IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This is a pretty significant branch. It's the introduction of the
first multiplatform support on ARM, and with this (and the later
branch) merged, it is now possible to build one kernel that contains
support for highbank, vexpress, mvebu, socfpga, and picoxcell. More
platforms will be convered over in the next few releases.
Two critical last things had to be done for this to be practical and
possible:
* Today each platform has its own include directory under
mach-<mach>/include/mach/*, and traditionally that is where a lot of
driver/platform shared definitions have gone, such as platform data
structures. They now need to move out to a common location instead,
and this branch moves a large number of those out to
include/linux/platform_data.
* Each platform used to list the device trees to compile for its
boards in mach-<mach>/Makefile.boot.
Both of the above changes will mean that there are some merge
conflicts to come (and some to resolve here). It's a one-time move and
once it settles in, we should be good for quite a while. Sorry for the
overhead.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJQaO7aAAoJEIwa5zzehBx3bUIP/02U8PhkHJJrrowyIsWRBOql
7LPJ53PRRgrpBdmEGzFD3TO3zaNyrjQRbYgNDvzHMO6NAMNvdRFouuWYjO11/tuB
i32zssXCC+eUOEgbAo/U/lYq+UOvqw9gv6mU+3+i3OcGEhdKOaoT/DSLPQC4hoDm
222TeLfFB3HJXu5n720dEQ9V3fO6TS1+bbh8TU3cjHqzceXsOrffZqOA5CQxUcRr
KWwOjA0nALDwWcqgv45GJNwY3GTyAQ/hPMQavnuWK0voJ+qUYk5HftKocAK7C+py
0T0OFOAHTwtyhvzJBxLC84M6Ox465BYXyeNjIB+2nG/Um9+mDoP0dnWpGy4c7DMU
P5hyqbeLGeqjUXQuYtRmgMMc3UeHKoUGAfXW9eMsjLa6/M4NLGv//7E7LbZPpgMZ
obkjwuesmcaYn/FRyj/yFmC35YlF4oCLziVzEtURZw3eKHHSUlhkTDSMNnkcZ0kZ
Vv7kFxnD2Y46ixiwSJv30ErQnVkgI3MdqDlDxkE8r5+phYuK4gCrNaJtiwRh/oNw
cFhpPxKuA0sJ9b6YRTzjC45eT/XZomEEr/uifCFeRNaCquyjYP00Mm8F0flSqwx9
zi+emzPAwNmk1bvxMUM/idGnaj0V4p+BAYUAvkbSoqU1p1flzyhU88fGTSIyKOt6
K5TCDS2v5hrVykK9TDwl
=Tc6y
-----END PGP SIGNATURE-----
Merge tag 'multiplatform' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM soc multiplatform enablement from Olof Johansson:
"This is a pretty significant branch. It's the introduction of the
first multiplatform support on ARM, and with this (and the later
branch) merged, it is now possible to build one kernel that contains
support for highbank, vexpress, mvebu, socfpga, and picoxcell. More
platforms will be convered over in the next few releases.
Two critical last things had to be done for this to be practical and
possible:
* Today each platform has its own include directory under
mach-<mach>/include/mach/*, and traditionally that is where a lot
of driver/platform shared definitions have gone, such as platform
data structures. They now need to move out to a common location
instead, and this branch moves a large number of those out to
include/linux/platform_data.
* Each platform used to list the device trees to compile for its
boards in mach-<mach>/Makefile.boot.
Both of the above changes will mean that there are some merge
conflicts to come (and some to resolve here). It's a one-time move
and once it settles in, we should be good for quite a while. Sorry
for the overhead."
Fix conflicts as per Olof.
* tag 'multiplatform' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (51 commits)
ARM: add v7 multi-platform defconfig
ARM: msm: Move core.h contents into common.h
ARM: highbank: call highbank_pm_init from .init_machine
ARM: dtb: move all dtb targets to common Makefile
ARM: spear: move platform_data definitions
ARM: samsung: move platform_data definitions
ARM: orion: move platform_data definitions
ARM: vexpress: convert to multi-platform
ARM: initial multiplatform support
ARM: mvebu: move armada-370-xp.h in mach dir
ARM: vexpress: remove dependency on mach/* headers
ARM: picoxcell: remove dependency on mach/* headers
ARM: move all dtb targets out of Makefile.boot
ARM: picoxcell: move debug macros to include/debug
ARM: socfpga: move debug macros to include/debug
ARM: mvebu: move debug macros to include/debug
ARM: vexpress: move debug macros to include/debug
ARM: highbank: move debug macros to include/debug
ARM: move debug macros to common location
ARM: make mach/gpio.h headers optional
...
A shorter cleanup branch submitted separately due to dependencies with
some of the previous topics.
Major thing here is that the Broadcom bcmring platform is removed. It's an
SoC that's used on some stationary VoIP platforms, and is in desperate
need of some cleanup. Broadcom came back and suggested that we just
deprecate the platform for now, since they aren't going to spend the
resources needed on cleaning it up, and there are no users of the platform
directly from mainline.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJQaO3MAAoJEIwa5zzehBx39VgQAKKjVG+QLQMaDhcZD8bl8xrZ
vDbH5b4kOso34q6D4kXtSb3bA9Anzps6ZZ+dLHBRNHXTXH5FNHTcKNxqhEV1b0qP
3XTZ05/FopixmSKfUvNvx84jM93phGSdXcvz6zcpGgUdNVQ5ElsX5BS3DBSGw12O
K3zVJlQxEQHgT+iXvoFQv5YOREQOzbqrFSm/QORT78+zcm6nPCY5rCJfz1Po05rS
hHTU/JfL5rXgLJaPXqbCkRFitM1CSGQXw8GkSP3IxB5mfDH6DqcWon0Uh3AOh+k2
PXQGNhzHlL6RNesscLDU3YsFhQq1tPL/JA8gzzaTa8z4CCWGTmD48iHUJ0mtXN33
XmglrpNQwiiD9pepWyfN0TPiAD9mBfnRRzwkmmHUkeNeIeVOo+nH+6JWEBc3kjFD
CemIIAtbflC0IZpnaoieOUwO6USukq4CCBdR2icQp9hG9nNnZ1O2L/HeuXn8DxPf
7TksF0wsBAbWkFWRLWmx0dVO0b0fuXsgQ/9+G51OxWOxpMIgMG3BBgkNN6fAybjg
t10jzilu3UKAVyqetWrrmzkzMtHLz6uAlOkR4W0+YoEBG57HD0iepBJZfzqulkb3
i5mdwYUQgPViNsvq9cuIfj/+S8QxRbJ4hT59u7YaAPX5Y3jstHXdjS4nFxv/mH0x
4qzaqYCJxDqdq6CssEKX
=LPF/
-----END PGP SIGNATURE-----
Merge tag 'cleanup2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM soc cleanups, part 2 from Olof Johansson:
"A shorter cleanup branch submitted separately due to dependencies with
some of the previous topics.
Major thing here is that the Broadcom bcmring platform is removed.
It's an SoC that's used on some stationary VoIP platforms, and is in
desperate need of some cleanup. Broadcom came back and suggested that
we just deprecate the platform for now, since they aren't going to
spend the resources needed on cleaning it up, and there are no users
of the platform directly from mainline."
Fix some conflicts due to BCM2835 getting added next to the removed
BCMRING, and removal of tegra files that had been converted to
devicetree.
* tag 'cleanup2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
ARM: Orion5x: ts78xx: Add IOMEM for virtual addresses.
ARM: ux500: use __iomem pointers for MMIO
ARM: Remove mach-bcmring
ARM: clps711x: Remove board support for CEIVA
ARM: clps711x: Fix register definitions
ARM: clps711x: Fix lowlevel debug-macro
ARM: clps711x: Added simple clock framework
pinctrl: tegra: move pinconf-tegra.h content into drivers/pinctrl
ARM: tegra: delete unused headers
ARM: tegra: remove useless includes of <mach/*.h>
ARM: tegra: remove dead code
Device tree conversion and enablement branch. Mostly a bunch of new
bindings and setup for various platforms, but the Via/Winchip VT8500
platform is also converted over from being 100% legacy to now use
device tree for probing. More of that will come for 3.8.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJQaiKNAAoJEIwa5zzehBx329AP/1TwJk1dTHaAA7vDxyz2mq1E
F0MBL9p32R1SczrFGjbmb9ouVW5tTjbK1zted5zBrGBXDIX9Kdz3Dmm7x6b2/JvZ
8yMrdiBNpF3r8au6IaMuMlOq5yAaN+F4SxbC2rE0a9y3YmMZ6ug5dgoZ4O8orAC4
il3eq1sb+rTTPCf7C5cGlKzdRQi2KYdAycpa7ChQCYSamxJjdM7cXR7pohVv9vhd
9sF+h1I0ArxcVYn/mUOoCin8MyIWXlBQvbUnF+3aYO8CO9erhKH/owPngVBWGKZH
+X6dk0ChUJfjzaWr2HPZIYUqLUnIoO8TsRhQVmLp1rPrSzSXMG3iDq0M4WEwL4Xo
bMbAZ1KWYg53HRqbIOEQk5q9Mg7HUgtbJuOE7WLgBO5ubdKFFWLmDUJ+WVcoWzSW
qyWaWpECSptlQjFyqZJd9MjizIDhuYjog2EWaSWXETQ+1XRmCSsqx8AX6n1MVdhP
6jDLnYHYiJoOtGiaDpYxsXgMXdOVsrTegecNduqH/XhdEL1iwy3fwgK1DjoclYoj
iFbn0/Tw3N5SvJlG4xitl12DQ7MeCCbfzJGRKenVh9/O4U+qrTbFRmsNaaZw5dA1
bt+iEZ3aU8YBaKj02LexunAevpZJ2rfGNX2tBjQrIzzZK6CZibPWg42qfKJfdn7w
etXVVApw5jQjAImY64kh
=q7ZY
-----END PGP SIGNATURE-----
Merge tag 'dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM soc device tree updates from Olof Johansson:
"Device tree conversion and enablement branch. Mostly a bunch of new
bindings and setup for various platforms, but the Via/Winchip VT8500
platform is also converted over from being 100% legacy to now use
device tree for probing. More of that will come for 3.8."
Trivial conflicts due to removal of vt8500 files, and one documentation
file that was added with slightly different contents both here and in
the USb tree.
* tag 'dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (212 commits)
arm: vt8500: Fixup for missing gpio.h
ARM: LPC32xx: LED fix in PHY3250 DTS file
ARM: dt: mmp-dma: add binding file
arm: vt8500: Update arch-vt8500 to devicetree support.
arm: vt8500: gpio: Devicetree support for arch-vt8500
arm: vt8500: doc: Add device tree bindings for arch-vt8500 devices
arm: vt8500: clk: Add Common Clock Framework support
video: vt8500: Add devicetree support for vt8500-fb and wm8505-fb
serial: vt8500: Add devicetree support for vt8500-serial
rtc: vt8500: Add devicetree support for vt8500-rtc
arm: vt8500: Add device tree files for VIA/Wondermedia SoC's
ARM: tegra: Add Avionic Design Tamonten Evaluation Carrier support
ARM: tegra: Add Avionic Design Medcom-Wide support
ARM: tegra: Add Avionic Design Plutux support
ARM: tegra: Add Avionic Design Tamonten support
ARM: tegra: dts: Add pwm label
ARM: ux500: Fix SSP register address format
ARM: ux500: Apply tc3589x's GPIO/IRQ properties to HREF's DT
ARM: ux500: Remove redundant #gpio-cell properties from Snowball DT
ARM: ux500: Add all encompassing sound node to the HREF Device Tree
...
This is a large branch that contains a handful of different cleanups:
- Fixing up the I/O space remapping on PCI on ARM. This is a series
from Rob Herring that restructures how all pci devices allocate I/O
space, and it's part of the work to allow multiplatform kernels.
- A number of cleanup series for OMAP, moving and removing some
headers, sparse irq rework and in general preparation for
multiplatform.
- Final removal of all non-DT boards for Tegra, it is now
device-tree-only!
- Removal of a stale platform, nxp4008. It's an old mobile chipset
that is no longer in use, and was very likely never really used with
a mainline kernel. We have not been able to find anyone interested
in keeping it around in the kernel.
- Removal of the legacy dmaengine driver on tegra
+ A handful of other things that I haven't described above.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJQaO1fAAoJEIwa5zzehBx3IPgP/jxoO1flVGNVf0reqqyDro/w
prZmp8cNVH9uv8xG9n9vawObrMQ8M6jCJ449fEWuAZ58EXrpIPd0kkm/MOmxp8K1
LNs+q2aXxWpD488+b3RK55g3fksqZutTbn3y6HNuCoLG9l8yT/95KX4IIzfEP2Ch
1TCNHdkTbf37nTBOmKN0x1kahGpWDrOkf9ysHQq+DXAGF4uwNwtR194dqz3HbDND
hZqRq7qCLn9OwGRGNicPFoB6UcxwZ/+/+u5sX7nqPGoiPofg977mhWk1DFO15EM3
S+A6g0dZ+XLsL+fFtOl4snSmrG5Et6qTOP0/ItQJgTG+5YdCS09ohCWJwRCBHbgj
M5arOkyGFdVAlvX7cUux374sMe0AcqUsEmt79mYuBpIE+pBJaRUoCgDcs9FDZeUB
U6WcE4AkxMtW7DtmVW+mF4ls9/K6cRXgWMuHCUmt1o3m3Ly9ITT7j+ntXnD9nuYk
ndoVLR6Vxk2BzlkD0JEtg7FRAS9Wgo2DBix05qM1Qkut2iIZRhFQlqJQpNbeNdii
/3Lg/hqpAVTZKGCd+paegHez61meyFz2PB2IiE0JKANhKHRCWTWRGgKIXkGyCiXk
wJ2iRCOlMEpmpJgCBzfI32ER/hnW4s64iDjgksEwz6pEt7xCbhwgmwrpf0H0KsSF
rLroHOMqyISd/Ha52Vin
=ck1u
-----END PGP SIGNATURE-----
Merge tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM soc general cleanups from Olof Johansson:
"This is a large branch that contains a handful of different cleanups:
- Fixing up the I/O space remapping on PCI on ARM. This is a series
from Rob Herring that restructures how all pci devices allocate I/O
space, and it's part of the work to allow multiplatform kernels.
- A number of cleanup series for OMAP, moving and removing some
headers, sparse irq rework and in general preparation for
multiplatform.
- Final removal of all non-DT boards for Tegra, it is now
device-tree-only!
- Removal of a stale platform, nxp4008. It's an old mobile chipset
that is no longer in use, and was very likely never really used
with a mainline kernel. We have not been able to find anyone
interested in keeping it around in the kernel.
- Removal of the legacy dmaengine driver on tegra
+ A handful of other things that I haven't described above."
Fix up some conflicts with the staging tree (and because nxp4008 was
removed)
* tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (184 commits)
ARM: OMAP2+: serial: Change MAX_HSUART_PORTS to 6
ARM: OMAP4: twl-common: Support for additional devices on i2c1 bus
ARM: mmp: using for_each_set_bit to simplify the code
ARM: tegra: harmony: fix ldo7 regulator-name
ARM: OMAP2+: Make omap4-keypad.h local
ARM: OMAP2+: Make l4_3xxx.h local
ARM: OMAP2+: Make l4_2xxx.h local
ARM: OMAP2+: Make l3_3xxx.h local
ARM: OMAP2+: Make l3_2xxx.h local
ARM: OMAP1: Move irda.h from plat to mach
ARM: OMAP2+: Make hdq1w.h local
ARM: OMAP2+: Make gpmc-smsc911x.h local
ARM: OMAP2+: Make gpmc-smc91x.h local
ARM: OMAP1: Move flash.h from plat to mach
ARM: OMAP2+: Make debug-devices.h local
ARM: OMAP1: Move board-voiceblue.h from plat to mach
ARM: OMAP1: Move board-sx1.h from plat to mach
ARM: OMAP2+: Make omap-wakeupgen.h local
ARM: OMAP2+: Make omap-secure.h local
ARM: OMAP2+: Make ctrl_module_wkup_44xx.h local
...
Pull x86/EFI changes from Ingo Molnar:
"EFI loader robustness enhancements plus smaller fixes"
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi: Fix the ACPI BGRT driver for images located in EFI boot services memory
efi: Add a function to look up existing IO memory mappings
efi: Defer freeing boot services memory until after ACPI init
x86, EFI: Calculate the EFI framebuffer size instead of trusting the firmware
efifb: Skip DMI checks if the bootloader knows what it's doing
efi: initialize efi.runtime_version to make query_variable_info/update_capsule workable
efi: Build EFI stub with EFI-appropriate options
X86: Improve GOP detection in the EFI boot stub
Pull the trivial tree from Jiri Kosina:
"Tiny usual fixes all over the place"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (34 commits)
doc: fix old config name of kprobetrace
fs/fs-writeback.c: cleanup riteback_sb_inodes kerneldoc
btrfs: fix the commment for the action flags in delayed-ref.h
btrfs: fix trivial typo for the comment of BTRFS_FREE_INO_OBJECTID
vfs: fix kerneldoc for generic_fh_to_parent()
treewide: fix comment/printk/variable typos
ipr: fix small coding style issues
doc: fix broken utf8 encoding
nfs: comment fix
platform/x86: fix asus_laptop.wled_type module parameter
mfd: printk/comment fixes
doc: getdelays.c: remember to close() socket on error in create_nl_socket()
doc: aliasing-test: close fd on write error
mmc: fix comment typos
dma: fix comments
spi: fix comment/printk typos in spi
Coccinelle: fix typo in memdup_user.cocci
tmiofb: missing NULL pointer checks
tools: perf: Fix typo in tools/perf
tools/testing: fix comment / output typos
...
Otherwise, we got NULL derefernce while calling backlight_device_unregister()
in tps65217_bl_remove().
Also convert to use module_platform_driver.
Signed-off-by: Axel Lin <axel.lin@ingics.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* cleanup/__iomem:
ARM: Orion5x: ts78xx: Add IOMEM for virtual addresses.
ARM: ux500: use __iomem pointers for MMIO
Two new cleanup patches that were not already part of the
first cleanup branch.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The current kernel does not fit in the CEIVA ROM. Also, some functional
has already been removed due migrate from 2.6 to 3.0, and it seems that
no one uses this platform. So, remove support for this board and modules
specific only to this board.
Signed-off-by: Alexander Shiyan <shc_work@mail.ru>
Both dpi.c and sdi.c use strcmp(), but do not include string.h. With
some Kconfig options string.h is included implicitly, but with some
other the compilation fails:
drivers/video/omap2/dss/dpi.c:407:5: error: implicit declaration of
function 'strcmp'
Include string.h in both dpi.c and sdi.c
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Writeback pipeline receives RGB data from one of the overlays or one of the
overlay managers. If the target color mode is YUV422 or NV12, we need to convert
the RGB pixels to YUV. The scaler in WB then converts it to the target color
mode.
Hence, the color conversion coefficients that need to be programmed are the ones
which convert a RGB24 pixel to YUV444. Program these coefficients for writeback
pipeline.
Rearrange the code a bit to configure different coefficients for overlays and
writeback.
Signed-off-by: Archit Taneja <archit@ti.com>
Add functions to enable writeback, and set/check state of GO bit. These bits are
identical in behaviour with the corresponding overlay manager bits. Configure
them in a similar way to mgr_enable() and mgr_go_* functions. Add a helper to
get the FRAMEDONE irq corresponding to writeback.
Signed-off-by: Archit Taneja <archit@ti.com>
Extend the DISPC fifo functions to also configure the writeback FIFO thresholds.
The most optimal configuration for writeback is to push out data to the
interconnect the moment writeback pushes enough pixels in the FIFO to form a
burst. This reduces the chance of writeback overflowing it's FIFO.
Signed-off-by: Archit Taneja <archit@ti.com>
Configure some of the writeback specific parameters in dispc_wb_setup(). The
writeback parameters configured are:
truncation: This needs to be set if the color depth input to writeback is more
than the color depth of the color mode we want to store in memory.
writeback mode: This configures whether we want to use writeback in mem to mem
or capture mode. This information will be directly passed by APPLY later.
Signed-off-by: Archit Taneja <archit@ti.com>
Create struct omap_dss_writeback_info, this is similar to omap_overlay_info,
the major difference is that there is no parameter which describes the input
size to writeback, this is because this is always fixed, and decided by the
connected overlay or overlay manager. One more difference is that screen_width
is renamed to buf_width, to give the value of stride the writeback buffer has.
Call dispc_ovl_setup_common() through dispc_wb_setup() to configure overlay-like
parameters. The parameters in dispc_ovl_setup_common() which do not hold for
writeback are filled passed as zeroes or false, the code takes care of not
configuring them as they won't possess the needed overlay caps.
Signed-off-by: Archit Taneja <archit@ti.com>
Writeback can take input from either one of the overlays, or one of the overlay
managers. Add an enum which represents the channel_in for writeback, and maps
to the register field programming.
Add a function to configure channel in for writeback. This will be used later in
APPLY.
Signed-off-by: Archit Taneja <archit@ti.com>
The bit YUVCHROMARESAMPLING isn't there for writeback in DISPC_WB_ATTRIBUTES2.
It isn't there because we don't upsample chroma like for video pipelines, we
downsample chroma in writeback to get YUV422 or NV12 formats from the YUV444
input.
Ignore this bit in dispc_ovl_set_scaling_uv() if the plane is OMAP_DSS_WB.
Signed-off-by: Archit Taneja <archit@ti.com>
When converting YUYV444 content to YUV422 or NV12 formats through writeback
pipeline, the scaler needs to downscale the chroma plane. Ensure that chroma
is downscaled when the pipeline is writeback.
Signed-off-by: Archit Taneja <archit@ti.com>
Writeback uses the WB_PICTURE_SIZE register to define the size of the content
written to memory, this is the output of the scaler. It uses the WB_SIZE
register to define the size of the content coming from the overlay/manager to
which it is connected, this is the input to the scaler. This naming is different
as compared to overlays.
Add checks for writeback in dispc_ovl_set_input_size() and
dispc_ovl_set_output_size() to write to the correct registers.
Signed-off-by: Archit Taneja <archit@ti.com>
Since writeback has many overlay like properties, and most of it's registers are
similar to that of overlays, it's possible to reuse most of the overlay related
DISPC code for writeback when considering it as a plane. Writeback was added as
a plane in the omap_plane field as OMAP_DSS_WB.
Add the writeback register offsets in dispc.h, add minimal WB plane related info
needed in dss_features. Add a function which returns the number of writeback
pipelines an OMAP version has.
Signed-off-by: Archit Taneja <archit@ti.com>
In the function dispc_plane_set_scaling_uv(), create a parameter which tells if
we want to upscale or downscale the chroma plane.
Downscaling of chroma is required by writeback pipeline for converting the input
YUV444 color format to YUV422 or NV12.
Signed-off-by: Archit Taneja <archit@ti.com>
The scalers of overlays and writeback do not have any constraints on downscale
ratio when operating in memory to memory mode.
This is because in memory to memory mode, we aren't connected to a display which
needs data output at the rate of pixel clock. The scalers can perform as much
downscaling as needed, the rate at which the scaler outputs is adjusted
accordingly.
Relax constraints related to downscaling based on whether the input overlays are
connected to writeback in memory to memory mode. We pass a mem_to_mem boolean
parameter to dispc_ovl_setup() from APPLY. This is currently set to false, this
will later be configured to the correct value based on whether the overlay is
connected to writeback or not. Do the same later for writeback when writeback is
configured.
In the scaling calculation code, we calculate the minimum amount of core clock we
need to achieve the required downscaling. If we are in memory to memory mode, we
set this to a very small value(1 in this case), this value would always be
lesser than the actual DISPC core clock value, and hence the scaling checks
would succeed.
We take care that pixel clock isn't calculated for writeback and the overlays
connected to it when in memory to memory mode. A pixel clock in such cases
doesn't make sense.
Signed-off-by: Archit Taneja <archit@ti.com>
dispc_ovl_setup_common() is to be used by both overlays and writeback. We pass
channel out to figure out what manager the overlay is connected to, to determine
the pixel clock rate. This is used to decide the scaling limitations for that
overlay.
writeback doesn't have a channel out, it has a channel in field which tells
where writeback gets its input from. These are 2 different fields, and this
prevents us reusing the overlay configuration code for writeback.
To overcome this, we now pass omap_plane to overlay related functions rather
than passing channel out. We create helper functions which can derive pclk/lclk
from the omap_plane id.
Signed-off-by: Archit Taneja <archit@ti.com>
Add a new static function called dispc_ovl_setup_common(). This function is used by
dispc_ovl_setup() to configure the overlay registers. This split is done so that
dispc_wb_setup() can reuse overlay register configuration related code.
Signed-off-by: Archit Taneja <archit@ti.com>
Add position and replication as overlay caps, and pass overlay caps as an
argument to the corresponding functions. Adding position and replication to
overlay caps seems a bit unnecessary, but it allows us to use the
corresponding functions for writeback too.
These caps will be set for all overlays, but not for writeback. This is done
so writeback can reuse dispc_ovl_setup() to the maximum.
Signed-off-by: Archit Taneja <archit@ti.com>
Currently, the functions below take the omap_plane parameter and derive the
overlay caps within them. Pass the overlay caps as a parameter to the function
to allow these to be used by writeback too.
- dispc_ovl_set_zorder()
- dispc_ovl_set_pre_mult_alpha()
- dispc_ovl_setup_global_alpha()
- dispc_ovl_calc_scaling()
- dispc_ovl_setup()
These functions will be used for writeback later, and the caps will help in
deciding if they are to be used for writeback or not. This allows reuse of
overlay caps for writeback.
Using omap_overlay_caps for writeback seems a bit incorrect, but caps is
something already in use by users of OMAPDSS(omapfb/omap_vout), so we use
overlay caps for overlay like features of writeback too.
Signed-off-by: Archit Taneja <archit@ti.com>
The DISPC pipeline register names in the TRM for setting the buffer size and
the output size are a bit misleading, for example, there are different register
names for setting the buffer size for VID and GFX pipes. Things get more
confusing when considering writeback pipeline.
Rename the functions so that they tell whether they are configuring the input
to the scalar or the output. These will be extended later to support writeback
registers.
Signed-off-by: Archit Taneja <archit@ti.com>
The struct omap_overlay_info passed to dispc_ovl_setup() is used to configure
DISPC registers. It shouldn't modify the overlay_info structure. The pos_y field
was being changed in dispc_ovl_setup in the case of interlaced displays. Fix
this and const qualifier to the omap_overlay_info argument.
Signed-off-by: Archit Taneja <archit@ti.com>
Now that an omap_dss_output can be used to link between managers and devices, we
can remove the old way of setting manager and device links. This involves
removing the device and manager pointers from omap_overlay_manager and
omap_dss_device respectively, and removing the set_device/unset_device ops from
omap_overlay_manager.
Signed-off-by: Archit Taneja <archit@ti.com>
An overlay isn't allowed to be enabled/disabled if it isn't connected to an
omap_dss_device. This requirement isn't needed any more. An overlay can be
enabled/disabled as long as it has an output connected to it. The output may
not be connected to a device, but we can be assured that the connected
manager's output is in use by an output interface.
Signed-off-by: Archit Taneja <archit@ti.com>
A manager is not connected to a device directly any more. It first connects
to an output, and then to the display. Update overlay and manager get_device ops
to return the device via the connected output.
Signed-off-by: Archit Taneja <archit@ti.com>
The display sysfs attribute's store function needs to be changed with the
introduction of outputs.
The DSS driver ensures that there is one display per output, and that a
registered omap_dss_device will have an output connected to it. The display
sysfs store function unsets the current output connected to the manager, and
sets it with the output connected to the new display. If the new display doesn't
have an output for some reason, we just bail out. The function doesn't set/unset
output->device links. These remain the same as when the omap_dss_device was
registered.
Signed-off-by: Archit Taneja <archit@ti.com>
To retrieve the manager pointer via a device, we need to now access it via the
output to which the device is connected. Make this change in omapfb_ioctl()
where the WAITFORVSYNC ioctl tries to access the manager's device.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the HDMI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the VENC output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the RFBI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the SDI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the DSI output, check whether the output entity connected to
display is not NULL.
In dsi_init_display(), the display won't be connected to the DSI output yet,
that happens later in dss_recheck_connections() in the panel driver's probe. Get
the dsidev platform device pointer using the DSI moudle number provided in the
omap_dss_device struct.
Signed-off-by: Archit Taneja <archit@ti.com>
dsi_pdev_map is a struct visible globally in the DSI driver to get the platform
device pointer of the DSI device corresponding to it's module ID. This was
required because there was no clean way to derive the platform device from
the DSI module instance number or from the connected panel.
With the new output entity, it is possible to retrieve the platform device
pointer if the omap_dss_output pointer is available. Modify the functions
dsi_get_dsidev_from_dssdev() dsi_get_dsidev_from_id() so that they use output
instead of dsi_pdev_map to retrieve the dsi platform device pointer.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the DPI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
Links between DSS entities are made in dss_init_connections() when a panel
device is registered, and are removed in dss_uninit_connections() when the
device is unregistered. Modify these functions to incorporate the addition of
outputs.
The fields in omap_dss_device struct gives information on which output and
manager to connect to. The desired manager and output pointers are retrieved and
prepared to form the desired links. The output is linked to the device, and then
the manager to the output.
A helper function omapdss_get_output_from_device() is created to retrieve the
output from the display by checking it's type, and the module id in case of DSI.
Signed-off-by: Archit Taneja <archit@ti.com>
With the introduction of output entities, managers will now connect to outputs.
Use the helper op for overlays named get_device. This will abstract away the
information on how to get the device from an overlay.
Using the helper function will reduce the number of pointer dereferences a user
of OMAPDSS needs to do and reduce risk of a NULL dereference.
Signed-off-by: Archit Taneja <archit@ti.com>
With the introduction of output entities, managers will now connect to outputs.
Create helper ops for overlays and managers named get_device. This will abstract
away the information on how to get the device from an overlay or an overlay
manager. The get_device ops currently retrieve the output via a
ovl->manager->device reference. This will be later replaced by
ovl->manager->output->device references.
Signed-off-by: Archit Taneja <archit@ti.com>
Add set_output/unset_output ops for overlay managers, these form links between
managers and outputs. Create a function in dss features which tell all the
output instances that connect to a manager, use it when a manager tries to set
an output. Add a constraint of not unsetting an output when the manager is
enabled.
Keep the omap_dss_device pointer and set/unset_device ops in overlay_manager for
now to not break things. Keep the dss feature function get_supported_displays
as it's used in some places. These will be removed later.
Signed-off-by: Archit Taneja <archit@ti.com>
An output entity represented by the struct omap_dss_output connects to a
omap_dss_device entity. Add functions to set or unset an output's device. This
is similar to how managers and devices were connected previously. An output can
connect to a device without being connected to a manager. However, the output
needs to eventually connect to a manager so that the connected panel can be
enabled.
Keep the omap_overlay_manager pointer in omap_dss_device for now to prevent
breaking things. This will be removed later when outputs are supported
completely.
Signed-off-by: Archit Taneja <archit@ti.com>
Add output structs to output driver's private data. Register output instances by
having an init function in the probes of the platform device drivers for
different outputs. The *_init_output for each output registers the output and
fill up the output's plaform device, type and id fields. The *_uninit_output
functions unregister the output.
In the probe of each interface driver, the output entities are initialized
before the *_probe_pdata() functions intentionally. This is done to ensure that
the output entity is prepared before the panels connected to the output are
registered. We need the output entities to be ready because OMAPDSS will try
to make connections between overlays, managers, outputs and devices during the
panel's probe.
Signed-off-by: Archit Taneja <archit@ti.com>
The current OMAPDSS design contains 3 software entities: Overlays, Managers and
Devices. These map to pipelines, overlay managers and the panels respectively in
hardware. One or more overlays connect to a manager to represent a composition,
the manager connects to a device(generally a display) to display the content.
The part of DSS hardware which isn't represented by any of the above entities
are interfaces/outputs that connect to an overlay manager, i.e blocks like DSI,
HDMI, VENC and so on. Currently, an overlay manager directly connects to the
display, and the output to which it is actually connected is ignored. The panel
driver of the display is responsible of calling output specific functions to
configure the output.
Adding outputs as a new software entity gives us the following benefits:
- Have exact information on the possible connections between managers and
outputs: A manager can't connect to each and every output, there only limited
hardware links between a manager's video port and some of the outputs.
- Remove hacks related to connecting managers and devices: Currently, default
links between managers and devices are set in a not so clean way. Matching is
done via comparing the device type, and the display types supported by the
manager. This isn't sufficient to establish all the possible links between
managers, outputs and devices in hardware.
- Make panel drivers more generic: The DSS panel drivers currently call
interface/output specific functions to configure the hardware IP. When making
these calls, the driver isn't actually aware of the underlying output. The
output driver extracts information from the panel's omap_dss_device pointer
to figure out which interface it is connected to, and then configures the
corresponding output block. An example of this is when a DSI panel calls
dsi functions, the dsi driver figures out whether the panel is connected
to DSI1 or DSI2. This isn't correct, and having output as entities will
give the panel driver the exact information on which output to configure.
Having outputs also gives the opportunity to make panel drivers generic
across different platforms/SoCs, this is achieved as omap specific output
calls can be replaced by ops of a particular output type.
- Have more complex connections between managers, outputs and devices: OMAPDSS
currently doesn't support use cases like 2 outputs connect to a single
device. This can be achieved by extending properties of outputs to connect to
more managers or devices.
- Represent writeback as an output: The writeback pipeline fits well in OMAPDSS
as compared to overlays, managers or devices.
Add a new struct to represent outputs. An output struct holds pointers to the
manager and device structs to which it is connected. Add functions which can
register/unregister an output, or look for one. Create an enum which represent
each output instance.
Signed-off-by: Archit Taneja <archit@ti.com>
The functions dss_mgr_wait_for_go() and dss_mgr_wait_for_go_ovl() check if there
is an enabled display connected to the manager before trying to see the state of
the GO bit.
The checks related to the display can be replaced by checking the state of the
manager, i.e, whether the manager is enabled or not. This makes more sense than
checking with the connected display as the GO bit behaviour is more connected
with the manager state rather than the display state. A GO bit can only be set
if the manager is enabled. If a manager isn't enabled, we can safely assume that
the GO bit is not set.
Signed-off-by: Archit Taneja <archit@ti.com>