13 Commits

Author SHA1 Message Date
Yong Wu
29746d0125 dt-bindings: mediatek: Add binding for mt8183 IOMMU and SMI
This patch adds decriptions for mt8183 IOMMU and SMI.

mt8183 has only one M4U like mt8173 and is also MTK IOMMU gen2 which
uses ARM Short-Descriptor translation table format.

The mt8183 M4U-SMI HW diagram is as below:

                          EMI
                           |
                          M4U
                           |
                       ----------
                       |        |
                   gals0-rx   gals1-rx
                       |        |
                       |        |
                   gals0-tx   gals1-tx
                       |        |
                      ------------
                       SMI Common
                      ------------
                           |
  +-----+-----+--------+-----+-----+-------+-------+
  |     |     |        |     |     |       |       |
  |     |  gals-rx  gals-rx  |   gals-rx gals-rx gals-rx
  |     |     |        |     |     |       |       |
  |     |     |        |     |     |       |       |
  |     |  gals-tx  gals-tx  |   gals-tx gals-tx gals-tx
  |     |     |        |     |     |       |       |
larb0 larb1  IPU0    IPU1  larb4  larb5  larb6    CCU
disp  vdec   img     cam    venc   img    cam

All the connections are HW fixed, SW can NOT adjust it.

Compared with mt8173, we add a GALS(Global Async Local Sync) module
between SMI-common and M4U, and additional GALS between larb2/3/5/6
and SMI-common. GALS can help synchronize for the modules in different
clock frequency, it can be seen as a "asynchronous fifo".

GALS can only help transfer the command/data while it doesn't have
the configuring register, thus it has the special "smi" clock and it
doesn't have the "apb" clock. From the diagram above, we add "gals0"
and "gals1" clocks for smi-common and add a "gals" clock for smi-larb.

>From the diagram above, IPU0/IPU1(Image Processor Unit) and CCU(Camera
Control Unit) is connected with smi-common directly, we can take them
as "larb2", "larb3" and "larb7", and their register spaces are
different with the normal larb.

Signed-off-by: Yong Wu <yong.wu@mediatek.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Reviewed-by: Evan Green <evgreen@chromium.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2019-08-30 15:57:26 +02:00
Thomas Gleixner
1802d0beec treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 174
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 655 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070034.575739538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:41 -07:00
Yong Wu
50fa3cd33f dt-bindings: mediatek: Add binding for mt2712 IOMMU and SMI
This patch adds decriptions for mt2712 IOMMU and SMI.

In order to balance the bandwidth, mt2712 has two M4Us, two
smi-commons, 10 smi-larbs. and mt2712 is also MTK IOMMU gen2 which
uses ARM Short-Descriptor translation table format.

The mt2712 M4U-SMI HW diagram is as below:

                            EMI
                             |
              ------------------------------------
              |                                  |
             M4U0                              M4U1
              |                                  |
         smi-common0                        smi-common1
              |                                  |
  -------------------------       --------------------------------
  |     |     |     |     |       |         |        |     |     |
  |     |     |     |     |       |         |        |     |     |
larb0 larb1 larb2 larb3 larb6    larb4    larb5    larb7 larb8 larb9
disp0 vdec  cam   venc   jpg  mdp1/disp1 mdp2/disp2 mdp3 vdo/nr tvd

All the connections are HW fixed, SW can NOT adjust it.

Signed-off-by: Yong Wu <yong.wu@mediatek.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Matthias Brugger <matthias.bgg@gmail.com>
2018-07-18 17:01:04 +02:00
Dmitry Osipenko
a1be3cfdfb dt-bindings: memory: tegra: Remove Tegra114 SATA and AFI reset definitions
Tegra114 doesn't have SATA nor PCIe, but TRM seems erroneously document
them.

Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
2018-05-18 22:45:01 +02:00
Dmitry Osipenko
5c8d08f347 dt-bindings: memory: tegra: Add hot resets definitions
Add definitions for the Tegra20+ memory controller hot resets.

Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Thierry Reding <treding@nvidia.com>
2018-04-27 11:21:21 +02:00
Thierry Reding
029ab5eaf0 dt-bindings: memory: Add Tegra186 support
As opposed to earlier incarnations, the memory controller on Tegra186 no
longer implements an SMMU. Instead the SMMU is a regular ARM SMMU and in
a separate IP block.

However, the memory controller programs the SMMU stream IDs for each of
the memory clients. Add a header file with definitions for each of these
stream IDs and mark the #iommu-cells property as required on Tegra30 to
Tegra210 in the device tree bindings.

Signed-off-by: Thierry Reding <treding@nvidia.com>
2017-12-13 12:53:43 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Yong Wu
a9467d9542 iommu/mediatek: Move MTK_M4U_TO_LARB/PORT into mtk_iommu.c
The definition of MTK_M4U_TO_LARB and MTK_M4U_TO_PORT are shared by
all the gen2 M4U HWs. Thus, Move them out from mt8173-larb-port.h,
and put them into the c file.

Suggested-by: Honghui Zhang <honghui.zhang@mediatek.com>
Signed-off-by: Yong Wu <yong.wu@mediatek.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2017-08-22 16:37:58 +02:00
Honghui Zhang
615cca8c0c iommu/mediatek: dt-binding: Correct the larb port offset defines for mt2701
larb2 have 23 ports, the LARB3_PORT_OFFSET should be LARB2_PORT_OFFSET
plus larb2's port number, it should be 44 instead of 43.

Signed-off-by: Honghui Zhang <honghui.zhang@mediatek.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2016-08-22 12:52:10 +02:00
Honghui Zhang
7e42626ad3 dt-bindings: mediatek: add descriptions for mediatek mt2701 iommu and smi
This patch defines the local arbitor port IDs for mediatek SoC MT2701 and
add descriptions of binding for mediatek generation one iommu and smi.

Signed-off-by: Honghui Zhang <honghui.zhang@mediatek.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2016-06-21 11:36:19 +02:00
Yong Wu
fb6e2ceee3 dt-bindings: mediatek: Add smi dts binding
This patch add smi binding document and smi local arbiter header file.

Signed-off-by: Yong Wu <yong.wu@mediatek.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2016-02-25 16:49:08 +01:00
Thierry Reding
588c43a7bd memory: tegra: Add Tegra210 support
Add the table of memory clients and SWGROUPs for Tegra210 to enable SMMU
support for this new SoC.

Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-08-13 16:07:52 +02:00
Thierry Reding
8918465163 memory: Add NVIDIA Tegra memory controller support
The memory controller on NVIDIA Tegra exposes various knobs that can be
used to tune the behaviour of the clients attached to it.

Currently this driver sets up the latency allowance registers to the HW
defaults. Eventually an API should be exported by this driver (via a
custom API or a generic subsystem) to allow clients to register latency
requirements.

This driver also registers an IOMMU (SMMU) that's implemented by the
memory controller. It is supported on Tegra30, Tegra114 and Tegra124
currently. Tegra20 has a GART instead.

The Tegra SMMU operates on memory clients and SWGROUPs. A memory client
is a unidirectional, special-purpose DMA master. A SWGROUP represents a
set of memory clients that form a logical functional unit corresponding
to a single device. Typically a device has two clients: one client for
read transactions and one client for write transactions, but there are
also devices that have only read clients, but many of them (such as the
display controllers).

Because there is no 1:1 relationship between memory clients and devices
the driver keeps a table of memory clients and the SWGROUPs that they
belong to per SoC. Note that this is an exception and due to the fact
that the SMMU is tightly integrated with the rest of the Tegra SoC. The
use of these tables is discouraged in drivers for generic IOMMU devices
such as the ARM SMMU because the same IOMMU could be used in any number
of SoCs and keeping such tables for each SoC would not scale.

Acked-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thierry Reding <treding@nvidia.com>
2014-12-04 16:11:47 +01:00