED.
As such, support was only added for private mappings.

Remove this limitation and support shared mappings.  The primary
functional change required is adding pages to the page cache.  More subtle
changes are required for huge page reservation handling in error paths.  A
lengthy comment in the code describes the reservation handling.

[mike.kravetz@oracle.com: update]
  Link: http://lkml.kernel.org/r/c9c8cafe-baa7-05b4-34ea-1dfa5523a85f@oracle.com
Link: http://lkml.kernel.org/r/1487195210-12839-1-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:28 -08:00
Andrea Arcangeli
87ffc118b5 userfaultfd: hugetlbfs: gup: support VM_FAULT_RETRY
Add support for VM_FAULT_RETRY to follow_hugetlb_page() so that
get_user_pages_unlocked/locked and "nonblocking/FOLL_NOWAIT" features
will work on hugetlbfs.

This is required for fully functional userfaultfd non-present support on
hugetlbfs.

Link: http://lkml.kernel.org/r/20161216144821.5183-25-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:28 -08:00
Mike Kravetz
1a1aad8a9b userfaultfd: hugetlbfs: add userfaultfd hugetlb hook
When processing a hugetlb fault for no page present, check the vma to
determine if faults are to be handled via userfaultfd.  If so, drop the
hugetlb_fault_mutex and call handle_userfault().

Link: http://lkml.kernel.org/r/20161216144821.5183-21-aarcange@redhat.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:28 -08:00
Mike Kravetz
810a56b943 userfaultfd: hugetlbfs: fix __mcopy_atomic_hugetlb retry/error processing
The new routine copy_huge_page_from_user() uses kmap_atomic() to map
PAGE_SIZE pages.  However, this prevents page faults in the subsequent
call to copy_from_user().  This is OK in the case where the routine is
copied with mmap_sema held.  However, in another case we want to allow
page faults.  So, add a new argument allow_pagefault to indicate if the
routine should allow page faults.

[dan.carpenter@oracle.com: unmap the correct pointer]
  Link: http://lkml.kernel.org/r/20170113082608.GA3548@mwanda
[akpm@linux-foundation.org: kunmap() takes a page*, per Hugh]
Link: http://lkml.kernel.org/r/20161216144821.5183-20-aarcange@redhat.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:28 -08:00
Mike Kravetz
8fb5debc5f userfaultfd: hugetlbfs: add hugetlb_mcopy_atomic_pte for userfaultfd support
hugetlb_mcopy_atomic_pte is the low level routine that implements the
userfaultfd UFFDIO_COPY command.  It is based on the existing
mcopy_atomic_pte routine with modifications for huge pages.

Link: http://lkml.kernel.org/r/20161216144821.5183-18-aarcange@redhat.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:28 -08:00
Mike Kravetz
e5bbc8a6c9 mm/hugetlb.c: fix reservation race when freeing surplus pages
return_unused_surplus_pages() decrements the global reservation count,
and frees any unused surplus pages that were backing the reservation.

Commit 7848a4bf51 ("mm/hugetlb.c: add cond_resched_lock() in
return_unused_surplus_pages()") added a call to cond_resched_lock in the
loop freeing the pages.

As a result, the hugetlb_lock could be dropped, and someone else could
use the pages that will be freed in subsequent iterations of the loop.
This could result in inconsistent global hugetlb page state, application
api failures (such as mmap) failures or application crashes.

When dropping the lock in return_unused_surplus_pages, make sure that
the global reservation count (resv_huge_pages) remains sufficiently
large to prevent someone else from claiming pages about to be freed.

Analyzed by Paul Cassella.

Fixes: 7848a4bf51 ("mm/hugetlb.c: add cond_resched_lock() in return_unused_surplus_pages()")
Link: http://lkml.kernel.org/r/1483991767-6879-1-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Paul Cassella <cassella@cray.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>	[3.15+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:55 -08:00
Aneesh Kumar K.V
07e326610e mm: add tlb_remove_check_page_size_change to track page size change
With commit e77b0852b5 ("mm/mmu_gather: track page size with mmu
gather and force flush if page size change") we added the ability to
force a tlb flush when the page size change in a mmu_gather loop.  We
did that by checking for a page size change every time we added a page
to mmu_gather for lazy flush/remove.  We can improve that by moving the
page size change check early and not doing it every time we add a page.

This also helps us to do tlb flush when invalidating a range covering
dax mapping.  Wrt dax mapping we don't have a backing struct page and
hence we don't call tlb_remove_page, which earlier forced the tlb flush
on page size change.  Moving the page size change check earlier means we
will do the same even for dax mapping.

We also avoid doing this check on architecture other than powerpc.

In a later patch we will remove page size check from tlb_remove_page().

Link: http://lkml.kernel.org/r/20161026084839.27299-5-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Aneesh Kumar K.V
b528e4b640 mm/hugetlb: add tlb_remove_hugetlb_entry for handling hugetlb pages
This add tlb_remove_hugetlb_entry similar to tlb_remove_pmd_tlb_entry.

Link: http://lkml.kernel.org/r/20161026084839.27299-4-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Aneesh Kumar K.V
8bea805207 mm/hugetlb.c: use huge_pte_lock instead of opencoding the lock
No functional change by this patch.

Link: http://lkml.kernel.org/r/20161018090234.22574-1-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Aneesh Kumar K.V
3999f52e31 mm/hugetlb.c: use the right pte val for compare in hugetlb_cow
We cannot use the pte value used in set_pte_at for pte_same comparison,
because archs like ppc64, filter/add new pte flag in set_pte_at.
Instead fetch the pte value inside hugetlb_cow.  We are comparing pte
value to make sure the pte didn't change since we dropped the page table
lock.  hugetlb_cow get called with page table lock held, and we can take
a copy of the pte value before we drop the page table lock.

With hugetlbfs, we optimize the MAP_PRIVATE write fault path with no
previous mapping (huge_pte_none entries), by forcing a cow in the fault
path.  This avoid take an addition fault to covert a read-only mapping
to read/write.  Here we were comparing a recently instantiated pte (via
set_pte_at) to the pte values from linux page table.  As explained above
on ppc64 such pte_same check returned wrong result, resulting in us
taking an additional fault on ppc64.

Fixes: 6a119eae94 ("powerpc/mm: Add a _PAGE_PTE bit")
Link: http://lkml.kernel.org/r/20161018154245.18023-1-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Mike Kravetz
96b96a96dd mm/hugetlb: fix huge page reservation leak in private mapping error paths
Error paths in hugetlb_cow() and hugetlb_no_page() may free a newly
allocated huge page.

If a reservation was associated with the huge page, alloc_huge_page()
consumed the reservation while allocating.  When the newly allocated
page is freed in free_huge_page(), it will increment the global
reservation count.  However, the reservation entry in the reserve map
will remain.

This is not an issue for shared mappings as the entry in the reserve map
indicates a reservation exists.  But, an entry in a private mapping
reserve map indicates the reservation was consumed and no longer exists.
This results in an inconsistency between the reserve map and the global
reservation count.  This 'leaks' a reserved huge page.

Create a new routine restore_reserve_on_error() to restore the reserve
entry in these specific error paths.  This routine makes use of a new
function vma_add_reservation() which will add a reserve entry for a
specific address/page.

In general, these error paths were rarely (if ever) taken on most
architectures.  However, powerpc contained arch specific code that that
resulted in an extra fault and execution of these error paths on all
private mappings.

Fixes: 67961f9db8 ("mm/hugetlb: fix huge page reserve accounting for private mappings)
Link: http://lkml.kernel.org/r/1476933077-23091-2-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A . Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-11 08:12:37 -08:00
zhong jiang
72e2936c04 mm: remove unnecessary condition in remove_inode_hugepages
When the huge page is added to the page cahce (huge_add_to_page_cache),
the page private flag will be cleared.  since this code
(remove_inode_hugepages) will only be called for pages in the page
cahce, PagePrivate(page) will always be false.

The patch remove the code without any functional change.

Link: http://lkml.kernel.org/r/1475113323-29368-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Yisheng Xie
461a718432 mm/hugetlb: introduce ARCH_HAS_GIGANTIC_PAGE
Avoid making ifdef get pretty unwieldy if many ARCHs support gigantic
page.  No functional change with this patch.

Link: http://lkml.kernel.org/r/1475227569-63446-2-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Gerald Schaefer
eb03aa0085 mm/hugetlb: improve locking in dissolve_free_huge_pages()
For every pfn aligned to minimum_order, dissolve_free_huge_pages() will
call dissolve_free_huge_page() which takes the hugetlb spinlock, even if
the page is not huge at all or a hugepage that is in-use.

Improve this by doing the PageHuge() and page_count() checks already in
dissolve_free_huge_pages() before calling dissolve_free_huge_page().  In
dissolve_free_huge_page(), when holding the spinlock, those checks need
to be revalidated.

Link: http://lkml.kernel.org/r/20160926172811.94033-4-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Gerald Schaefer
082d5b6b60 mm/hugetlb: check for reserved hugepages during memory offline
In dissolve_free_huge_pages(), free hugepages will be dissolved without
making sure that there are enough of them left to satisfy hugepage
reservations.

Fix this by adding a return value to dissolve_free_huge_pages() and
checking h->free_huge_pages vs.  h->resv_huge_pages.  Note that this may
lead to the situation where dissolve_free_huge_page() returns an error
and all free hugepages that were dissolved before that error are lost,
while the memory block still cannot be set offline.

Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-3-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Gerald Schaefer
2247bb335a mm/hugetlb: fix memory offline with hugepage size > memory block size
Patch series "mm/hugetlb: memory offline issues with hugepages", v4.

This addresses several issues with hugepages and memory offline.  While
the first patch fixes a panic, and is therefore rather important, the
last patch is just a performance optimization.

The second patch fixes a theoretical issue with reserved hugepages,
while still leaving some ugly usability issue, see description.

This patch (of 3):

dissolve_free_huge_pages() will either run into the VM_BUG_ON() or a
list corruption and addressing exception when trying to set a memory
block offline that is part (but not the first part) of a "gigantic"
hugetlb page with a size > memory block size.

When no other smaller hugetlb page sizes are present, the VM_BUG_ON()
will trigger directly.  In the other case we will run into an addressing
exception later, because dissolve_free_huge_page() will not work on the
head page of the compound hugetlb page which will result in a NULL
hstate from page_hstate().

To fix this, first remove the VM_BUG_ON() because it is wrong, and then
use the compound head page in dissolve_free_huge_page().  This means
that an unused pre-allocated gigantic page that has any part of itself
inside the memory block that is going offline will be dissolved
completely.  Losing an unused gigantic hugepage is preferable to failing
the memory offline, for example in the situation where a (possibly
faulty) memory DIMM needs to go offline.

Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-2-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
zhong jiang
c1470b33bb mm/hugetlb: fix incorrect hugepages count during mem hotplug
When memory hotplug operates, free hugepages will be freed if the
movable node is offline.  Therefore, /proc/sys/vm/nr_hugepages will be
incorrect.

Fix it by reducing max_huge_pages when the node is offlined.

n-horiguchi@ah.jp.nec.com said:

: dissolve_free_huge_page intends to break a hugepage into buddy, and the
: destination hugepage is supposed to be allocated from the pool of the
: destination node, so the system-wide pool size is reduced.  So adding
: h->max_huge_pages-- makes sense to me.

Link: http://lkml.kernel.org/r/1470624546-902-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-11 16:58:13 -07:00
Linus Torvalds
2cfd716d27 powerpc updates for 4.8 #2
Fixes:
  - Fix early access to cpu_spec relocation from Benjamin Herrenschmidt
  - Fix incorrect event codes in power9-event-list from Madhavan Srinivasan
  - Move register_process_table() out of ppc_md from Michael Ellerman
 
 Use jump_label for [cpu|mmu]_has_feature() from Aneesh Kumar K.V, Kevin Hao and Michael Ellerman:
  - Add mmu_early_init_devtree() from Michael Ellerman
  - Move disable_radix handling into mmu_early_init_devtree() from Michael Ellerman
  - Do hash device tree scanning earlier from Michael Ellerman
  - Do radix device tree scanning earlier from Michael Ellerman
  - Do feature patching before MMU init from Michael Ellerman
  - Check features don't change after patching from Michael Ellerman
  - Make MMU_FTR_RADIX a MMU family feature from Aneesh Kumar K.V
  - Convert mmu_has_feature() to returning bool from Michael Ellerman
  - Convert cpu_has_feature() to returning bool from Michael Ellerman
  - Define radix_enabled() in one place & use static inline from Michael Ellerman
  - Add early_[cpu|mmu]_has_feature() from Michael Ellerman
  - Convert early cpu/mmu feature check to use the new helpers from Aneesh Kumar K.V
  - jump_label: Make it possible for arches to invoke jump_label_init() earlier from Kevin Hao
  - Call jump_label_init() in apply_feature_fixups() from Aneesh Kumar K.V
  - Remove mfvtb() from Kevin Hao
  - Move cpu_has_feature() to a separate file from Kevin Hao
  - Add kconfig option to use jump labels for cpu/mmu_has_feature() from Michael Ellerman
  - Add option to use jump label for cpu_has_feature() from Kevin Hao
  - Add option to use jump label for mmu_has_feature() from Kevin Hao
  - Catch usage of cpu/mmu_has_feature() before jump label init from Aneesh Kumar K.V
  - Annotate jump label assembly from Michael Ellerman
 
 TLB flush enhancements from Aneesh Kumar K.V:
  - radix: Implement tlb mmu gather flush efficiently
  - Add helper for finding SLBE LLP encoding
  - Use hugetlb flush functions
  - Drop multiple definition of mm_is_core_local
  - radix: Add tlb flush of THP ptes
  - radix: Rename function and drop unused arg
  - radix/hugetlb: Add helper for finding page size
  - hugetlb: Add flush_hugetlb_tlb_range
  - remove flush_tlb_page_nohash
 
 Add new ptrace regsets from Anshuman Khandual and Simon Guo:
  - elf: Add powerpc specific core note sections
  - Add the function flush_tmregs_to_thread
  - Enable in transaction NT_PRFPREG ptrace requests
  - Enable in transaction NT_PPC_VMX ptrace requests
  - Enable in transaction NT_PPC_VSX ptrace requests
  - Adapt gpr32_get, gpr32_set functions for transaction
  - Enable support for NT_PPC_CGPR
  - Enable support for NT_PPC_CFPR
  - Enable support for NT_PPC_CVMX
  - Enable support for NT_PPC_CVSX
  - Enable support for TM SPR state
  - Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
  - Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR
  - Enable support for EBB registers
  - Enable support for Performance Monitor registers
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXpGaLAAoJEFHr6jzI4aWA9aYP/1AqmRPJ9D0XVUJWT+FVABUK
 LESESoVFF4Hug1j1F8Synhg5o4SzD2t45iGKbclYaFthOIyovMg7Wr1KSu4hQ0go
 rPuQfpXDNQ8jKdDX8hbPXKUxrNRBNfqJGFo5E7mO6wN9AJ9d1LVwQ+jKAva29Tqs
 LaAlMbQNbeObPNzOl73B73iew3aozr+mXjBqv82lqvgYknBD2CLf24xGG3eNIbq5
 ZZk4LPC8pdkaxnajnzRFzqwiyPWzao0yfpVRKh52TKHBQF/prR/KACb6zUuja/61
 krOfegUKob14OYrehjs6X8XNRLnILRI0u1H5bmj7eVEiY/usyNzE93SMHZM3Wdau
 sQF/Au4OLNXj0ZQdNBtzRsZRyp1d560Gsj+lQGBoPd4hfIWkFYHvxzxsUSdqv4uA
 MWDMwN0Vvfk0cpprsabsWNevkaotYYBU00px5hF/e5ZUc9/x/xYUVMgPEDr0QZLr
 cHJo9/Pjk4u/0g4lj+2y1LLl/0tNEZZg69O6bvffPAPVSS4/P4y/bKKYd4I0zL99
 Ykp91mSmkl70F3edgOSFqyda2gN2l2Ekb/i081YGXheFy1rbD29Vxv82BOVog4KY
 ibvOqp38WDzCVk5OXuCRvBl0VudLKGJYdppU1nXg4KgrTZXHeCAC0E+NzUsgOF4k
 OMvQ+5drVxrno+Hw8FVJ
 =0Q8E
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull more powerpc updates from Michael Ellerman:
 "These were delayed for various reasons, so I let them sit in next a
  bit longer, rather than including them in my first pull request.

  Fixes:
   - Fix early access to cpu_spec relocation from Benjamin Herrenschmidt
   - Fix incorrect event codes in power9-event-list from Madhavan Srinivasan
   - Move register_process_table() out of ppc_md from Michael Ellerman

  Use jump_label use for [cpu|mmu]_has_feature():
   - Add mmu_early_init_devtree() from Michael Ellerman
   - Move disable_radix handling into mmu_early_init_devtree() from Michael Ellerman
   - Do hash device tree scanning earlier from Michael Ellerman
   - Do radix device tree scanning earlier from Michael Ellerman
   - Do feature patching before MMU init from Michael Ellerman
   - Check features don't change after patching from Michael Ellerman
   - Make MMU_FTR_RADIX a MMU family feature from Aneesh Kumar K.V
   - Convert mmu_has_feature() to returning bool from Michael Ellerman
   - Convert cpu_has_feature() to returning bool from Michael Ellerman
   - Define radix_enabled() in one place & use static inline from Michael Ellerman
   - Add early_[cpu|mmu]_has_feature() from Michael Ellerman
   - Convert early cpu/mmu feature check to use the new helpers from Aneesh Kumar K.V
   - jump_label: Make it possible for arches to invoke jump_label_init() earlier from Kevin Hao
   - Call jump_label_init() in apply_feature_fixups() from Aneesh Kumar K.V
   - Remove mfvtb() from Kevin Hao
   - Move cpu_has_feature() to a separate file from Kevin Hao
   - Add kconfig option to use jump labels for cpu/mmu_has_feature() from Michael Ellerman
   - Add option to use jump label for cpu_has_feature() from Kevin Hao
   - Add option to use jump label for mmu_has_feature() from Kevin Hao
   - Catch usage of cpu/mmu_has_feature() before jump label init from Aneesh Kumar K.V
   - Annotate jump label assembly from Michael Ellerman

  TLB flush enhancements from Aneesh Kumar K.V:
   - radix: Implement tlb mmu gather flush efficiently
   - Add helper for finding SLBE LLP encoding
   - Use hugetlb flush functions
   - Drop multiple definition of mm_is_core_local
   - radix: Add tlb flush of THP ptes
   - radix: Rename function and drop unused arg
   - radix/hugetlb: Add helper for finding page size
   - hugetlb: Add flush_hugetlb_tlb_range
   - remove flush_tlb_page_nohash

  Add new ptrace regsets from Anshuman Khandual and Simon Guo:
   - elf: Add powerpc specific core note sections
   - Add the function flush_tmregs_to_thread
   - Enable in transaction NT_PRFPREG ptrace requests
   - Enable in transaction NT_PPC_VMX ptrace requests
   - Enable in transaction NT_PPC_VSX ptrace requests
   - Adapt gpr32_get, gpr32_set functions for transaction
   - Enable support for NT_PPC_CGPR
   - Enable support for NT_PPC_CFPR
   - Enable support for NT_PPC_CVMX
   - Enable support for NT_PPC_CVSX
   - Enable support for TM SPR state
   - Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
   - Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR
   - Enable support for EBB registers
   - Enable support for Performance Monitor registers"

* tag 'powerpc-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (48 commits)
  powerpc/mm: Move register_process_table() out of ppc_md
  powerpc/perf: Fix incorrect event codes in power9-event-list
  powerpc/32: Fix early access to cpu_spec relocation
  powerpc/ptrace: Enable support for Performance Monitor registers
  powerpc/ptrace: Enable support for EBB registers
  powerpc/ptrace: Enable support for NT_PPPC_TAR, NT_PPC_PPR, NT_PPC_DSCR
  powerpc/ptrace: Enable NT_PPC_TM_CTAR, NT_PPC_TM_CPPR, NT_PPC_TM_CDSCR
  powerpc/ptrace: Enable support for TM SPR state
  powerpc/ptrace: Enable support for NT_PPC_CVSX
  powerpc/ptrace: Enable support for NT_PPC_CVMX
  powerpc/ptrace: Enable support for NT_PPC_CFPR
  powerpc/ptrace: Enable support for NT_PPC_CGPR
  powerpc/ptrace: Adapt gpr32_get, gpr32_set functions for transaction
  powerpc/ptrace: Enable in transaction NT_PPC_VSX ptrace requests
  powerpc/ptrace: Enable in transaction NT_PPC_VMX ptrace requests
  powerpc/ptrace: Enable in transaction NT_PRFPREG ptrace requests
  powerpc/process: Add the function flush_tmregs_to_thread
  elf: Add powerpc specific core note sections
  powerpc/mm: remove flush_tlb_page_nohash
  powerpc/mm/hugetlb: Add flush_hugetlb_tlb_range
  ...
2016-08-05 09:00:54 -04:00
Michal Hocko
4e666314d2 mm, hugetlb: fix huge_pte_alloc BUG_ON
Zhong Jiang has reported a BUG_ON from huge_pte_alloc hitting when he
runs his database load with memory online and offline running in
parallel.  The reason is that huge_pmd_share might detect a shared pmd
which is currently migrated and so it has migration pte which is
!pte_huge.

There doesn't seem to be any easy way to prevent from the race and in
fact seeing the migration swap entry is not harmful.  Both callers of
huge_pte_alloc are prepared to handle them.  copy_hugetlb_page_range
will copy the swap entry and make it COW if needed.  hugetlb_fault will
back off and so the page fault is retries if the page is still under
migration and waits for its completion in hugetlb_fault.

That means that the BUG_ON is wrong and we should update it.  Let's
simply check that all present ptes are pte_huge instead.

Link: http://lkml.kernel.org/r/20160721074340.GA26398@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: zhongjiang <zhongjiang@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Jia He
649920c6ab mm/hugetlb: avoid soft lockup in set_max_huge_pages()
In powerpc servers with large memory(32TB), we watched several soft
lockups for hugepage under stress tests.

The call traces are as follows:
1.
get_page_from_freelist+0x2d8/0xd50
__alloc_pages_nodemask+0x180/0xc20
alloc_fresh_huge_page+0xb0/0x190
set_max_huge_pages+0x164/0x3b0

2.
prep_new_huge_page+0x5c/0x100
alloc_fresh_huge_page+0xc8/0x190
set_max_huge_pages+0x164/0x3b0

This patch fixes such soft lockups.  It is safe to call cond_resched()
there because it is out of spin_lock/unlock section.

Link: http://lkml.kernel.org/r/1469674442-14848-1-git-send-email-hejianet@gmail.com
Signed-off-by: Jia He <hejianet@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Aneesh Kumar K.V
5491ae7b6f powerpc/mm/hugetlb: Add flush_hugetlb_tlb_range
Some archs like ppc64 need to do special things when flushing tlb for
hugepage. Add a new helper to flush hugetlb tlb range. This helps us to
avoid flushing the entire tlb mapping for the pid.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-08-01 11:15:13 +10:00
Linus Torvalds
1c88e19b0f Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "The rest of MM"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (101 commits)
  mm, compaction: simplify contended compaction handling
  mm, compaction: introduce direct compaction priority
  mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations
  mm, page_alloc: make THP-specific decisions more generic
  mm, page_alloc: restructure direct compaction handling in slowpath
  mm, page_alloc: don't retry initial attempt in slowpath
  mm, page_alloc: set alloc_flags only once in slowpath
  lib/stackdepot.c: use __GFP_NOWARN for stack allocations
  mm, kasan: switch SLUB to stackdepot, enable memory quarantine for SLUB
  mm, kasan: account for object redzone in SLUB's nearest_obj()
  mm: fix use-after-free if memory allocation failed in vma_adjust()
  zsmalloc: Delete an unnecessary check before the function call "iput"
  mm/memblock.c: fix index adjustment error in __next_mem_range_rev()
  mem-hotplug: alloc new page from a nearest neighbor node when mem-offline
  mm: optimize copy_page_to/from_iter_iovec
  mm: add cond_resched() to generic_swapfile_activate()
  Revert "mm, mempool: only set __GFP_NOMEMALLOC if there are free elements"
  mm, compaction: don't isolate PageWriteback pages in MIGRATE_SYNC_LIGHT mode
  mm: hwpoison: remove incorrect comments
  make __section_nr() more efficient
  ...
2016-07-28 16:36:48 -07:00
Naoya Horiguchi
7c7fd82556 mm: hwpoison: remove incorrect comments
dequeue_hwpoisoned_huge_page() can be called without page lock hold, so
let's remove incorrect comment.

The reason why the page lock is not really needed is that
dequeue_hwpoisoned_huge_page() checks page_huge_active() inside
hugetlb_lock, which allows us to avoid trying to dequeue a hugepage that
are just allocated but not linked to active list yet, even without
taking page lock.

Link: http://lkml.kernel.org/r/20160720092901.GA15995@www9186uo.sakura.ne.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Zhan Chen <zhanc1@andrew.cmu.edu>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Linus Torvalds
6784725ab0 Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro:
 "Assorted cleanups and fixes.

  Probably the most interesting part long-term is ->d_init() - that will
  have a bunch of followups in (at least) ceph and lustre, but we'll
  need to sort the barrier-related rules before it can get used for
  really non-trivial stuff.

  Another fun thing is the merge of ->d_iput() callers (dentry_iput()
  and dentry_unlink_inode()) and a bunch of ->d_compare() ones (all
  except the one in __d_lookup_lru())"

* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (26 commits)
  fs/dcache.c: avoid soft-lockup in dput()
  vfs: new d_init method
  vfs: Update lookup_dcache() comment
  bdev: get rid of ->bd_inodes
  Remove last traces of ->sync_page
  new helper: d_same_name()
  dentry_cmp(): use lockless_dereference() instead of smp_read_barrier_depends()
  vfs: clean up documentation
  vfs: document ->d_real()
  vfs: merge .d_select_inode() into .d_real()
  unify dentry_iput() and dentry_unlink_inode()
  binfmt_misc: ->s_root is not going anywhere
  drop redundant ->owner initializations
  ufs: get rid of redundant checks
  orangefs: constify inode_operations
  missed comment updates from ->direct_IO() prototype change
  file_inode(f)->i_mapping is f->f_mapping
  trim fsnotify hooks a bit
  9p: new helper - v9fs_parent_fid()
  debugfs: ->d_parent is never NULL or negative
  ...
2016-07-28 12:59:05 -07:00
Linus Torvalds
0e06f5c0de Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - a few misc bits

 - ocfs2

 - most(?) of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (125 commits)
  thp: fix comments of __pmd_trans_huge_lock()
  cgroup: remove unnecessary 0 check from css_from_id()
  cgroup: fix idr leak for the first cgroup root
  mm: memcontrol: fix documentation for compound parameter
  mm: memcontrol: remove BUG_ON in uncharge_list
  mm: fix build warnings in <linux/compaction.h>
  mm, thp: convert from optimistic swapin collapsing to conservative
  mm, thp: fix comment inconsistency for swapin readahead functions
  thp: update Documentation/{vm/transhuge,filesystems/proc}.txt
  shmem: split huge pages beyond i_size under memory pressure
  thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE
  khugepaged: add support of collapse for tmpfs/shmem pages
  shmem: make shmem_inode_info::lock irq-safe
  khugepaged: move up_read(mmap_sem) out of khugepaged_alloc_page()
  thp: extract khugepaged from mm/huge_memory.c
  shmem, thp: respect MADV_{NO,}HUGEPAGE for file mappings
  shmem: add huge pages support
  shmem: get_unmapped_area align huge page
  shmem: prepare huge= mount option and sysfs knob
  mm, rmap: account shmem thp pages
  ...
2016-07-26 19:55:54 -07:00
Aneesh Kumar K.V
e77b0852b5 mm/mmu_gather: track page size with mmu gather and force flush if page size change
This allows an arch which needs to do special handing with respect to
different page size when flushing tlb to implement the same in mmu
gather.

Link: http://lkml.kernel.org/r/1465049193-22197-3-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Aneesh Kumar K.V
31d49da5ad mm/hugetlb: simplify hugetlb unmap
For hugetlb like THP (and unlike regular page), we do tlb flush after
dropping ptl.  Because of the above, we don't need to track force_flush
like we do now.  Instead we can simply call tlb_remove_page() which will
do the flush if needed.

No functionality change in this patch.

Link: http://lkml.kernel.org/r/1465049193-22197-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Linus Torvalds
015cd867e5 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky:
 "There are a couple of new things for s390 with this merge request:

   - a new scheduling domain "drawer" is added to reflect the unusual
     topology found on z13 machines.  Performance tests showed up to 8
     percent gain with the additional domain.

   - the new crc-32 checksum crypto module uses the vector-galois-field
     multiply and sum SIMD instruction to speed up crc-32 and crc-32c.

   - proper __ro_after_init support, this requires RO_AFTER_INIT_DATA in
     the generic vmlinux.lds linker script definitions.

   - kcov instrumentation support.  A prerequisite for that is the
     inline assembly basic block cleanup, which is the reason for the
     net/iucv/iucv.c change.

   - support for 2GB pages is added to the hugetlbfs backend.

  Then there are two removals:

   - the oprofile hardware sampling support is dead code and is removed.
     The oprofile user space uses the perf interface nowadays.

   - the ETR clock synchronization is removed, this has been superseeded
     be the STP clock synchronization.  And it always has been
     "interesting" code..

  And the usual bug fixes and cleanups"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (82 commits)
  s390/pci: Delete an unnecessary check before the function call "pci_dev_put"
  s390/smp: clean up a condition
  s390/cio/chp : Remove deprecated create_singlethread_workqueue
  s390/chsc: improve channel path descriptor determination
  s390/chsc: sanitize fmt check for chp_desc determination
  s390/cio: make fmt1 channel path descriptor optional
  s390/chsc: fix ioctl CHSC_INFO_CU command
  s390/cio/device_ops: fix kernel doc
  s390/cio: allow to reset channel measurement block
  s390/console: Make preferred console handling more consistent
  s390/mm: fix gmap tlb flush issues
  s390/mm: add support for 2GB hugepages
  s390: have unique symbol for __switch_to address
  s390/cpuinfo: show maximum thread id
  s390/ptrace: clarify bits in the per_struct
  s390: stack address vs thread_info
  s390: remove pointless load within __switch_to
  s390: enable kcov support
  s390/cpumf: use basic block for ecctr inline assembly
  s390/hypfs: use basic block for diag inline assembly
  ...
2016-07-26 12:22:51 -07:00
Hugh Dickins
5a49973d71 mm: thp: refix false positive BUG in page_move_anon_rmap()
The VM_BUG_ON_PAGE in page_move_anon_rmap() is more trouble than it's
worth: the syzkaller fuzzer hit it again.  It's still wrong for some THP
cases, because linear_page_index() was never intended to apply to
addresses before the start of a vma.

That's easily fixed with a signed long cast inside linear_page_index();
and Dmitry has tested such a patch, to verify the false positive.  But
why extend linear_page_index() just for this case? when the avoidance in
page_move_anon_rmap() has already grown ugly, and there's no reason for
the check at all (nothing else there is using address or index).

Remove address arg from page_move_anon_rmap(), remove VM_BUG_ON_PAGE,
remove CONFIG_DEBUG_VM PageTransHuge adjustment.

And one more thing: should the compound_head(page) be done inside or
outside page_move_anon_rmap()? It's usually pushed down to the lowest
level nowadays (and mm/memory.c shows no other explicit use of it), so I
think it's better done in page_move_anon_rmap() than by caller.

Fixes: 0798d3c022 ("mm: thp: avoid false positive VM_BUG_ON_PAGE in page_move_anon_rmap()")
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1607120444540.12528@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>	[4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 14:54:27 +09:00
Gerald Schaefer
d08de8e2d8 s390/mm: add support for 2GB hugepages
This adds support for 2GB hugetlbfs pages on s390.

Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-07-06 08:46:43 +02:00
Al Viro
b223f4e215 Merge branch 'd_real' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs into work.misc 2016-06-30 23:34:49 -04:00
Gerald Schaefer
c8cc708a34 mm/hugetlb: clear compound_mapcount when freeing gigantic pages
While working on s390 support for gigantic hugepages I ran into the
following "Bad page state" warning when freeing gigantic pages:

  BUG: Bad page state in process bash  pfn:580001
  page:000003d116000040 count:0 mapcount:0 mapping:ffffffff00000000 index:0x0
  flags: 0x7fffc0000000000()
  page dumped because: non-NULL mapping

This is because page->compound_mapcount, which is part of a union with
page->mapping, is initialized with -1 in prep_compound_gigantic_page(),
and not cleared again during destroy_compound_gigantic_page().  Fix this
by clearing the compound_mapcount in destroy_compound_gigantic_page()
before clearing compound_head.

Interestingly enough, the warning will not show up on x86_64, although
this should not be architecture specific.  Apparently there is an
endianness issue, combined with the fact that the union contains both a
64 bit ->mapping pointer and a 32 bit atomic_t ->compound_mapcount as
members.  The resulting bogus page->mapping on x86_64 therefore contains
00000000ffffffff instead of ffffffff00000000 on s390, which will falsely
trigger the PageAnon() check in free_pages_prepare() because
page->mapping & PAGE_MAPPING_ANON is true on little-endian architectures
like x86_64 in this case (the page is not compound anymore,
->compound_head was already cleared before).  As a result, page->mapping
will be cleared before doing the checks in free_pages_check().

Not sure if the bogus "PageAnon() returning true" on x86_64 for the
first tail page of a gigantic page (at this stage) has other theoretical
implications, but they would also be fixed with this patch.

Link: http://lkml.kernel.org/r/1466612719-5642-1-git-send-email-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Kirill A. Shutemov
c17b1f4259 hugetlb: fix nr_pmds accounting with shared page tables
We account HugeTLB's shared page table to all processes who share it.
The accounting happens during huge_pmd_share().

If somebody populates pud entry under us, we should decrease pagetable's
refcount and decrease nr_pmds of the process.

By mistake, I increase nr_pmds again in this case.  :-/ It will lead to
"BUG: non-zero nr_pmds on freeing mm: 2" on process' exit.

Let's fix this by increasing nr_pmds only when we're sure that the page
table will be used.

Link: http://lkml.kernel.org/r/20160617122506.GC6534@node.shutemov.name
Fixes: dc6c9a35b6 ("mm: account pmd page tables to the process")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: zhongjiang <zhongjiang@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Mike Kravetz
67961f9db8 mm/hugetlb: fix huge page reserve accounting for private mappings
When creating a private mapping of a hugetlbfs file, it is possible to
unmap pages via ftruncate or fallocate hole punch.  If subsequent faults
repopulate these mappings, the reserve counts will go negative.  This is
because the code currently assumes all faults to private mappings will
consume reserves.  The problem can be recreated as follows:

 - mmap(MAP_PRIVATE) a file in hugetlbfs filesystem
 - write fault in pages in the mapping
 - fallocate(FALLOC_FL_PUNCH_HOLE) some pages in the mapping
 - write fault in pages in the hole

This will result in negative huge page reserve counts and negative
subpool usage counts for the hugetlbfs.  Note that this can also be
recreated with ftruncate, but fallocate is more straight forward.

This patch modifies the routines vma_needs_reserves and vma_has_reserves
to examine the reserve map associated with private mappings similar to
that for shared mappings.  However, the reserve map semantics for
private and shared mappings are very different.  This results in subtly
different code that is explained in the comments.

Link: http://lkml.kernel.org/r/1464720957-15698-1-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-09 14:23:11 -07:00
Al Viro
93c76a3d43 file_inode(f)->i_mapping is f->f_mapping
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-29 18:56:09 -04:00
Linus Torvalds
1f40c49570 libnvdimm for 4.7
1/ Device DAX for persistent memory:
    Device DAX is the device-centric analogue of Filesystem DAX
    (CONFIG_FS_DAX).  It allows memory ranges to be allocated and mapped
    without need of an intervening file system.  Device DAX is strict,
    precise and predictable.  Specifically this interface:
 
    a) Guarantees fault granularity with respect to a given page size
       (pte, pmd, or pud) set at configuration time.
 
    b) Enforces deterministic behavior by being strict about what fault
       scenarios are supported.
 
    Persistent memory is the first target, but the mechanism is also
    targeted for exclusive allocations of performance/feature differentiated
    memory ranges.
 
 2/ Support for the HPE DSM (device specific method) command formats.
    This enables management of these first generation devices until a
    unified DSM specification materializes.
 
 3/ Further ACPI 6.1 compliance with support for the common dimm
    identifier format.
 
 4/ Various fixes and cleanups across the subsystem.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXQhdeAAoJEB7SkWpmfYgCYP8P/RAgHkroL5lUKKU45TQUBKcY
 diC9POeNSccme4tIRIQCGQUZ7+7mKM5ECv2ulF4xYOHvFBCcd/8OF6xKAXs48r3v
 oguYhvX1YvIkBc9FUfBQbR1IsCOJ7uWp/UYiYCIQEXS5tS9Jv545j3ASqDt9xWoV
 TWlceZn3yWSbASiV9qZ2eXhEkk75pg4yara++rsm2/7rs/TTXn5EIjBs+57BtAo+
 6utI4fTy0CQvBYwVzam3m7y9dt2Z2jWXL4hgmT7pkvJ7HDoctVly0P9+bknJPUAo
 g+NugKgTGeiqH5GYp5CTZ9KvL91sDF4q00pfinITVdFl0E3VE293cIHlAzSQBm5/
 w58xxaRV958ZvpH7EaBmYQG82QDi/eFNqeHqVGn0xAM6MlaqO7avUMQp2lRPYMCJ
 u1z/NloR5yo+sffHxsn5Luiq9KqOf6zk33PuxEkKbN74OayCSPn/SeVCO7rQR0B6
 yPMJTTcTiCLnId1kOWAPaEmuK2U3BW/+ogg7hKgeCQSysuy5n6Ok5a2vEx/gJRAm
 v9yF68RmIWumpHr+QB0TmB8mVbD5SY+xWTm3CqJb9MipuFIOF7AVsPyTgucBvE7s
 v+i5F6MDO6tcVfiDT4AiZEt6D2TM5RbtckkUEX3ZTD6j7CGuR5D8bH0HNRrghrYk
 KT1lAk6tjWBOGAHc5Ji7
 =Y3Xv
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "The bulk of this update was stabilized before the merge window and
  appeared in -next.  The "device dax" implementation was revised this
  week in response to review feedback, and to address failures detected
  by the recently expanded ndctl unit test suite.

  Not included in this pull request are two dax topic branches (dax
  error handling, and dax radix-tree locking).  These topics were
  deferred to get a few more days of -next integration testing, and to
  coordinate a branch baseline with Ted and the ext4 tree.  Vishal and
  Ross will send the error handling and locking topics respectively in
  the next few days.

  This branch has received a positive build result from the kbuild robot
  across 226 configs.

  Summary:

   - Device DAX for persistent memory: Device DAX is the device-centric
     analogue of Filesystem DAX (CONFIG_FS_DAX).  It allows memory
     ranges to be allocated and mapped without need of an intervening
     file system.  Device DAX is strict, precise and predictable.
     Specifically this interface:

      a) Guarantees fault granularity with respect to a given page size
         (pte, pmd, or pud) set at configuration time.

      b) Enforces deterministic behavior by being strict about what
         fault scenarios are supported.

     Persistent memory is the first target, but the mechanism is also
     targeted for exclusive allocations of performance/feature
     differentiated memory ranges.

   - Support for the HPE DSM (device specific method) command formats.
     This enables management of these first generation devices until a
     unified DSM specification materializes.

   - Further ACPI 6.1 compliance with support for the common dimm
     identifier format.

   - Various fixes and cleanups across the subsystem"

* tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (40 commits)
  libnvdimm, dax: fix deletion
  libnvdimm, dax: fix alignment validation
  libnvdimm, dax: autodetect support
  libnvdimm: release ida resources
  Revert "block: enable dax for raw block devices"
  /dev/dax, core: file operations and dax-mmap
  /dev/dax, pmem: direct access to persistent memory
  libnvdimm: stop requiring a driver ->remove() method
  libnvdimm, dax: record the specified alignment of a dax-device instance
  libnvdimm, dax: reserve space to store labels for device-dax
  libnvdimm, dax: introduce device-dax infrastructure
  nfit: add sysfs dimm 'family' and 'dsm_mask' attributes
  tools/testing/nvdimm: ND_CMD_CALL support
  nfit: disable vendor specific commands
  nfit: export subsystem ids as attributes
  nfit: fix format interface code byte order per ACPI6.1
  nfit, libnvdimm: limited/whitelisted dimm command marshaling mechanism
  nfit, libnvdimm: clarify "commands" vs "_DSMs"
  libnvdimm: increase max envelope size for ioctl
  acpi/nfit: Add sysfs "id" for NVDIMM ID
  ...
2016-05-23 11:18:01 -07:00
Dan Williams
dee4107924 /dev/dax, core: file operations and dax-mmap
The "Device DAX" core enables dax mappings of performance / feature
differentiated memory.  An open mapping or file handle keeps the backing
struct device live, but new mappings are only possible while the device
is enabled.   Faults are handled under rcu_read_lock to synchronize
with the enabled state of the device.

Similar to the filesystem-dax case the backing memory may optionally
have struct page entries.  However, unlike fs-dax there is no support
for private mappings, or mappings that are not backed by media (see
use of zero-page in fs-dax).

Mappings are always guaranteed to match the alignment of the dax_region.
If the dax_region is configured to have a 2MB alignment, all mappings
are guaranteed to be backed by a pmd entry.  Contrast this determinism
with the fs-dax case where pmd mappings are opportunistic.  If userspace
attempts to force a misaligned mapping, the driver will fail the mmap
attempt.  See dax_dev_check_vma() for other scenarios that are rejected,
like MAP_PRIVATE mappings.

Cc: Hannes Reinecke <hare@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-05-20 22:02:55 -07:00
Joonsoo Kim
f44b2dda8b mm/hugetlb: add same zone check in pfn_range_valid_gigantic()
This patchset deals with some problematic sites that iterate pfn ranges.

There is a system thats node's pfns are overlapped as follows:

  -----pfn-------->
  N0 N1 N2 N0 N1 N2

Therefore, we need to take care of this overlapping when iterating pfn
range.

I audit many iterating sites that uses pfn_valid(), pfn_valid_within(),
zone_start_pfn and etc.  and others looks safe to me.  This is a
preparation step for a new CMA implementation, ZONE_CMA
(https://lkml.org/lkml/2015/2/12/95), because it would be easily
overlapped with other zones.  But, zone overlap check is also needed for
the general case so I send it separately.

This patch (of 5):

alloc_gigantic_page() uses alloc_contig_range() and this requires that
the requested range is in a single zone.  To satisfy this requirement,
add this check to pfn_range_valid_gigantic().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton
54f18d3526 mm/hugetlb.c: use first_memory_node
Instead of open-coding it.

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vaishali Thakkar
9fee021d15 mm/hugetlb: introduce hugetlb_bad_size()
When any unsupported hugepage size is specified, 'hugepagesz=' and
'hugepages=' should be ignored during command line parsing until any
supported hugepage size is found.  But currently incorrect number of
hugepages are allocated when unsupported size is specified as it fails
to ignore the 'hugepages=' command.

Test case:

Note that this is specific to x86 architecture.

Boot the kernel with command line option 'hugepagesz=256M hugepages=X'.
After boot, dmesg output shows that X number of hugepages of the size 2M
is pre-allocated instead of 0.

So, to handle such command line options, introduce new routine
hugetlb_bad_size.  The routine hugetlb_bad_size sets the global variable
parsed_valid_hugepagesz.  We are using parsed_valid_hugepagesz to save
the state when unsupported hugepagesize is found so that we can ignore
the 'hugepages=' parameters after that and then reset the variable when
supported hugepage size is found.

The routine hugetlb_bad_size can be called while setting 'hugepagesz='
parameter in an architecture specific code.

Signed-off-by: Vaishali Thakkar <vaishali.thakkar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mike Kravetz
09a95e29cb mm/hugetlb: optimize minimum size (min_size) accounting
It was observed that minimum size accounting associated with the
hugetlbfs min_size mount option may not perform optimally and as
expected.  As huge pages/reservations are released from the filesystem
and given back to the global pools, they are reserved for subsequent
filesystem use as long as the subpool reserved count is less than
subpool minimum size.  It does not take into account used pages within
the filesystem.  The filesystem size limits are not exceeded and this is
technically not a bug.  However, better behavior would be to wait for
the number of used pages/reservations associated with the filesystem to
drop below the minimum size before taking reservations to satisfy
minimum size.

An optimization is also made to the hugepage_subpool_get_pages() routine
which is called when pages/reservations are allocated.  This does not
change behavior, but simply avoids the accounting if all reservations
have already been taken (subpool reserved count == 0).

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton
0edaf86cf1 include/linux/nodemask.h: create next_node_in() helper
Lots of code does

	node = next_node(node, XXX);
	if (node == MAX_NUMNODES)
		node = first_node(XXX);

so create next_node_in() to do this and use it in various places.

[mhocko@suse.com: use next_node_in() helper]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Kirill A. Shutemov
09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Joe Perches
598d80914e mm: convert pr_warning to pr_warn
There are a mixture of pr_warning and pr_warn uses in mm.  Use pr_warn
consistently.

Miscellanea:

 - Coalesce formats
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Jan Stancek
86613628b3 mm/hugetlb: use EOPNOTSUPP in hugetlb sysctl handlers
Replace ENOTSUPP with EOPNOTSUPP.  If hugepages are not supported, this
value is propagated to userspace.  EOPNOTSUPP is part of uapi and is
widely supported by libc libraries.

It gives nicer message to user, rather than:

  # cat /proc/sys/vm/nr_hugepages
  cat: /proc/sys/vm/nr_hugepages: Unknown error 524

And also LTP's proc01 test was failing because this ret code (524)
was unexpected:

  proc01      1  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_hugepages: errno=???(524): Unknown error 524
  proc01      2  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_hugepages_mempolicy: errno=???(524): Unknown error 524
  proc01      3  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_overcommit_hugepages: errno=???(524): Unknown error 524

Signed-off-by: Jan Stancek <jstancek@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Geoffrey Thomas
910154d520 mm/hugetlb: hugetlb_no_page: rate-limit warning message
The warning message "killed due to inadequate hugepage pool" simply
indicates that SIGBUS was sent, not that the process was forcibly killed.
If the process has a signal handler installed does not fix the problem,
this message can rapidly spam the kernel log.

On my amd64 dev machine that does not have hugepages configured, I can
reproduce the repeated warnings easily by setting vm.nr_hugepages=2 (i.e.,
4 megabytes of huge pages) and running something that sets a signal
handler and forks, like

  #include <sys/mman.h>
  #include <signal.h>
  #include <stdlib.h>
  #include <unistd.h>

  sig_atomic_t counter = 10;
  void handler(int signal)
  {
      if (counter-- == 0)
         exit(0);
  }

  int main(void)
  {
      int status;
      char *addr = mmap(NULL, 4 * 1048576, PROT_READ | PROT_WRITE,
              MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
      if (addr == MAP_FAILED) {perror("mmap"); return 1;}
      *addr = 'x';
      switch (fork()) {
         case -1:
            perror("fork"); return 1;
         case 0:
            signal(SIGBUS, handler);
            *addr = 'x';
            break;
         default:
            *addr = 'x';
            wait(&status);
            if (WIFSIGNALED(status)) {
               psignal(WTERMSIG(status), "child");
            }
            break;
      }
  }

Signed-off-by: Geoffrey Thomas <geofft@ldpreload.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Vaishali Thakkar
f8b74815a4 mm/hugetlb.c: fix incorrect proc nr_hugepages value
Currently incorrect default hugepage pool size is reported by proc
nr_hugepages when number of pages for the default huge page size is
specified twice.

When multiple huge page sizes are supported, /proc/sys/vm/nr_hugepages
indicates the current number of pre-allocated huge pages of the default
size.  Basically /proc/sys/vm/nr_hugepages displays default_hstate->
max_huge_pages and after boot time pre-allocation, max_huge_pages should
equal the number of pre-allocated pages (nr_hugepages).

Test case:

Note that this is specific to x86 architecture.

Boot the kernel with command line option 'default_hugepagesz=1G
hugepages=X hugepagesz=2M hugepages=Y hugepagesz=1G hugepages=Z'.  After
boot, 'cat /proc/sys/vm/nr_hugepages' and 'sysctl -a | grep hugepages'
returns the value X.  However, dmesg output shows that Z huge pages were
pre-allocated.

So, the root cause of the problem here is that the global variable
default_hstate_max_huge_pages is set if a default huge page size is
specified (directly or indirectly) on the command line.  After the command
line processing in hugetlb_init, if default_hstate_max_huge_pages is set,
the value is assigned to default_hstae.max_huge_pages.  However,
default_hstate.max_huge_pages may have already been set based on the
number of pre-allocated huge pages of default_hstate size.

The solution to this problem is if hstate->max_huge_pages is already set
then it should not set as a result of global max_huge_pages value.
Basically if the value of the variable hugepages is set multiple times on
a command line for a specific supported hugepagesize then proc layer
should consider the last specified value.

Signed-off-by: Vaishali Thakkar <vaishali.thakkar@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-18 16:23:24 -08:00
Vlastimil Babka
080fe2068e mm, hugetlb: don't require CMA for runtime gigantic pages
Commit 944d9fec8d ("hugetlb: add support for gigantic page allocation
at runtime") has added the runtime gigantic page allocation via
alloc_contig_range(), making this support available only when CONFIG_CMA
is enabled.  Because it doesn't depend on MIGRATE_CMA pageblocks and the
associated infrastructure, it is possible with few simple adjustments to
require only CONFIG_MEMORY_ISOLATION instead of full CONFIG_CMA.

After this patch, alloc_contig_range() and related functions are
available and used for gigantic pages with just CONFIG_MEMORY_ISOLATION
enabled.  Note CONFIG_CMA selects CONFIG_MEMORY_ISOLATION.  This allows
supporting runtime gigantic pages without the CMA-specific checks in
page allocator fastpaths.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-05 18:10:40 -08:00
Mike Kravetz
b4330afbed mm/hugetlb: fix gigantic page initialization/allocation
Attempting to preallocate 1G gigantic huge pages at boot time with
"hugepagesz=1G hugepages=1" on the kernel command line will prevent
booting with the following:

  kernel BUG at mm/hugetlb.c:1218!

When mapcount accounting was reworked, the setting of
compound_mapcount_ptr in prep_compound_gigantic_page was overlooked.  As
a result, the validation of mapcount in free_huge_page fails.

The "BUG_ON" checks in free_huge_page were also changed to
"VM_BUG_ON_PAGE" to assist with debugging.

Fixes: 53f9263bab ("mm: rework mapcount accounting to enable 4k mapping of THPs")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-05 18:10:40 -08:00
Kirill A. Shutemov
53f9263bab mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound.  It
means we need to track mapcount on per small page basis.

Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined.  But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.

The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount.  This frees up ->_mapcount in subpages to
track PTE mapcount.

We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.

Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount.  When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.

page_mapcount() counts both: PTE and PMD mappings of the page.

Basically, we have mapcount for a subpage spread over two counters.  It
makes tricky to detect when last mapcount for a page goes away.

We introduced PageDoubleMap() for this.  When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.

This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.

[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
ddc58f27f9 mm: drop tail page refcounting
Tail page refcounting is utterly complicated and painful to support.

It uses ->_mapcount on tail pages to store how many times this page is
pinned.  get_page() bumps ->_mapcount on tail page in addition to
->_count on head.  This information is required by split_huge_page() to
be able to distribute pins from head of compound page to tails during
the split.

We will need ->_mapcount to account PTE mappings of subpages of the
compound page.  We eliminate need in current meaning of ->_mapcount in
tail pages by forbidding split entirely if the page is pinned.

The only user of tail page refcounting is THP which is marked BROKEN for
now.

Let's drop all this mess.  It makes get_page() and put_page() much
simpler.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
d281ee6145 rmap: add argument to charge compound page
We're going to allow mapping of individual 4k pages of THP compound
page.  It means we cannot rely on PageTransHuge() check to decide if
map/unmap small page or THP.

The patch adds new argument to rmap functions to indicate whether we
want to operate on whole compound page or only the small page.

[n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
de09d31dd3 page-flags: define PG_reserved behavior on compound pages
As far as I can see there's no users of PG_reserved on compound pages.
Let's use PF_NO_COMPOUND here.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Paul Gortmaker
3e89e1c5ea hugetlb: make mm and fs code explicitly non-modular
The Kconfig currently controlling compilation of this code is:

config HUGETLBFS
        bool "HugeTLB file system support"

...meaning that it currently is not being built as a module by anyone.

Lets remove the modular code that is essentially orphaned, so that when
reading the driver there is no doubt it is builtin-only.

Since module_init translates to device_initcall in the non-modular case,
the init ordering gets moved to earlier levels when we use the more
appropriate initcalls here.

Originally I had the fs part and the mm part as separate commits, just
by happenstance of the nature of how I detected these non-modular use
cases.  But that can possibly introduce regressions if the patch merge
ordering puts the fs part 1st -- as the 0-day testing reported a splat
at mount time.

Investigating with "initcall_debug" showed that the delta was
init_hugetlbfs_fs being called _before_ hugetlb_init instead of after.  So
both the fs change and the mm change are here together.

In addition, it worked before due to luck of link order, since they were
both in the same initcall category.  So we now have the fs part using
fs_initcall, and the mm part using subsys_initcall, which puts it one
bucket earlier.  It now passes the basic sanity test that failed in
earlier 0-day testing.

We delete the MODULE_LICENSE tag and capture that information at the top
of the file alongside author comments, etc.

We don't replace module.h with init.h since the file already has that.
Also note that MODULE_ALIAS is a no-op for non-modular code.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Reported-by: kernel test robot <ying.huang@linux.intel.com>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Mike Kravetz
dbe409e4f5 mm/hugetlb.c: fix resv map memory leak for placeholder entries
Dmitry Vyukov reported the following memory leak

unreferenced object 0xffff88002eaafd88 (size 32):
  comm "a.out", pid 5063, jiffies 4295774645 (age 15.810s)
  hex dump (first 32 bytes):
    28 e9 4e 63 00 88 ff ff 28 e9 4e 63 00 88 ff ff  (.Nc....(.Nc....
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace:
     kmalloc include/linux/slab.h:458
     region_chg+0x2d4/0x6b0 mm/hugetlb.c:398
     __vma_reservation_common+0x2c3/0x390 mm/hugetlb.c:1791
     vma_needs_reservation mm/hugetlb.c:1813
     alloc_huge_page+0x19e/0xc70 mm/hugetlb.c:1845
     hugetlb_no_page mm/hugetlb.c:3543
     hugetlb_fault+0x7a1/0x1250 mm/hugetlb.c:3717
     follow_hugetlb_page+0x339/0xc70 mm/hugetlb.c:3880
     __get_user_pages+0x542/0xf30 mm/gup.c:497
     populate_vma_page_range+0xde/0x110 mm/gup.c:919
     __mm_populate+0x1c7/0x310 mm/gup.c:969
     do_mlock+0x291/0x360 mm/mlock.c:637
     SYSC_mlock2 mm/mlock.c:658
     SyS_mlock2+0x4b/0x70 mm/mlock.c:648

Dmitry identified a potential memory leak in the routine region_chg,
where a region descriptor is not free'ed on an error path.

However, the root cause for the above memory leak resides in region_del.
In this specific case, a "placeholder" entry is created in region_chg.
The associated page allocation fails, and the placeholder entry is left
in the reserve map.  This is "by design" as the entry should be deleted
when the map is released.  The bug is in the region_del routine which is
used to delete entries within a specific range (and when the map is
released).  region_del did not handle the case where a placeholder entry
exactly matched the start of the range range to be deleted.  In this
case, the entry would not be deleted and leaked.  The fix is to take
these special placeholder entries into account in region_del.

The region_chg error path leak is also fixed.

Fixes: feba16e25a ("mm/hugetlb: add region_del() to delete a specific range of entries")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>	[4.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 10:15:34 -08:00