IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Until now, we have been keeping track of the exact set of broadcast
destinations though the help structure tipc_node_map. This leads us to
have to maintain a whole infrastructure for supporting this, including
a pseudo-bearer and a number of functions to manipulate both the bearers
and the node map correctly. Apart from the complexity, this approach is
also limiting, as struct tipc_node_map only can support cluster local
broadcast if we want to avoid it becoming excessively large. We want to
eliminate this limitation, in order to enable introduction of scoped
multicast in the future.
A closer analysis reveals that it is unnecessary maintaining this "full
set" overview; it is sufficient to keep a counter per bearer, indicating
how many nodes can be reached via this bearer at the moment. The protocol
is now robust enough to handle transitional discrepancies between the
nominal number of reachable destinations, as expected by the broadcast
protocol itself, and the number which is actually reachable at the
moment. The initial broadcast synchronization, in conjunction with the
retransmission mechanism, ensures that all packets will eventually be
acknowledged by the correct set of destinations.
This commit introduces these changes.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The code path for receiving broadcast packets is currently distinct
from the unicast path. This leads to unnecessary code and data
duplication, something that can be avoided with some effort.
We now introduce separate per-peer tipc_link instances for handling
broadcast packet reception. Each receive link keeps a pointer to the
common, single, broadcast link instance, and can hence handle release
and retransmission of send buffers as if they belonged to the own
instance.
Furthermore, we let each unicast link instance keep a reference to both
the pertaining broadcast receive link, and to the common send link.
This makes it possible for the unicast links to easily access data for
broadcast link synchronization, as well as for carrying acknowledges for
received broadcast packets.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Until now, we have tried to support both the newer, dedicated broadcast
synchronization mechanism along with the older, less safe, RESET_MSG/
ACTIVATE_MSG based one. The latter method has turned out to be a hazard
in a highly dynamic cluster, so we find it safer to disable it completely
when we find that the former mechanism is supported by the peer node.
For this purpose, we now introduce a new capabability bit,
TIPC_BCAST_SYNCH, to inform any peer nodes that dedicated broadcast
syncronization is supported by the present node. The new bit is conveyed
between peers in the 'capabilities' field of neighbor discovery messages.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In reality, the link implementation is already independent from
struct tipc_bearer, in that it doesn't store any reference to it.
However, we still pass on a pointer to a bearer instance in the
function tipc_link_create(), just to have it extract some
initialization information from it.
I later commits, we need to create instances of tipc_link without
having any associated struct tipc_bearer. To facilitate this, we
want to extract the initialization data already in the creator
function in node.c, before calling tipc_link_create(), and pass
this info on as individual parameters in the call.
This commit introduces this change.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/usb/asix_common.c
net/ipv4/inet_connection_sock.c
net/switchdev/switchdev.c
In the inet_connection_sock.c case the request socket hashing scheme
is completely different in net-next.
The other two conflicts were overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
The change made in the previous commit revealed a small flaw in the way
the node FSM is updated. When the function tipc_node_link_down() is
called for the last link to a node, we should check whether this was
caused by a local reset or by a received RESET message from the peer.
In the latter case, we can directly issue a PEER_LOST_CONTACT_EVT to
the node FSM, so that it is ready to re-establish contact. If this is
not done, the peer node will sometimes have to go through a second
establish cycle before the link becomes stable.
We fix this in this commit by conditionally issuing the mentioned
event in the function tipc_node_link_down(). We also move LINK_RESET
FSM even away from the link_reset() function and into the caller
function, partially because it is easier to follow the code when state
changes are gathered at a limited number of locations, partially
because there will be cases in future commits where we don't want the
link to go RESET mode when link_reset() is called.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a link is taken down because of a node local event, such as
disabling of a bearer or an interface, we currently leave it to the
peer node to discover the broken communication. The default time for
such failure discovery is 1.5-2 seconds.
If we instead allow the terminating link endpoint to send out a RESET
message at the moment it is reset, we can achieve the impression that
both endpoints are going down instantly. Since this is a very common
scenario, we find it worthwhile to make this small modification.
Apart from letting the link produce the said message, we also have to
ensure that the interface is able to transmit it before TIPC is
detached. We do this by performing the disabling of a bearer in three
steps:
1) Disable reception of TIPC packets from the interface in question.
2) Take down the links, while allowing them so send out a RESET message.
3) Disable transmission of TIPC packets on the interface.
Apart from this, we now have to react on the NETDEV_GOING_DOWN event,
instead of as currently the NEDEV_DOWN event, to ensure that such
transmission is possible during the teardown phase.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Link establishing, just like link teardown, is a non-atomic action, in
the sense that discovering that conditions are right to establish a link,
and the actual adding of the link to one of the node's send slots is done
in two different lock contexts. The link FSM is designed to help bridging
the gap between the two contexts in a safe manner.
We have now discovered a weakness in the implementaton of this FSM.
Because we directly let the link go from state LINK_ESTABLISHING to
state LINK_ESTABLISHED already in the first lock context, we are unable
to distinguish between a fully established link, i.e., a link that has
been added to its slot, and a link that has not yet reached the second
lock context. It may hence happen that a manual intervention, e.g., when
disabling an interface, causes the function tipc_node_link_down() to try
removing the link from the node slots, decrementing its active link
counter etc, although the link was never added there in the first place.
We solve this by delaying the actual state change until we reach the
second lock context, inside the function tipc_node_link_up(). This
makes it possible for potentail callers of __tipc_node_link_down() to
know if they should proceed or not, and the problem is solved.
Unforunately, the situation described above also has a second problem.
Since there by necessity is a tipc_node_link_up() call pending once
the node lock has been released, we must defuse that call by setting
the link back from LINK_ESTABLISHING to LINK_RESET state. This forces
us to make a slight modification to the link FSM, which will now look
as follows.
+------------------------------------+
|RESET_EVT |
| |
| +--------------+
| +-----------------| SYNCHING |-----------------+
| |FAILURE_EVT +--------------+ PEER_RESET_EVT|
| | A | |
| | | | |
| | | | |
| | |SYNCH_ |SYNCH_ |
| | |BEGIN_EVT |END_EVT |
| | | | |
| V | V V
| +-------------+ +--------------+ +------------+
| | RESETTING |<---------| ESTABLISHED |--------->| PEER_RESET |
| +-------------+ FAILURE_ +--------------+ PEER_ +------------+
| | EVT | A RESET_EVT |
| | | | |
| | +----------------+ | |
| RESET_EVT| |RESET_EVT | |
| | | | |
| | | |ESTABLISH_EVT |
| | | +-------------+ | |
| | | | RESET_EVT | | |
| | | | | | |
| V V V | | |
| +-------------+ +--------------+ RESET_EVT|
+--->| RESET |--------->| ESTABLISHING |<----------------+
+-------------+ PEER_ +--------------+
| A RESET_EVT |
| | |
| | |
|FAILOVER_ |FAILOVER_ |FAILOVER_
|BEGIN_EVT |END_EVT |BEGIN_EVT
| | |
V | |
+-------------+ |
| FAILINGOVER |<----------------+
+-------------+
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit 6e498158a827 ("tipc: move link synch and failover to link aggregation level")
we introduced a new mechanism for performing link failover and
synchronization. We have now detected a bug in this mechanism.
During link synchronization we use the arrival of any packet on
the tunnel link to trig a check for whether it has reached the
synchronization point or not. This has turned out to be too
permissive, since it may cause an arriving non-last SYNCH packet to
end the synch state, just to see the next SYNCH packet initiate a
new synch state with a new, higher synch point. This is not fatal,
but should be avoided, because it may significantly extend the
synchronization period, while at the same time we are not allowed
to send NACKs if packets are lost. In the worst case, a low-traffic
user may see its traffic stall until a LINK_PROTOCOL state message
trigs the link to leave synchronization state.
At the same time, LINK_PROTOCOL packets which happen to have a (non-
valid) sequence number lower than the tunnel link's rcv_nxt value will
be consistently dropped, and will never be able to resolve the situation
described above.
We fix this by exempting LINK_PROTOCOL packets from the sequence number
check, as they should be. We also reduce (but don't completely
eliminate) the risk of entering multiple synchronization states by only
allowing the (logically) first SYNCH packet to initiate a synchronization
state. This works independently of actual packet arrival order.
Fixes: commit 6e498158a827 ("tipc: move link synch and failover to link aggregation level")
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Recent changes to the link synchronization means that we can now just
drop packets arriving on the synchronizing link before the synch point
is reached. This has lead to significant simplifications to the
implementation, but also turns out to have a flip side that we need
to consider.
Under unlucky circumstances, the two endpoints may end up
repeatedly dropping each other's packets, while immediately
asking for retransmission of the same packets, just to drop
them once more. This pattern will eventually be broken when
the synch point is reached on the other link, but before that,
the endpoints may have arrived at the retransmission limit
(stale counter) that indicates that the link should be broken.
We see this happen at rare occasions.
The fix for this is to not ask for retransmissions when a link is in
state LINK_SYNCHING. The fact that the link has reached this state
means that it has already received the first SYNCH packet, and that it
knows the synch point. Hence, it doesn't need any more packets until the
other link has reached the synch point, whereafter it can go ahead and
ask for the missing packets.
However, because of the reduced traffic on the synching link that
follows this change, it may now take longer to discover that the
synch point has been reached. We compensate for this by letting all
packets, on any of the links, trig a check for synchronization
termination. This is possible because the packets themselves don't
contain any information that is needed for discovering this condition.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When we introduced the new link failover/synch mechanism
in commit 6e498158a827fd515b514842e9a06bdf0f75ab86
("tipc: move link synch and failover to link aggregation level"),
we missed the case when the non-tunnel link goes down during the link
synchronization period. In this case the tunnel link will remain in
state LINK_SYNCHING, something leading to unpredictable behavior when
the failover procedure is initiated.
In this commit, we ensure that the node and remaining link goes
back to regular communication state (SELF_UP_PEER_UP/LINK_ESTABLISHED)
when one of the parallel links goes down. We also ensure that we don't
re-enter synch mode if subsequent SYNCH packets arrive on the remaining
link.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a link goes down, and there is still a working link towards its
destination node, a failover is initiated, and the failed link is not
allowed to re-establish until that procedure is finished. To ensure
this, the concerned link endpoints are set to state LINK_FAILINGOVER,
and the node endpoints to NODE_FAILINGOVER during the failover period.
However, if the link reset is due to a disabled bearer, the corres-
ponding link endpoint is deleted, and only the node endpoint knows
about the ongoing failover. Now, if the disabled bearer is re-enabled
during the failover period, the discovery mechanism may create a new
link endpoint that is ready to be established, despite that this is not
permitted. This situation may cause both the ongoing failover and any
subsequent link synchronization to fail.
In this commit, we ensure that a newly created link goes directly to
state LINK_FAILINGOVER if the corresponding node state is
NODE_FAILINGOVER. This eliminates the problem described above.
Furthermore, we tighten the criteria for which packets are allowed
to end a failover state in the function tipc_node_check_state().
By checking that the receiving link is up and running, instead of just
checking that it is not in failover mode, we eliminate the risk that
protocol packets from the re-created link may cause the failover to
be prematurely terminated.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We simplify the link creation function tipc_link_create() and the way
the link struct it is connected to the node struct. In particular, we
remove the duplicate initialization of some fields which are anyway set
in tipc_link_reset().
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After the most recent changes, all access calls to a link which
may entail addition of messages to the link's input queue are
postpended by an explicit call to tipc_sk_rcv(), using a reference
to the correct queue.
This means that the potentially hazardous implicit delivery, using
tipc_node_unlock() in combination with a binary flag and a cached
queue pointer, now has become redundant.
This commit removes this implicit delivery mechanism both for regular
data messages and for binding table update messages.
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to facilitate future improvements to the locking structure, we
want to make resetting and establishing of links non-atomic. I.e., the
functions tipc_node_link_up() and tipc_node_link_down() should be called
from outside the node lock context, and grab/release the node lock
themselves. This requires that we can freeze the link state from the
moment it is set to RESETTING or PEER_RESET in one lock context until
it is set to RESET or ESTABLISHING in a later context. The recently
introduced link FSM makes this possible, so we are now ready to introduce
the above change.
This commit implements this.
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The node lock is currently grabbed and and released in the function
tipc_disc_rcv() in the file discover.c. As a preparation for the next
commits, we need to move this node lock handling, along with the code
area it is covering, to node.c.
This commit introduces this change.
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Until now, we have been handling link failover and synchronization
by using an additional link state variable, "exec_mode". This variable
is not independent of the link FSM state, something causing a risk of
inconsistencies, apart from the fact that it clutters the code.
The conditions are now in place to define a new link FSM that covers
all existing use cases, including failover and synchronization, and
eliminate the "exec_mode" field altogether. The FSM must also support
non-atomic resetting of links, which will be introduced later.
The new link FSM is shown below, with 7 states and 8 events.
Only events leading to state change are shown as edges.
+------------------------------------+
|RESET_EVT |
| |
| +--------------+
| +-----------------| SYNCHING |-----------------+
| |FAILURE_EVT +--------------+ PEER_RESET_EVT|
| | A | |
| | | | |
| | | | |
| | |SYNCH_ |SYNCH_ |
| | |BEGIN_EVT |END_EVT |
| | | | |
| V | V V
| +-------------+ +--------------+ +------------+
| | RESETTING |<---------| ESTABLISHED |--------->| PEER_RESET |
| +-------------+ FAILURE_ +--------------+ PEER_ +------------+
| | EVT | A RESET_EVT |
| | | | |
| | | | |
| | +--------------+ | |
| RESET_EVT| |RESET_EVT |ESTABLISH_EVT |
| | | | |
| | | | |
| V V | |
| +-------------+ +--------------+ RESET_EVT|
+--->| RESET |--------->| ESTABLISHING |<----------------+
+-------------+ PEER_ +--------------+
| A RESET_EVT |
| | |
| | |
|FAILOVER_ |FAILOVER_ |FAILOVER_
|BEGIN_EVT |END_EVT |BEGIN_EVT
| | |
V | |
+-------------+ |
| FAILINGOVER |<----------------+
+-------------+
These changes are fully backwards compatible.
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The implementation of the link FSM currently takes decisions about and
sends out link protocol messages. This is unnecessary, since such
actions are not the result of any link state change, and are even
decided based on non-FSM state information ("silent_intv_cnt").
We now move the sending of unicast link protocol messages to the
function tipc_link_timeout(), and the initial broadcast synchronization
message to tipc_node_link_up(). The latter is done because a link
instance should not need to know whether it is the first or second
link to a destination. Such information is now restricted to and
handled by the link aggregation layer in node.c
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Link failover and synchronization have until now been handled by the
links themselves, forcing them to have knowledge about and to access
parallel links in order to make the two algorithms work correctly.
In this commit, we move the control part of this functionality to the
link aggregation level in node.c, which is the right location for this.
As a result, the two algorithms become easier to follow, and the link
implementation becomes simpler.
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In many cases the call order when a link is reset goes as follows:
tipc_node_xx()->tipc_link_reset()->tipc_node_link_down()
This is not the right order if we want the node to be in control,
so in this commit we change the order to:
tipc_node_xx()->tipc_node_link_down()->tipc_link_reset()
The fact that tipc_link_reset() now is called from only one
location with a well-defined state will also facilitate later
simplifications of tipc_link_reset() and the link FSM.
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In line with our effort to let the node level have full control over
its links, we want to move all link reset calls from link.c to node.c.
Some of the calls can be moved by simply moving the calling function,
when this is the right thing to do. For the remaining calls we use
the now established technique of returning a TIPC_LINK_DOWN_EVT
flag from tipc_link_rcv(), whereafter we perform the reset call when
the call returns.
This change serves as a preparation for the coming commits.
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The function tipc_link_activate() is redundant, since it mostly performs
settings that have already been done in a preceding tipc_link_reset().
There are three exceptions to this:
- The actual state change to TIPC_LINK_WORKING. This should anyway be done
in the FSM, and not in a separate function.
- Registration of the link with the bearer. This should be done by the
node, since we don't want the link to have any knowledge about its
specific bearer.
- Call to tipc_node_link_up() for user access registration. With the new
role distribution between link aggregation and link level this becomes
the wrong call order; tipc_node_link_up() should instead be called
directly as a result of a TIPC_LINK_UP event, hence by the node itself.
This commit implements those changes.
Tested-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We convert packet/message reception according to the same principle
we have been using for message sending and timeout handling:
We move the function tipc_rcv() to node.c, hence handling the initial
packet reception at the link aggregation level. The function grabs
the node lock, selects the receiving link, and accesses it via a new
call tipc_link_rcv(). This function appends buffers to the input
queue for delivery upwards, but it may also append outgoing packets
to the xmit queue, just as we do during regular message sending. The
latter will happen when buffers are forwarded from the link backlog,
or when retransmission is requested.
Upon return of this function, and after having released the node lock,
tipc_rcv() delivers/tranmsits the contents of those queues, but it may
also perform actions such as link activation or reset, as indicated by
the return flags from the link.
This reduces the number of cpu cycles spent inside the node spinlock,
and reduces contention on that lock.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The logics for determining when a node is permitted to establish
and maintain contact with its peer node becomes non-trivial in the
presence of multiple parallel links that may come and go independently.
A known failure scenario is that one endpoint registers both its links
to the peer lost, cleans up it binding table, and prepares for a table
update once contact is re-establihed, while the other endpoint may
see its links reset and re-established one by one, hence seeing
no need to re-synchronize the binding table. To avoid this, a node
must not allow re-establishing contact until it has confirmation that
even the peer has lost both links.
Currently, the mechanism for handling this consists of setting and
resetting two state flags from different locations in the code. This
solution is hard to understand and maintain. A closer analysis even
reveals that it is not completely safe.
In this commit we do instead introduce an FSM that keeps track of
the conditions for when the node can establish and maintain links.
It has six states and four events, and is strictly based on explicit
knowledge about the own node's and the peer node's contact states.
Only events leading to state change are shown as edges in the figure
below.
+--------------+
| SELF_UP/ |
+---------------->| PEER_COMING |-----------------+
SELF_ | +--------------+ |PEER_
ESTBL_ | | |ESTBL_
CONTACT| SELF_LOST_CONTACT | |CONTACT
| v |
| +--------------+ |
| PEER_ | SELF_DOWN/ | SELF_ |
| LOST_ +--| PEER_LEAVING |<--+ LOST_ v
+-------------+ CONTACT | +--------------+ | CONTACT +-----------+
| SELF_DOWN/ |<----------+ +----------| SELF_UP/ |
| PEER_DOWN |<----------+ +----------| PEER_UP |
+-------------+ SELF_ | +--------------+ | PEER_ +-----------+
| LOST_ +--| SELF_LEAVING/|<--+ LOST_ A
| CONTACT | PEER_DOWN | CONTACT |
| +--------------+ |
| A |
PEER_ | PEER_LOST_CONTACT | |SELF_
ESTBL_ | | |ESTBL_
CONTACT| +--------------+ |CONTACT
+---------------->| PEER_UP/ |-----------------+
| SELF_COMING |
+--------------+
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In our effort to move control of the links to the link aggregation
layer, we move the perodic link supervision timer to struct tipc_node.
The new timer is shared between all links belonging to the node, thus
saving resources, while still kicking the FSM on both its pertaining
links at each expiration.
The current link timer and corresponding functions are removed.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The status flag LINK_STOPPED is not needed any more, since the
mechanism for delayed deletion of links has been removed.
Likewise, LINK_STARTED and LINK_START_EVT are unnecessary,
because we can just as well start the link timer directly from
inside tipc_link_create().
We eliminate these flags in this commit.
Instead of the above flags, we now introduce three new link modes,
TIPC_LINK_OPEN, TIPC_LINK_BLOCKED and TIPC_LINK_TUNNEL. The values
indicate whether, and in the case of TIPC_LINK_TUNNEL, which, messages
the link is allowed to receive in this state. TIPC_LINK_BLOCKED also
blocks timer-driven protocol messages to be sent out, and any change
to the link FSM. Since the modes are mutually exclusive, we convert
them to state values, and rename the 'flags' field in struct tipc_link
to 'exec_mode'.
Finally, we move the #defines for link FSM states and events from link.h
into enums inside the file link.c, which is the real usage scope of
these definitions.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, message sending is performed through a deep call chain,
where the node spinlock is grabbed and held during a significant
part of the transmission time. This is clearly detrimental to
overall throughput performance; it would be better if we could send
the message after the spinlock has been released.
In this commit, we do instead let the call revert on the stack after
the buffer chain has been added to the transmission queue, whereafter
clones of the buffers are transmitted to the device layer outside the
spinlock scope.
As a further step in our effort to separate the roles of the node
and link entities we also move the function tipc_link_xmit() to
node.c, and rename it to tipc_node_xmit().
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
struct tipc_node currently holds two arrays of link pointers; one,
indexed by bearer identity, which contains all links irrespective of
current state, and one two-slot array for the currently active link
or links. The latter array contains direct pointers into the elements
of the former. This has the effect that we cannot know the bearer id of
a link when accessing it via the "active_links[]" array without actually
dereferencing the pointer, something we want to avoid in some cases.
In this commit, we do instead store the bearer identity in the
"active_links" array, and use this as an index to find the right element
in the overall link entry array. This change should be seen as a
preparation for the later commits in this series.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At present, the link input queue and the name distributor receive
queues are fields aggregated in struct tipc_link. This is a hazard,
because a link might be deleted while a receiving socket still keeps
reference to one of the queues.
This commit fixes this bug. However, rather than adding yet another
reference counter to the critical data path, we move the two queues
to safe ground inside struct tipc_node, which is already protected, and
let the link code only handle references to the queues. This is also
in line with planned later changes in this area.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As a step towards turning links into node internal entities, we move the
creation of links from the neighbor discovery logics to the node's link
control logics.
We also create an additional entry for the link's media address in the
newly introduced struct tipc_link_entry, since this is where it is
needed in the upcoming commits. The current copy in struct tipc_link
is kept for now, but will be removed later.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
struct 'tipc_node' currently contains two arrays for link attributes,
one for the link pointers, and one for the usable link MTUs.
We now group those into a new struct 'tipc_link_entry', and intoduce
one single array consisting of such enties. Apart from being a cosmetic
improvement, this is a starting point for the strict master-slave
relation between node and link that we will introduce in the following
commits.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, the packet sequence number is updated and added to each
packet at the moment a packet is added to the link backlog queue.
This is wasteful, since it forces the code to traverse the send
packet list packet by packet when adding them to the backlog queue.
It would be better to just splice the whole packet list into the
backlog queue when that is the right action to do.
In this commit, we do this change. Also, since the sequence numbers
cannot now be assigned to the packets at the moment they are added
the backlog queue, we do instead calculate and add them at the moment
of transmission, when the backlog queue has to be traversed anyway.
We do this in the function tipc_link_push_packet().
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When we try to add new inline functions in the code, we sometimes
run into circular include dependencies.
The main problem is that the file core.h, which really should be at
the root of the dependency chain, instead is a leaf. I.e., core.h
includes a number of header files that themselves should be allowed
to include core.h. In reality this is unnecessary, because core.h does
not need to know the full signature of any of the structs it refers to,
only their type declaration.
In this commit, we remove all dependencies from core.h towards any
other tipc header file.
As a consequence of this change, we can now move the function
tipc_own_addr(net) from addr.c to addr.h, and make it inline.
There are no functional changes in this commit.
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a link is being established, the two endpoints advertise their
respective interface MTU in the transmitted RESET and ACTIVATE messages.
If there is any difference, the lower of the two MTUs will be selected
for use by both endpoints.
However, as a remnant of earlier attempts to introduce TIPC level
routing. there also exists an MTU discovery mechanism. If an intermediate
node has a lower MTU than the two endpoints, they will discover this
through a bisectional approach, and finally adopt this MTU for common use.
Since there is no TIPC level routing, and probably never will be,
this mechanism doesn't make any sense, and only serves to make the
link level protocol unecessarily complex.
In this commit, we eliminate the MTU discovery algorithm,and fall back
to the simple MTU advertising approach. This change is fully backwards
compatible.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a bearer is disabled manually, all its links have to be reset
and deleted. However, if there is a remaining, parallel link ready
to take over a deleted link's traffic, we currently delay the delete
of the removed link until the failover procedure is finished. This
is because the remaining link needs to access state from the reset
link, such as the last received packet number, and any partially
reassembled buffer, in order to perform a successful failover.
In this commit, we do instead move the state data over to the new
link, so that it can fulfill the procedure autonomously, without
accessing any data on the old link. This means that we can now
proceed and delete all pertaining links immediately when a bearer
is disabled. This saves us from some unnecessary complexity in such
situations.
We also choose to change the confusing definitions CHANGEOVER_PROTOCOL,
ORIGINAL_MSG and DUPLICATE_MSG to the more descriptive TUNNEL_PROTOCOL,
FAILOVER_MSG and SYNCH_MSG respectively.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TIPC node hash node table is protected with rcu lock on read side.
tipc_node_find() is used to look for a node object with node address
through iterating the hash node table. As the entire process of what
tipc_node_find() traverses the table is guarded with rcu read lock,
it's safe for us. However, when callers use the node object returned
by tipc_node_find(), there is no rcu read lock applied. Therefore,
this is absolutely unsafe for callers of tipc_node_find().
Now we introduce a reference counter for node structure. Before
tipc_node_find() returns node object to its caller, it first increases
the reference counter. Accordingly, after its caller used it up,
it decreases the counter again. This can prevent a node being used by
one thread from being freed by another thread.
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericson.com>
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
struct tipc_link contains one single queue for outgoing packets,
where both transmitted and waiting packets are queued.
This infrastructure is hard to maintain, because we need
to keep a number of fields to keep track of which packets are
sent or unsent, and the number of packets in each category.
A lot of code becomes simpler if we split this queue into a transmission
queue, where sent/unacknowledged packets are kept, and a backlog queue,
where we keep the not yet sent packets.
In this commit we do this separation.
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add TIPC_CMD_NOOP to compat layer and remove the old framework.
All legacy nl commands are now converted to the compat layer in
netlink_compat.c.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert TIPC_CMD_GET_NODES to compat dumpit and remove global node
counter solely used by the legacy API.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert TIPC_CMD_GET_LINKS to compat dumpit and remove global link
counter solely used by the legacy API.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The new netlink API is no longer "v2" but rather the standard API and
the legacy API is now "nl compat". We split them into separate
start/stop and put them in different files in order to further
distinguish them.
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In a previous commit in this series we resolved a race problem during
unicast message reception.
Here, we resolve the same problem at multicast reception. We apply the
same technique: an input queue serializing the delivery of arriving
buffers. The main difference is that here we do it in two steps.
First, the broadcast link feeds arriving buffers into the tail of an
arrival queue, which head is consumed at the socket level, and where
destination lookup is performed. Second, if the lookup is successful,
the resulting buffer clones are fed into a second queue, the input
queue. This queue is consumed at reception in the socket just like
in the unicast case. Both queues are protected by the same lock, -the
one of the input queue.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The new input message queue in struct tipc_link can be used for
delivering connection abort messages to subscribing sockets. This
makes it possible to simplify the code for such cases.
This commit removes the temporary list in tipc_node_unlock()
used for transforming abort subscriptions to messages. Instead, the
abort messages are now created at the moment of lost contact, and
then added to the last failed link's generic input queue for delivery
to the sockets concerned.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TIPC handles message cardinality and sequencing at the link layer,
before passing messages upwards to the destination sockets. During the
upcall from link to socket no locks are held. It is therefore possible,
and we see it happen occasionally, that messages arriving in different
threads and delivered in sequence still bypass each other before they
reach the destination socket. This must not happen, since it violates
the sequentiality guarantee.
We solve this by adding a new input buffer queue to the link structure.
Arriving messages are added safely to the tail of that queue by the
link, while the head of the queue is consumed, also safely, by the
receiving socket. Sequentiality is secured per socket by only allowing
buffers to be dequeued inside the socket lock. Since there may be multiple
simultaneous readers of the queue, we use a 'filter' parameter to reduce
the risk that they peek the same buffer from the queue, hence also
reducing the risk of contention on the receiving socket locks.
This solves the sequentiality problem, and seems to cause no measurable
performance degradation.
A nice side effect of this change is that lock handling in the functions
tipc_rcv() and tipc_bcast_rcv() now becomes uniform, something that
will enable future simplifications of those functions.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The most common usage of namespace information is when we fetch the
own node addess from the net structure. This leads to a lot of
passing around of a parameter of type 'struct net *' between
functions just to make them able to obtain this address.
However, in many cases this is unnecessary. The own node address
is readily available as a member of both struct tipc_sock and
tipc_link, and can be fetched from there instead.
The fact that the vast majority of functions in socket.c and link.c
anyway are maintaining a pointer to their respective base structures
makes this option even more compelling.
In this commit, we introduce the inline functions tsk_own_node()
and link_own_node() to make it easy for functions to fetch the node
address from those structs instead of having to pass along and
dereference the namespace struct.
In particular, we make calls to the msg_xx() functions in msg.{h,c}
context independent by directly passing them the own node address
as parameter when needed. Those functions should be regarded as
leaves in the code dependency tree, and it is hence desirable to
keep them namspace unaware.
Apart from a potential positive effect on cache behavior, these
changes make it easier to introduce the changes that will follow
later in this series.
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Instances of struct node are created in the function tipc_disc_rcv()
under the assumption that there is no race between received discovery
messages arriving from the same node. This assumption is wrong.
When we use more than one bearer, it is possible that discovery
messages from the same node arrive at the same moment, resulting in
creation of two instances of struct tipc_node. This may later cause
confusion during link establishment, and may result in one of the links
never becoming activated.
We fix this by making lookup and potential creation of nodes atomic.
Instead of first looking up the node, and in case of failure, create it,
we now start with looking up the node inside node_link_create(), and
return a reference to that one if found. Otherwise, we go ahead and
create the node as we did before.
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
During link failover it may happen that the remaining link goes
down while it is still in the process of taking over traffic
from a previously failed link. When this happens, we currently
abort the failover procedure and reset the first failed link to
non-failover mode, so that it will be ready to re-establish
contact with its peer when it comes available.
However, if the first link goes down because its bearer was manually
disabled, it is not enough to reset it; it must also be deleted;
which is supposed to happen when the failover procedure is finished.
Otherwise it will remain a zombie link: attached to the owner node
structure, in mode LINK_STOPPED, and permanently blocking any re-
establishing of the link to the peer via the interface in question.
We fix this by amending the failover abort procedure. Apart from
resetting the link to non-failover state, we test if the link is
also in LINK_STOPPED mode. If so, we delete it, using the conditional
tipc_link_delete() function introduced in the previous commit.
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If a large number of namespaces is spawned on a node and TIPC is
enabled in each of these, the excessive printk tracing of network
events will cause the system to grind down to a near halt.
The traces are still of debug value, so instead of removing them
completely we fix it by changing the link state and node availability
logging debug traces.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>