IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
syzbot detected a crash during log recovery:
XFS (loop0): Mounting V5 Filesystem bfdc47fc-10d8-4eed-a562-11a831b3f791
XFS (loop0): Torn write (CRC failure) detected at log block 0x180. Truncating head block from 0x200.
XFS (loop0): Starting recovery (logdev: internal)
==================================================================
BUG: KASAN: slab-out-of-bounds in xfs_btree_lookup_get_block+0x15c/0x6d0 fs/xfs/libxfs/xfs_btree.c:1813
Read of size 8 at addr ffff88807e89f258 by task syz-executor132/5074
CPU: 0 PID: 5074 Comm: syz-executor132 Not tainted 6.2.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x290 lib/dump_stack.c:106
print_address_description+0x74/0x340 mm/kasan/report.c:306
print_report+0x107/0x1f0 mm/kasan/report.c:417
kasan_report+0xcd/0x100 mm/kasan/report.c:517
xfs_btree_lookup_get_block+0x15c/0x6d0 fs/xfs/libxfs/xfs_btree.c:1813
xfs_btree_lookup+0x346/0x12c0 fs/xfs/libxfs/xfs_btree.c:1913
xfs_btree_simple_query_range+0xde/0x6a0 fs/xfs/libxfs/xfs_btree.c:4713
xfs_btree_query_range+0x2db/0x380 fs/xfs/libxfs/xfs_btree.c:4953
xfs_refcount_recover_cow_leftovers+0x2d1/0xa60 fs/xfs/libxfs/xfs_refcount.c:1946
xfs_reflink_recover_cow+0xab/0x1b0 fs/xfs/xfs_reflink.c:930
xlog_recover_finish+0x824/0x920 fs/xfs/xfs_log_recover.c:3493
xfs_log_mount_finish+0x1ec/0x3d0 fs/xfs/xfs_log.c:829
xfs_mountfs+0x146a/0x1ef0 fs/xfs/xfs_mount.c:933
xfs_fs_fill_super+0xf95/0x11f0 fs/xfs/xfs_super.c:1666
get_tree_bdev+0x400/0x620 fs/super.c:1282
vfs_get_tree+0x88/0x270 fs/super.c:1489
do_new_mount+0x289/0xad0 fs/namespace.c:3145
do_mount fs/namespace.c:3488 [inline]
__do_sys_mount fs/namespace.c:3697 [inline]
__se_sys_mount+0x2d3/0x3c0 fs/namespace.c:3674
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f89fa3f4aca
Code: 83 c4 08 5b 5d c3 66 2e 0f 1f 84 00 00 00 00 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fffd5fb5ef8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5
RAX: ffffffffffffffda RBX: 00646975756f6e2c RCX: 00007f89fa3f4aca
RDX: 0000000020000100 RSI: 0000000020009640 RDI: 00007fffd5fb5f10
RBP: 00007fffd5fb5f10 R08: 00007fffd5fb5f50 R09: 000000000000970d
R10: 0000000000200800 R11: 0000000000000206 R12: 0000000000000004
R13: 0000555556c6b2c0 R14: 0000000000200800 R15: 00007fffd5fb5f50
</TASK>
The fuzzed image contains an AGF with an obviously garbage
agf_refcount_level value of 32, and a dirty log with a buffer log item
for that AGF. The ondisk AGF has a higher LSN than the recovered log
item. xlog_recover_buf_commit_pass2 reads the buffer, compares the
LSNs, and decides to skip replay because the ondisk buffer appears to be
newer.
Unfortunately, the ondisk buffer is corrupt, but recovery just read the
buffer with no buffer ops specified:
error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno,
buf_f->blf_len, buf_flags, &bp, NULL);
Skipping the buffer leaves its contents in memory unverified. This sets
us up for a kernel crash because xfs_refcount_recover_cow_leftovers
reads the buffer (which is still around in XBF_DONE state, so no read
verification) and creates a refcountbt cursor of height 32. This is
impossible so we run off the end of the cursor object and crash.
Fix this by invoking the verifier on all skipped buffers and aborting
log recovery if the ondisk buffer is corrupt. It might be smarter to
force replay the log item atop the buffer and then see if it'll pass the
write verifier (like ext4 does) but for now let's go with the
conservative option where we stop immediately.
Link: https://syzkaller.appspot.com/bug?extid=7e9494b8b399902e994e
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
While we're messing around with how recovery allocates and frees the
buffer cancellation table, convert the allocation to use kmalloc_array
instead of the old kmem_alloc APIs, and make it handle a null return,
even though that's not likely.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the code that allocates and frees the buffer cancellation tables
used by log recovery into the file that actually uses the tables. This
is a precursor to some cleanups and a memory leak fix.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Got a report that a repeated crash test of a container host would
eventually fail with a log recovery error preventing the system from
mounting the root filesystem. It manifested as a directory leaf node
corruption on writeback like so:
XFS (loop0): Mounting V5 Filesystem
XFS (loop0): Starting recovery (logdev: internal)
XFS (loop0): Metadata corruption detected at xfs_dir3_leaf_check_int+0x99/0xf0, xfs_dir3_leaf1 block 0x12faa158
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 3d f1 00 00 e1 9e d5 8b ........=.......
00000010: 00 00 00 00 12 fa a1 58 00 00 00 29 00 00 1b cc .......X...)....
00000020: 91 06 78 ff f7 7e 4a 7d 8d 53 86 f2 ac 47 a8 23 ..x..~J}.S...G.#
00000030: 00 00 00 00 17 e0 00 80 00 43 00 00 00 00 00 00 .........C......
00000040: 00 00 00 2e 00 00 00 08 00 00 17 2e 00 00 00 0a ................
00000050: 02 35 79 83 00 00 00 30 04 d3 b4 80 00 00 01 50 .5y....0.......P
00000060: 08 40 95 7f 00 00 02 98 08 41 fe b7 00 00 02 d4 .@.......A......
00000070: 0d 62 ef a7 00 00 01 f2 14 50 21 41 00 00 00 0c .b.......P!A....
XFS (loop0): Corruption of in-memory data (0x8) detected at xfs_do_force_shutdown+0x1a/0x20 (fs/xfs/xfs_buf.c:1514). Shutting down.
XFS (loop0): Please unmount the filesystem and rectify the problem(s)
XFS (loop0): log mount/recovery failed: error -117
XFS (loop0): log mount failed
Tracing indicated that we were recovering changes from a transaction
at LSN 0x29/0x1c16 into a buffer that had an LSN of 0x29/0x1d57.
That is, log recovery was overwriting a buffer with newer changes on
disk than was in the transaction. Tracing indicated that we were
hitting the "recovery immediately" case in
xfs_buf_log_recovery_lsn(), and hence it was ignoring the LSN in the
buffer.
The code was extracting the LSN correctly, then ignoring it because
the UUID in the buffer did not match the superblock UUID. The
problem arises because the UUID check uses the wrong UUID - it
should be checking the sb_meta_uuid, not sb_uuid. This filesystem
has sb_uuid != sb_meta_uuid (which is fine), and the buffer has the
correct matching sb_meta_uuid in it, it's just the code checked it
against the wrong superblock uuid.
The is no corruption in the filesystem, and failing to recover the
buffer due to a write verifier failure means the recovery bug did
not propagate the corruption to disk. Hence there is no corruption
before or after this bug has manifested, the impact is limited
simply to an unmountable filesystem....
This was missed back in 2015 during an audit of incorrect sb_uuid
usage that resulted in commit fcfbe2c4ef42 ("xfs: log recovery needs
to validate against sb_meta_uuid") that fixed the magic32 buffers to
validate against sb_meta_uuid instead of sb_uuid. It missed the
magicda buffers....
Fixes: ce748eaa65f2 ("xfs: create new metadata UUID field and incompat flag")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Remove the few leftover instances of the xfs_dinode_t typedef.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Stop directly referencing b_bn in code outside the buffer cache, as
b_bn is supposed to be used only as an internal cache index.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.
Large parts of this conversion were done with sed with commands like
this:
for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done
With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.
The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:
$ size -t fs/xfs/built-in.a
text data bss dec hex filenam
before 1130866 311352 484 1442702 16038e (TOTALS)
after 1127727 311352 484 1439563 15f74b (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
While reviewing the buffer item recovery code, the thought occurred to
me: in V5 filesystems we use log sequence number (LSN) tracking to avoid
replaying older metadata updates against newer log items. However, we
use the magic number of the ondisk buffer to find the LSN of the ondisk
metadata, which means that if an attacker can control the layout of the
realtime device precisely enough that the start of an rt bitmap block
matches the magic and UUID of some other kind of block, they can control
the purported LSN of that spoofed block and thereby break log replay.
Since realtime bitmap and summary blocks don't have headers at all, we
have no way to tell if a block really should be replayed. The best we
can do is replay unconditionally and hope for the best.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
From the department of "WTAF? How did we miss that!?"...
When we are recovering a buffer, the first thing we do is check the
buffer magic number and extract the LSN from the buffer. If the LSN
is older than the current LSN, we replay the modification to it. If
the metadata on disk is newer than the transaction in the log, we
skip it. This is a fundamental v5 filesystem metadata recovery
behaviour.
generic/482 failed with an attribute writeback failure during log
recovery. The write verifier caught the corruption before it got
written to disk, and the attr buffer dump looked like:
XFS (dm-3): Metadata corruption detected at xfs_attr3_leaf_verify+0x275/0x2e0, xfs_attr3_leaf block 0x19be8
XFS (dm-3): Unmount and run xfs_repair
XFS (dm-3): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 3b ee 00 00 4d 2a 01 e1 ........;...M*..
00000010: 00 00 00 00 00 01 9b e8 00 00 00 01 00 00 05 38 ...............8
^^^^^^^^^^^^^^^^^^^^^^^
00000020: df 39 5e 51 58 ac 44 b6 8d c5 e7 10 44 09 bc 17 .9^QX.D.....D...
00000030: 00 00 00 00 00 02 00 83 00 03 00 cc 0f 24 01 00 .............$..
00000040: 00 68 0e bc 0f c8 00 10 00 00 00 00 00 00 00 00 .h..............
00000050: 00 00 3c 31 0f 24 01 00 00 00 3c 32 0f 88 01 00 ..<1.$....<2....
00000060: 00 00 3c 33 0f d8 01 00 00 00 00 00 00 00 00 00 ..<3............
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
.....
The highlighted bytes are the LSN that was replayed into the
buffer: 0x100000538. This is cycle 1, block 0x538. Prior to replay,
that block on disk looks like this:
$ sudo xfs_db -c "fsb 0x417d" -c "type attr3" -c p /dev/mapper/thin-vol
hdr.info.hdr.forw = 0
hdr.info.hdr.back = 0
hdr.info.hdr.magic = 0x3bee
hdr.info.crc = 0xb5af0bc6 (correct)
hdr.info.bno = 105448
hdr.info.lsn = 0x100000900
^^^^^^^^^^^
hdr.info.uuid = df395e51-58ac-44b6-8dc5-e7104409bc17
hdr.info.owner = 131203
hdr.count = 2
hdr.usedbytes = 120
hdr.firstused = 3796
hdr.holes = 1
hdr.freemap[0-2] = [base,size]
Note the LSN stamped into the buffer on disk: 1/0x900. The version
on disk is much newer than the log transaction that was being
replayed. That's a bug, and should -never- happen.
So I immediately went to look at xlog_recover_get_buf_lsn() to check
that we handled the LSN correctly. I was wondering if there was a
similar "two commits with the same start LSN skips the second
replay" problem with buffers. I didn't get that far, because I found
a much more basic, rudimentary bug: xlog_recover_get_buf_lsn()
doesn't recognise buffers with XFS_ATTR3_LEAF_MAGIC set in them!!!
IOWs, attr3 leaf buffers fall through the magic number checks
unrecognised, so trigger the "recover immediately" behaviour instead
of undergoing an LSN check. IOWs, we incorrectly replay ATTR3 leaf
buffers and that causes silent on disk corruption of inode attribute
forks and potentially other things....
Git history shows this is *another* zero day bug, this time
introduced in commit 50d5c8d8e938 ("xfs: check LSN ordering for v5
superblocks during recovery") which failed to handle the attr3 leaf
buffers in recovery. And we've failed to handle them ever since...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Nathan popped up on #xfs and pointed out that we fail to handle
finobt btree blocks in xlog_recover_get_buf_lsn(). This means they
always fall through the entire magic number matching code to "recover
immediately". Whilst most of the time this is the correct behaviour,
occasionally it will be incorrect and could potentially overwrite
more recent metadata because we don't check the LSN in the on disk
metadata at all.
This bug has been present since the finobt was first introduced, and
is a potential cause of the occasional xfs_iget_check_free_state()
failures we see that indicate that the inode btree state does not
match the on disk inode state.
Fixes: aafc3c246529 ("xfs: support the XFS_BTNUM_FINOBT free inode btree type")
Reported-by: Nathan Scott <nathans@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The log recovery I/O completion handler does not substancially differ from
the normal one except for the fact that it:
a) never retries failed writes
b) can have log items that aren't on the AIL
c) never has inode/dquot log items attached and thus don't need to
handle them
Add conditionals for (a) and (b) to the ioend code, while (c) doesn't
need special handling anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Delete repeated words in fs/xfs/.
{we, that, the, a, to, fork}
Change "it it" to "it is" in one location.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
To: linux-fsdevel@vger.kernel.org
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: linux-xfs@vger.kernel.org
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We're going to split up the incore dquot state flags from the ondisk
dquot flags (eventually renaming this "type") so start by renaming the
three flags and the bitmask that are going to participate in this.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
xfs_qm_reset_dqcounts (aka quotacheck) is the only xfs_dqblk_verify
caller that actually knows the specific quota type that it's looking
for. Since everything else just pass in type==0 (including the buffer
verifier), drop the parameter and open-code the check like
xfs_dquot_from_disk already does.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Log recovery has it's own buffer write completion handler for
buffers that it directly recovers. Convert these to direct calls by
flagging these buffers as being log recovery buffers. The flag will
get cleared by the log recovery IO completion routine, so it will
never leak out of log recovery.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Move the helpers that handle incore buffer cancellation records to
xfs_buf_item_recover.c since they're not directly related to the main
log recovery machinery. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the log buffer item pass2 commit code into the per-item source code
files and use the dispatch function to call it. We do these one at a
time because there's a lot of code to move. No functional changes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the pass1 commit code into the per-item source code files and use
the dispatch function to call them.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Move the pass2 readhead code into the per-item source code files and use
the dispatch function to call them.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a generic dispatch structure to delegate recovery of different
log item types into various code modules. This will enable us to move
code specific to a particular log item type out of xfs_log_recover.c and
into the log item source.
The first operation we virtualize is the log item sorting.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>