IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
A few code paths need to check whether or not they are running
on the PS3's LV1 hypervisor before making hcalls. This introduces
a new firmware feature bit for this, FW_FEATURE_PS3_LV1.
Now when both PS3 and IBM_CELL_BLADE are enabled, but not PSERIES,
FW_FEATURE_PS3_LV1 and FW_FEATURE_LPAR get enabled at compile time,
which is a bug. The same problem can also happen for (PPC_ISERIES &&
!PPC_PSERIES && PPC_SOMETHING_ELSE). In order to solve this, I
introduce a new CONFIG_PPC_NATIVE option that is set when at least
one platform is selected that can run without a hypervisor and then
turns the firmware feature check into a run-time option.
The new cell oprofile support that was recently merged does not
work on hypervisor based platforms like the PS3, therefore make
it depend on PPC_CELL_NATIVE instead of PPC_CELL. This may change
if we get oprofile support for PS3.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Add PPU event-based and cycle-based profiling support to Oprofile for Cell.
Oprofile is expected to collect data on all CPUs simultaneously.
However, there is one set of performance counters per node. There are
two hardware threads or virtual CPUs on each node. Hence, OProfile must
multiplex in time the performance counter collection on the two virtual
CPUs.
The multiplexing of the performance counters is done by a virtual
counter routine. Initially, the counters are configured to collect data
on the even CPUs in the system, one CPU per node. In order to capture
the PC for the virtual CPU when the performance counter interrupt occurs
(the specified number of events between samples has occurred), the even
processors are configured to handle the performance counter interrupts
for their node. The virtual counter routine is called via a kernel
timer after the virtual sample time. The routine stops the counters,
saves the current counts, loads the last counts for the other virtual
CPU on the node, sets interrupts to be handled by the other virtual CPU
and restarts the counters, the virtual timer routine is scheduled to run
again. The virtual sample time is kept relatively small to make sure
sampling occurs on both CPUs on the node with a relatively small
granularity. Whenever the counters overflow, the performance counter
interrupt is called to collect the PC for the CPU where data is being
collected.
The oprofile driver relies on a firmware RTAS call to setup the debug bus
to route the desired signals to the performance counter hardware to be
counted. The RTAS call must set the routing registers appropriately in
each of the islands to pass the signals down the debug bus as well as
routing the signals from a particular island onto the bus. There is a
second firmware RTAS call to reset the debug bus to the non pass thru
state when the counters are not in use.
Signed-off-by: Carl Love <carll@us.ibm.com>
Signed-off-by: Maynard Johnson <mpjohn@us.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Fixed a compile error in building the 85xx support with oprofile, and in
the process cleaned up some issues with the fsl_booke performance monitor
code.
* Reorganized FSL Book-E performance monitoring code so that the 7450
wouldn't be built if the e500 was, and cleaned it up so it was more
self-contained.
* Added a cpu_setup function for FSL Book-E. The original
cpu_setup function prototype had no arguments, assuming that
the reg_setup function would copy the required information into
variables which represented the registers. This was silly for
e500, since it has 1 register per counter (rather than 3 for
all counters), so the code has been restructured to have
cpu_setup take the current counter config array as an argument,
with op_powerpc_setup() invoking op_powerpc_cpu_setup() through
on_each_cpu(), and op_powerpc_cpu_setup() invoking the
model-specific cpu_setup function with an argument. The
argument is ignored on all other platforms at present.
* Fixed a confusing line where a trinary operator only had two
arguments
Signed-off-by: Andrew Fleming <afleming@freescale.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Micro-optimisation - add no-minimal-toc to some more arch/powerpc Makefiles.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Add oprofile calltrace support to powerpc. Disable spinlock backtracing
now we can use calltrace info.
(Updated to work on both 32bit and 64bit by me).
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch adds oprofile support for the 7450 and all its multitudinous
derivatives.
* Added 7450 (and derivatives) support for oprofile
* Changed e500 cputable to have oprofile model and cpu_type fields
* Added support for classic 32-bit performance monitor interrupt
* Cleaned up common powerpc oprofile code to be as common as possible
* Cleaned up oprofile_impl.h to reflect 32 bit classic code
* Added 32-bit MMCRx bitfield definitions and SPR numbers
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>