IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In its_sync_lpi_pending_table() we currently ignore the
target_vcpu of the LPIs. We sync the pending bit found in
the vcpu pending table even if the LPI is not targeting it.
Also in vgic_its_cmd_handle_invall() we are supposed to
read the config table data for the LPIs associated to the
collection ID. At the moment we refresh all LPI config
information.
This patch passes a vpcu to vgic_copy_lpi_list() so that
this latter returns a snapshot of the LPIs targeting this
CPU and only those.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Implement routines to save and restore device ITT and their
interrupt table entries (ITE).
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
This patch saves the device table entries into guest RAM.
Both flat table and 2 stage tables are supported. DeviceId
indexing is used.
For each device listed in the device table, we also save
the translation table using the vgic_its_save/restore_itt
routines. Those functions will be implemented in a subsequent
patch.
On restore, devices are re-allocated and their itt are
re-built.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
As vgic_its_check_id() computes the device/collection entry's
GPA, let's return it so that new callers can retrieve it easily.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
The save path copies the collection entries into guest RAM
at the GPA specified in the BASER register. This obviously
requires the BASER to be set. The last written element is a
dummy collection table entry.
We do not index by collection ID as the collection entry
can fit into 8 bytes while containing the collection ID.
On restore path we re-allocate the collection objects.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Add a generic scan_its_table() helper whose role consists in
scanning a contiguous table located in guest RAM and applying
a callback on each entry. Entries can be handled as linked lists
since the callback may return an id offset to the next entry and
also indicate whether the entry is the last one.
Helper functions also are added to compute the device/event ID
offset to the next DTE/ITE.
compute_next_devid_offset, compute_next_eventid_offset and
scan_table will become static in subsequent patches
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Add two new helpers to allocate an its ite and an its device.
This will avoid duplication on restore path.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Introduce new attributes in KVM_DEV_ARM_VGIC_GRP_CTRL group:
- KVM_DEV_ARM_ITS_SAVE_TABLES: saves the ITS tables into guest RAM
- KVM_DEV_ARM_ITS_RESTORE_TABLES: restores them into VGIC internal
structures.
We hold the vcpus lock during the save and restore to make
sure no vcpu is running.
At this stage the functionality is not yet implemented. Only
the skeleton is put in place.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
[Given we will move the iodev register until setting the base addr]
Reviewed-by: Christoffer Dall <cdall@linaro.org>
When creating the lpi we now ask the redistributor what is the state
of the LPI (priority, enabled, pending).
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
this new helper synchronizes the irq pending_latch
with the LPI pending bit status found in rdist pending table.
As the status is consumed, we reset the bit in pending table.
As we need the PENDBASER_ADDRESS() in vgic-v3, let's move its
definition in the irqchip header. We restore the full length
of the field, ie [51:16]. Same for PROPBASER_ADDRESS with full
field length of [51:12].
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
On MAPD we currently check the device id can be stored in the device table.
Let's first check it can be encoded within the range defined by TYPER
DEVBITS.
Also check the collection ID belongs to the 16 bit range as GITS_TYPER
CIL field equals to 0.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Up to now the MAPD ITT_addr had been ignored. We will need it
for save/restore. Let's record it in the its_device struct.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Up to now the MAPD's ITT size field has been ignored. It encodes
the number of eventid bit minus 1. It should be used to check
the eventid when a MAPTI command is issued on a device. Let's
store the number of eventid bits in the its_device and do the
check on MAPTI. Also make sure the ITT size field does
not exceed the GITS_TYPER IDBITS field.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
The GITS_IIDR revision field is used to encode the migration ABI
revision. So we need to restore it to check the table layout is
readable by the destination.
By writing the IIDR, userspace thus forces the ABI revision to be
used and this must be less than or equal to the max revision KVM
supports.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
We plan to support different migration ABIs, ie. characterizing
the ITS table layout format in guest RAM. For example, a new ABI
will be needed if vLPIs get supported for nested use case.
So let's introduce an array of supported ABIs (at the moment a single
ABI is supported though). The following characteristics are foreseen
to vary with the ABI: size of table entries, save/restore operation,
the way abi settings are applied.
By default the MAX_ABI_REV is applied on its creation. In subsequent
patches we will introduce a way for the userspace to change the ABI
in use.
The entry sizes now are set according to the ABI version and not
hardcoded anymore.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
GITS_CREADR needs to be restored so let's implement the associated
uaccess_write_its callback. The write only is allowed if the its
is disabled.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
This patch implements vgic_its_has_attr_regs and vgic_its_attr_regs_access
upon the MMIO framework. VGIC ITS KVM device KVM_DEV_ARM_VGIC_GRP_ITS_REGS
group becomes functional.
At least GITS_CREADR and GITS_IIDR require to differentiate a guest write
action from a user access. As such let's introduce a new uaccess_its_write
vgic_register_region callback.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We need to use those helpers in vgic-its.c so let's
expose them in the private vgic header.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
The ITS KVM device exposes a new KVM_DEV_ARM_VGIC_GRP_ITS_REGS
group which allows the userspace to save/restore ITS registers.
At this stage the get/set/has operations are not yet implemented.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
We plan to use vgic_find_mmio_region in vgic-its.c so let's
turn it into a public function.
Also let's take the opportunity to rename the region parameter
into regions to emphasize this latter is an array of regions.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
The actual abbreviation for the interrupt translation table entry
is ITE. Let's rename all itte instances by ite.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDKMoAAoJEGvWsS0AyF7xR+YP/0EMEz5MDfCv0PVYj7/AIa0G
Zphl7OhysIkeDAz7urXw9Jdl0NfORNIqmD1vZNVSc321IyNp56Od+kWd82lBrOWB
ad3nNT67pEmu0pAW7CO48ju3rTesEnEl3ra45E1tULeLihmv93jc4ZlfXgumlKq3
/GE84XJ5ZFmluuhq1zgNefeUtyl1tbxTxHJ74+INF7dTd/5sJcphpqS4Dzpb+msT
20WYliccQCBF9zBFUYHc2KjcXXKRQGxLulGS3MuoN2DLkD+U9YyR/OmA7SoXh2J2
WXC5b0x856xTQJFCJ39pb7rw5xHjt3l5zfU3VLSvqEVL/+asBqCcgGNtNUgOW1Es
dEHC6bc66Ley6mn7bbpFE3MK8D+K5q8HwMF6G5KDtIVB6DB/iQ6kzi5aXKoupxtb
1EuU4OW6cDhmOFQYjgIDofLgqbmVvJofdF6+NfxasfZmWrMgHzv0rYvaCDnAV/Tr
t7bhH7hf9/KcP/wpk86O2AMKKpgoNTqe1Qy8cWVFFLnut567Pb6zs/L3ZXfleoLv
t613yM8Zj2fE05ja8ylMDjaasidNpXGttb08/4kAn06Daaoueqla0jmduAhy4aaV
dQ3OFP9lJ5MFaFnMMTPfU3vtvNLMHuo9MZsYCrv5zCaNNs3lpAPUiPNh588ZscKa
sWx4PEiaCi+wcOsLsJvh
=SDkm
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
arm64: Fix the DMA mmap and get_sgtable API with DMA_ATTR_FORCE_CONTIGUOUS
arm64: Print DT machine model in setup_machine_fdt()
arm64: pmu: Wire-up Cortex A53 L2 cache events and DTLB refills
arm64: module: split core and init PLT sections
arm64: pmuv3: handle pmuv3+
arm64: Add CNTFRQ_EL0 trap handler
arm64: Silence spurious kbuild warning on menuconfig
arm64: pmuv3: use arm_pmu ACPI framework
arm64: pmuv3: handle !PMUv3 when probing
drivers/perf: arm_pmu: add ACPI framework
arm64: add function to get a cpu's MADT GICC table
drivers/perf: arm_pmu: split out platform device probe logic
drivers/perf: arm_pmu: move irq request/free into probe
drivers/perf: arm_pmu: split cpu-local irq request/free
drivers/perf: arm_pmu: rename irq request/free functions
drivers/perf: arm_pmu: handle no platform_device
drivers/perf: arm_pmu: simplify cpu_pmu_request_irqs()
drivers/perf: arm_pmu: factor out pmu registration
drivers/perf: arm_pmu: fold init into alloc
drivers/perf: arm_pmu: define armpmu_init_fn
...
The #ifndef was removed in 75aaafb79f73516b69d5639ad30a72d72e75c8b4,
but it was also protecting smp_send_reschedule() in kvm_vcpu_kick().
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For some time now we have been having a lot of shared functionality
between the arm and arm64 KVM support in arch/arm, which not only
required a horrible inter-arch reference from the Makefile in
arch/arm64/kvm, but also created confusion for newcomers to the code
base, as was recently seen on the mailing list.
Further, it causes confusion for things like cscope, which needs special
attention to index specific shared files for arm64 from the arm tree.
Move the shared files into virt/kvm/arm and move the trace points along
with it. When moving the tracepoints we have to modify the way the vgic
creates definitions of the trace points, so we take the chance to
include the VGIC tracepoints in its very own special vgic trace.h file.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
This reverts commit bbd6411513aa8ef3ea02abab61318daf87c1af1e.
I've been sitting on this revert for too long and it unfortunately
missed 4.11. It's also the reason why I haven't merged ring-based
dirty tracking for 4.12.
Using kvm_vcpu_memslots in kvm_gfn_to_hva_cache_init and
kvm_vcpu_write_guest_offset_cached means that the MSR value can
now be used to access SMRAM, simply by making it point to an SMRAM
physical address. This is problematic because it lets the guest
OS overwrite memory that it shouldn't be able to touch.
Cc: stable@vger.kernel.org
Fixes: bbd6411513aa8ef3ea02abab61318daf87c1af1e
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We needed the lock to avoid racing with creation of the irqchip on x86. As
kvm_set_irq_routing() calls srcu_synchronize_expedited(), this lock
might be held for a longer time.
Let's introduce an arch specific callback to check if we can actually
add irq routes. For x86, all we have to do is check if we have an
irqchip in the kernel. We don't need kvm->lock at that point as the
irqchip is marked as inititalized only when actually fully created.
Reported-by: Steve Rutherford <srutherford@google.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Fixes: 1df6ddede10a ("KVM: x86: race between KVM_SET_GSI_ROUTING and KVM_CREATE_IRQCHIP")
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This merges in the powerpc topic/xive branch to bring in the code for
the in-kernel XICS interrupt controller emulation to use the new XIVE
(eXternal Interrupt Virtualization Engine) hardware in the POWER9 chip
directly, rather than via a XICS emulation in firmware.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Changes include:
- Using the common sysreg definitions between KVM and arm64
- Improved hyp-stub implementation with support for kexec and kdump on the 32-bit side
- Proper PMU exception handling
- Performance improvements of our GIC handling
- Support for irqchip in userspace with in-kernel arch-timers and PMU support
- A fix for a race condition in our PSCI code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJY/IasAAoJEEtpOizt6ddyd7gH/2N3BIMxi/Uqigx0e0byA43s
f+8gNq8A71VBTERGW2l9QP1/AZAXpQYNWdWmN2jn+91x2yoVL7AT00gEsliSLEZv
tqZaTGFXKi1vNihYrxEWm1mfVNzhRrnbW6vjLrO4J5Advq7T3OWhNuVt2BLTxz3Y
h0iqOWNVrUD9h3QSBFH8tz7yXhguDTSppAcXbE0tACdRu4vN50wqEWokHJG5TsMG
Tl3KYWrcc3YCKlAJGuJi7t5rMrXk+g1q6HnxlIN6OSk0POC2Vmw9/Gigtltj1Qwh
ZEAwsnka/U8ak8WaWeZa3EsGTSFSoAk/+pKv2FB8mFN+uOmWDqVlEiol4dW49AY=
=mEOk
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM Changes for v4.12.
Changes include:
- Using the common sysreg definitions between KVM and arm64
- Improved hyp-stub implementation with support for kexec and kdump on the 32-bit side
- Proper PMU exception handling
- Performance improvements of our GIC handling
- Support for irqchip in userspace with in-kernel arch-timers and PMU support
- A fix for a race condition in our PSCI code
Conflicts:
Documentation/virtual/kvm/api.txt
include/uapi/linux/kvm.h
kvm_make_all_requests() provides a synchronization that waits until all
kicked VCPUs have acknowledged the kick. This is important for
KVM_REQ_MMU_RELOAD as it prevents freeing while lockless paging is
underway.
This patch adds the synchronization property into all requests that are
currently being used with kvm_make_all_requests() in order to preserve
the current behavior and only introduce a new framework. Removing it
from requests where it is not necessary is left for future patches.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No need to kick a VCPU that we have just woken up.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_kick() must issue a general memory barrier prior to reading
vcpu->mode in order to ensure correctness of the mutual-exclusion
memory barrier pattern used with vcpu->requests. While the cmpxchg
called from kvm_vcpu_kick():
kvm_vcpu_kick
kvm_arch_vcpu_should_kick
kvm_vcpu_exiting_guest_mode
cmpxchg
implies general memory barriers before and after the operation, that
implication is only valid when cmpxchg succeeds. We need an explicit
barrier for when it fails, otherwise a VCPU thread on its entry path
that reads zero for vcpu->requests does not exclude the possibility
the requesting thread sees !IN_GUEST_MODE when it reads vcpu->mode.
kvm_make_all_cpus_request already had a barrier, so we remove it, as
now it would be redundant.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We want to have kvm_make_all_cpus_request() to be an optmized version of
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_make_request(vcpu, request);
kvm_vcpu_kick(vcpu);
}
and kvm_vcpu_kick() wakes up the target vcpu. We know which requests do
not need the wake up and use it to optimize the loop.
Thanks to that, this patch doesn't change the behavior of current users
(the all don't need the wake up) and only prepares for future where the
wake up is going to be needed.
I think that most requests do not need the wake up, so we would flip the
bit then.
Later on, kvm_make_request() will take care of kicking too, using this
bit to make the decision whether to kick or not.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The #ifndef was protecting a missing halt_wakeup stat, but that is no
longer necessary.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch makes KVM capable of using the XIVE interrupt controller
to provide the standard PAPR "XICS" style hypercalls. It is necessary
for proper operations when the host uses XIVE natively.
This has been lightly tested on an actual system, including PCI
pass-through with a TG3 device.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Cleanup pr_xxx(), unsplit pr_xxx() strings, etc., fix build
failures by adding KVM_XIVE which depends on KVM_XICS and XIVE, and
adding empty stubs for the kvm_xive_xxx() routines, fixup subject,
integrate fixes from Paul for building PR=y HV=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This allows the host kernel to handle H_PUT_TCE, H_PUT_TCE_INDIRECT
and H_STUFF_TCE requests targeted an IOMMU TCE table used for VFIO
without passing them to user space which saves time on switching
to user space and back.
This adds H_PUT_TCE/H_PUT_TCE_INDIRECT/H_STUFF_TCE handlers to KVM.
KVM tries to handle a TCE request in the real mode, if failed
it passes the request to the virtual mode to complete the operation.
If it a virtual mode handler fails, the request is passed to
the user space; this is not expected to happen though.
To avoid dealing with page use counters (which is tricky in real mode),
this only accelerates SPAPR TCE IOMMU v2 clients which are required
to pre-register the userspace memory. The very first TCE request will
be handled in the VFIO SPAPR TCE driver anyway as the userspace view
of the TCE table (iommu_table::it_userspace) is not allocated till
the very first mapping happens and we cannot call vmalloc in real mode.
If we fail to update a hardware IOMMU table unexpected reason, we just
clear it and move on as there is nothing really we can do about it -
for example, if we hot plug a VFIO device to a guest, existing TCE tables
will be mirrored automatically to the hardware and there is no interface
to report to the guest about possible failures.
This adds new attribute - KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE - to
the VFIO KVM device. It takes a VFIO group fd and SPAPR TCE table fd
and associates a physical IOMMU table with the SPAPR TCE table (which
is a guest view of the hardware IOMMU table). The iommu_table object
is cached and referenced so we do not have to look up for it in real mode.
This does not implement the UNSET counterpart as there is no use for it -
once the acceleration is enabled, the existing userspace won't
disable it unless a VFIO container is destroyed; this adds necessary
cleanup to the KVM_DEV_VFIO_GROUP_DEL handler.
This advertises the new KVM_CAP_SPAPR_TCE_VFIO capability to the user
space.
This adds real mode version of WARN_ON_ONCE() as the generic version
causes problems with rcu_sched. Since we testing what vmalloc_to_phys()
returns in the code, this also adds a check for already existing
vmalloc_to_phys() call in kvmppc_rm_h_put_tce_indirect().
This finally makes use of vfio_external_user_iommu_id() which was
introduced quite some time ago and was considered for removal.
Tests show that this patch increases transmission speed from 220MB/s
to 750..1020MB/s on 10Gb network (Chelsea CXGB3 10Gb ethernet card).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When iterating over the used LRs, be careful not to try to access
an unused LR, or even an unimplemented one if you're unlucky...
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
When emulating a GICv2-on-GICv3, special care must be taken to only
save/restore VMCR_EL2 when ICC_SRE_EL1.SRE is cleared. Otherwise,
all Group-0 interrupts end-up being delivered as FIQ, which is
probably not what the guest expects, as demonstrated here with
an unhappy EFI:
FIQ Exception at 0x000000013BD21CC4
This means that we cannot perform the load/put trick when dealing
with VMCR_EL2 (because the host has SRE set), and we have to deal
with it in the world-switch.
Fortunately, this is not the most common case (modern guests should
be able to deal with GICv3 directly), and the performance is not worse
than what it was before the VMCR optimization.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Let's drop the goto and return the error value directly.
Suggested-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's rename it into a proper arch specific callback.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Avoid races between KVM_SET_GSI_ROUTING and KVM_CREATE_IRQCHIP by taking
the kvm->lock when setting up routes.
If KVM_CREATE_IRQCHIP fails, KVM_SET_GSI_ROUTING could have already set
up routes pointing at pic/ioapic, being silently removed already.
Also, as a side effect, this patch makes sure that KVM_SET_GSI_ROUTING
and KVM_CAP_SPLIT_IRQCHIP cannot run in parallel.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When not using an in-kernel VGIC, but instead emulating an interrupt
controller in userspace, we should report the PMU overflow status to
that userspace interrupt controller using the KVM_CAP_ARM_USER_IRQ
feature.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If you're running with a userspace gic or other interrupt controller
(that is no vgic in the kernel), then you have so far not been able to
use the architected timers, because the output of the architected
timers, which are driven inside the kernel, was a kernel-only construct
between the arch timer code and the vgic.
This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a
side channel on the kvm_run structure, run->s.regs.device_irq_level, to
always notify userspace of the timer output levels when using a userspace
irqchip.
This works by ensuring that before we enter the guest, if the timer
output level has changed compared to what we last told userspace, we
don't enter the guest, but instead return to userspace to notify it of
the new level. If we are exiting, because of an MMIO for example, and
the level changed at the same time, the value is also updated and
userspace can sample the line as it needs. This is nicely achieved
simply always updating the timer_irq_level field after the main run
loop.
Note that the kvm_timer_update_irq trace event is changed to show the
host IRQ number for the timer instead of the guest IRQ number, because
the kernel no longer know which IRQ userspace wires up the timer signal
to.
Also note that this patch implements all required functionality but does
not yet advertise the capability.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently we check if we have an in-kernel irqchip and if the vgic was
properly implemented several places in the arch timer code. But, we
already predicate our enablement of the arm timers on having a valid
and initialized gic, so we can simply check if the timers are enabled or
not.
This also gets rid of the ugly "error that's not an error but used to
signal that the timer shouldn't poke the gic" construct we have.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
There is no need to call any functions to fold LRs when we don't use any
LRs and we don't need to mess with overflow flags, take spinlocks, or
prune the AP list if the AP list is empty.
Note: list_empty is a single atomic read (uses READ_ONCE) and can
therefore check if a list is empty or not without the need to take the
spinlock protecting the list.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Now when we do an early init of the static parts of the VGIC data
structures, we can do things like checking if the AP lists are empty
directly without having to explicitly check if the vgic is initialized
and reduce a bit of work in our critical path.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Implement early initialization for both the distributor and the CPU
interfaces. The basic idea is that even though the VGIC is not
functional or not requested from user space, the critical path of the
run loop can still call VGIC functions that just won't do anything,
without them having to check additional initialization flags to ensure
they don't look at uninitialized data structures.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We don't use these fields anymore so let's nuke them completely.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Now when we don't look at the MISR and EISR values anymore, we can get
rid of the logic to save them in the GIC save/restore code.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Since we always read back the LRs that we wrote to the guest and the
MISR and EISR registers simply provide a summary of the configuration of
the bits in the LRs, there is really no need to read back those status
registers and process them. We might as well just signal the
notifyfd when folding the LR state and save some cycles in the process.
We now clear the underflow bit in the fold_lr_state functions as we only
need to clear this bit if we had used all the LRs, so this is as good a
place as any to do that work.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>