IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We always assume what dquot update result in changes in one data block
But ext3_quota_write() function may handle cross block boundary writes
In fact if this ever happen it will result in incorrect journal credits
reservation. And later bug_on triggering. As soon this never happen the
boundary cross loop is NOOP. In order to make things straight
let's remove this loop and assert cross boundary condition.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Jan Kara <jack@suse.cz>
The patch is aimed to reorganize and simplify quota code a bit.
Quota code is itself complex enouth, but we can make it more readable
in some places:
- Move quota option parsing to separate functions.
- Simplify old-quota and journaled-quota mix check.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Jan Kara <jack@suse.cz>
At several places we modify EXT3_I(inode)->i_state without holding i_mutex
(ext3_release_file, ext3_bmap, ext3_journalled_writepage, ext3_do_update_inode,
...). These modifications are racy and we can lose updates to i_state. So
convert handling of i_state to use bitops which are atomic.
Signed-off-by: Jan Kara <jack@suse.cz>
Use a separate lock to protect s_groups_count and the other block
group descriptors which get changed via an on-line resize operation,
so we can stop overloading the use of lock_super().
Port of ext4 commit 32ed5058ce90024efcd811254b4b1de0468099df by
Theodore Ts'o <tytso@mit.edu>.
CC: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Use a separate lock to protect the orphan list, so we can stop
overloading the use of lock_super().
Port of ext4 commit 3b9d4ed26680771295d904a6b83e88e620780893
by Theodore Ts'o <tytso@mit.edu>.
CC: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
The function ext3_mark_recovery_complete() is called from two call
paths: either (a) while mounting the filesystem, in which case there's
no danger of any other CPU calling write_super() until the mount is
completed, and (b) while remounting the filesystem read-write, in
which case the fs core has already locked the superblock. This also
allows us to take out a very vile unlock_super()/lock_super() pair in
ext3_remount().
Port of ext4 commit a63c9eb2ce6f5028da90f282798232c4f398ceb8 by
Theodore Ts'o <tytso@mit.edu>.
CC: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
ext3_fill_super() is no longer called by read_super(), and it is no
longer called with the superblock locked. The
unlock_super()/lock_super() is no longer present, so this comment is
entirely superfluous.
Port of ext4 commit 32ed5058ce90024efcd811254b4b1de0468099df by
Theodore Ts'o <tytso@mit.edu>.
CC: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Currently all quota block reservation macros contains hardcoded "2"
aka MAXQUOTAS value. This is no good because in some places it is not
obvious to understand what does this digit represent. Let's introduce
new macro with self descriptive name.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Add a flags argument to struct xattr_handler and pass it to all xattr
handler methods. This allows using the same methods for multiple
handlers, e.g. for the ACL methods which perform exactly the same action
for the access and default ACLs, just using a different underlying
attribute. With a little more groundwork it'll also allow sharing the
methods for the regular user/trusted/secure handlers in extN, ocfs2 and
jffs2 like it's already done for xfs in this patch.
Also change the inode argument to the handlers to a dentry to allow
using the handlers mechnism for filesystems that require it later,
e.g. cifs.
[with GFS2 bits updated by Steven Whitehouse <swhiteho@redhat.com>]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When ext3_write_begin fails after allocating some blocks or
generic_perform_write fails to copy data to write, we truncate blocks already
instantiated beyond i_size. Although these blocks were never inside i_size, we
have to truncate pagecache of these blocks so that corresponding buffers get
unmapped. Otherwise subsequent __block_prepare_write (called because we are
retrying the write) will find the buffers mapped, not call ->get_block, and
thus the page will be backed by already freed blocks leading to filesystem and
data corruption.
Reported-by: James Y Knight <foom@fuhm.net>
Signed-off-by: Jan Kara <jack@suse.cz>
We just have to add proper mount options handling. The rest is handled by
the generic quota code.
CC: linux-ext4@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Make messages produced by ext3 more unified. It should be
easy to parse.
dmesg before patch:
[ 4893.684892] reservations ON
[ 4893.684896] xip option not supported
[ 4893.684964] EXT3-fs warning: maximal mount count reached, running
e2fsck is recommended
dmesg after patch:
[ 873.300792] EXT3-fs (loop0): using internal journaln
[ 873.300796] EXT3-fs (loop0): mounted filesystem with writeback data mode
[ 924.163657] EXT3-fs (loop0): error: can't find ext3 filesystem on dev loop0.
[ 723.755642] EXT3-fs (loop0): error: bad blocksize 8192
[ 357.874687] EXT3-fs (loop0): error: no journal found. mounting ext3 over ext2?
[ 873.300764] EXT3-fs (loop0): warning: maximal mount count reached, running e2fsck is recommended
[ 924.163657] EXT3-fs (loop0): error: can't find ext3 filesystem on dev loop0.
Signed-off-by: Alexey Fisher <bug-track@fisher-privat.net>
Signed-off-by: Jan Kara <jack@suse.cz>
Users on the list recently complained about differences across
filesystems w.r.t. how to mount without a journal replay.
In the discussion it was noted that xfs's "norecovery" option is
perhaps more descriptively accurate than "noload," so let's make
that an alias for ext3.
Also show this status in /proc/mounts
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
commit a71ce8c6c9bf269b192f352ea555217815cf027e updated ext3_statfs()
to update the on-disk superblock counters, but modified this buffer
directly without any journaling of the change. This is one of the
accesses that was causing the crc errors in journal replay as seen in
kernel.org bugzilla #14354.
The modifications were originally to keep the sb "more" in sync,
so that a readonly fsck of the device didn't flag this as an
error (as often), but apparently e2fsprogs deals with this differently
now, anyway.
Based on Ted's patch for ext4, which was in turn based on my
work on that bug and another preliminary patch...
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
ext3_xattr_set_handle() was zeroing out an inode outside
of journaling constraints; this is one of the accesses that
was causing the crc errors in journal replay as seen in
kernel.org bugzilla #14354.
Although ext3 doesn't have the crc issue, modifications
out of journal control are a Bad Thing.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
We cannot rely on buffer dirty bits during fsync because pdflush can come
before fsync is called and clear dirty bits without forcing a transaction
commit. What we do is that we track which transaction has last changed
the inode and which transaction last changed allocation and force it to
disk on fsync.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
On a 256M 4k block filesystem, doing this in a loop:
dd if=/dev/zero of=test oflag=direct bs=1M count=64
rm -f test
eventually leads to spurious ENOSPC:
dd: writing `test': No space left on device
As with other block allocation callers, it looks like we need to
potentially retry the allocations on the initial ENOSPC.
A similar patch went into ext4 (commit
fbbf69456619de5d251cb9f1df609069178c62d5)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
This avoids updating the superblock write time when we are mounting
the root file system read/only but we need to replay the journal; at
that point, for people who are east of GMT and who make their clock
tick in localtime for Windows bug-for-bug compatibility, and this will
cause e2fsck to complain and force a full file system check.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Jan Kara <jack@suse.cz>
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
In case we fsync() a file and inode is not dirty, we don't force a transaction
to disk and hence don't flush disk caches. Thus file data could be just in disk
caches and not on persistent storage. Fix the problem by flushing disk caches
if we didn't force a transaction commit.
Signed-off-by: Jan Kara <jack@suse.cz>
I've been struggling with this off and on while I've been testing the
data=guarded work. The symptom is corrupted orphan lists and inodes
with the wrong i_size stored on disk. I was convinced the
data=guarded code was just missing a call to ext3_mark_inode_dirty, but
tracing showed the i_disksize I was sending to ext3_mark_inode_dirty
wasn't actually making it to the drive.
ext3_mark_inode_dirty can be called without locks held (atime updates
and a few others), so the data=guarded code uses locks while updating
the in-memory inode, and then calls ext3_mark_inode_dirty
without any locks held.
But, ext3_mark_inode_dirty has no internal locking to make sure that
only one CPU is updating the buffer head at a time. Generally this
works out ok because everyone that changes the inode then calls
ext3_mark_inode_dirty themselves. Even though it races, eventually
someone updates the buffer heads and things move on.
But there is still a risk of the wrong values getting in, and the
data=guarded code seems to hit the race very often.
Since everyone that changes the inode also logs it, it should be
possible to fix this with some memory barriers. I'll leave that as an
exercise to the reader and lock the buffer head instead.
It it probably a good idea to have a different patch series for lockless
bit flipping on the ext3 i_state field. ext3_do_update_inode &= clears
EXT3_STATE_NEW without any locks held.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
During truncate we are sometimes forced to start a new transaction as the
amount of blocks to be journaled is both quite large and hard to predict. So
far we restarted a transaction while holding truncate_mutex and that violates
lock ordering because truncate_mutex ranks below transaction start (and it
can lead to a real deadlock with ext3_get_blocks() allocating new blocks
from ext3_writepage()).
Luckily, the problem is easy to fix: We just drop the truncate_mutex before
restarting the transaction and acquire it afterwards. We are safe to do this as
by the time ext3_truncate() is called, all the page cache for the truncated
part of the file is dropped and so writepage() cannot come and allocate new
blocks in the part of the file we are truncating. The rest of writers is
stopped by us holding i_mutex.
Signed-off-by: Jan Kara <jack@suse.cz>
Enable removing of corrupted pages through truncation
for a bunch of file systems: ext*, xfs, gfs2, ocfs2, ntfs
These should cover most server needs.
I chose the set of migration aware file systems for this
for now, assuming they have been especially audited.
But in general it should be safe for all file systems
on the data area that support read/write and truncate.
Caveat: the hardware error handler does not take i_mutex
for now before calling the truncate function. Is that ok?
Cc: tytso@mit.edu
Cc: hch@infradead.org
Cc: mfasheh@suse.com
Cc: aia21@cantab.net
Cc: hugh.dickins@tiscali.co.uk
Cc: swhiteho@redhat.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Syncing is now properly done by generic_file_aio_write() so no special logic is
needed in ext3.
CC: linux-ext4@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Don't implement per-filesystem 'extX_permission()' functions that have
to be called for every path component operation, and instead just expose
the actual ACL checking so that the VFS layer can now do it for us.
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes the error message about changing journaling mode on remount
more descriptive. Some people are going to hit this error now due to commit
bbae8bcc49bc4d002221dab52c79a50a82e7cd1f if they configure a kernel to default
to data=writeback mode. The problem happens if they have data=ordered set for
the root filesystem in /etc/fstab but not in the kernel command line (and they
don't use initrd). Their filesystem then gets mounted as data=writeback by
kernel but then their boot fails because init scripts won't be able to remount
the filesystem rw. Better error message will hopefully make it easier for them
to find the error in their setup and bother us less with error reports :).
Signed-off-by: Jan Kara <jack@suse.cz>
The old description for this configuration option was perhaps not
completely balanced in terms of describing the tradeoffs of using a
default of data=writeback vs. data=ordered. Despite the fact that old
description very strongly recomended disabling this feature, all of
the major distributions have elected to preserve the existing 'legacy'
default, which is a strong hint that it perhaps wasn't telling the
whole story.
This revised description has been vetted by a number of ext3
developers as being better at informing the user about the tradeoffs
of enabling or disabling this configuration feature.
Cc: linux-ext4@vger.kernel.org
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Jan Kara <jack@suse.cz>
Get rid of extenddisksize parameter of ext3_get_blocks_handle(). This seems to
be a relict from some old days and setting disksize in this function does not
make much sence. Currently it was set only by ext3_getblk(). Since the
parameter has some effect only if create == 1, it is easy to check that the
three callers which end up calling ext3_getblk() with create == 1 (ext3_append,
ext3_quota_write, ext3_mkdir) do the right thing and set disksize themselves.
Signed-off-by: Jan Kara <jack@suse.cz>
Contents of long symlinks is written via standard write methods. So when the
write fails, we add inode to orphan list. But symlinks don't have .truncate
method defined so nobody properly removes them from the orphan list (both on
disk and in memory).
Fix this by calling ext3_truncate() directly instead of calling vmtruncate()
(which is saner anyway since we don't need anything vmtruncate() does except
from calling .truncate in these paths). We also add inode to orphan list only
if ext3_can_truncate() is true (currently, it can be false for symlinks when
there are no blocks allocated) - otherwise orphan list processing will complain
and ext3_truncate() will not remove inode from on-disk orphan list.
Signed-off-by: Jan Kara <jack@suse.cz>
helpers: get_cached_acl(inode, type), set_cached_acl(inode, type, acl),
forget_cached_acl(inode, type).
ubifs/xattr.c needed includes reordered, the rest is a plain switchover.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Follow-up to "block: enable by default support for large devices
and files on 32-bit archs".
Rename CONFIG_LBD to CONFIG_LBDAF to:
- allow update of existing [def]configs for "default y" change
- reflect that it is used also for large files support nowadays
Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
As Ted pointed out, it can happen that ext3_truncate() returns without
removing inode from orphan list. This way we could in some rare cases
(like when we get ENOMEM from an allocation in ext3_truncate called
because of failed ext3_write_begin) leave the inode on orphan list and
that triggers assertion failure on umount.
So make ext3_truncate() always remove inode from in-memory orphan list.
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chain verification in ext3_get_blocks() has been hosed since it called
verify_chain(chain, NULL) which always returns success. As a result
readers could in theory race with truncate. On the other hand the race
probably cannot happen with the current locking scheme, since by the
time ext3_truncate() is called all the pages are already removed and
hence get_block() shouldn't be called on such pages...
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a filesystem supports POSIX ACL's, the VFS layer expects the filesystem
to do POSIX ACL checks on any files not owned by the caller, and it does
this for every single pathname component that it looks up.
That obviously can be pretty expensive if the filesystem isn't careful
about it, especially with locking. That's doubly sad, since the common
case tends to be that there are no ACL's associated with the files in
question.
ext3 already caches the ACL data so that it doesn't have to look it up
over and over again, but it does so by taking the inode->i_lock spinlock
on every lookup. Which is a noticeable overhead even if it's a private
lock, especially on CPU's where the serialization is expensive (eg Intel
Netburst aka 'P4').
For the special case of not actually having any ACL's, all that locking is
unnecessary. Even if somebody else were to be changing the ACL's on
another CPU, we simply don't care - if we've seen a NULL ACL, we might as
well use it.
So just load the ACL speculatively without any locking, and if it was
NULL, just use it. If it's non-NULL (either because we had a cached
entry, or because the cache hasn't been filled in at all), it means that
we'll need to get the lock and re-load it properly.
This is noticeable even on Nehalem, which does locking quite well (much
better than P4). From lmbench:
Processor, Processes - times in microseconds - smaller is better
--------------------------------------------------------------------
Host OS Mhz null null open slct fork exec sh
call I/O stat clos TCP proc proc proc
--------- ------------- ---- ---- ---- ---- ---- ---- ---- ---- ----
- before:
nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.95 1.45 2.18 69.1 273. 1141
nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.95 1.48 2.28 69.9 253. 1140
nehalem.l Linux 2.6.30- 3193 0.04 0.10 0.95 1.42 2.19 68.6 284. 1141
- after:
nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.92 1.44 2.12 68.3 282. 1094
nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.92 1.39 2.20 67.0 308. 1123
nehalem.l Linux 2.6.30- 3193 0.04 0.09 0.92 1.39 2.36 67.4 293. 1148
where you can see what appears to be a roughly 3% improvement in stat
and open/close latencies from just the removal of the locking overhead.
Of course, this only matters for files you don't own (the owner never
needs to do the ACL checks), but that's the common case for libraries,
header files, and executables. As well as for the base components of any
absolute pathname, even if you are the owner of the final file.
[ At some point we probably want to move this ACL caching logic entirely
into the VFS layer (and only call down to the filesystem when
uncached), but in the meantime this improves ext3 a bit.
A similar fix to btrfs makes a much bigger difference (15x improvement
in lmbench) due to broken caching. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Note that since we can't run into contention between remount_fs and write_super
(due to exclusion on s_umount), we have to care only about filesystems that
touch lock_super() on their own. Out of those ext3, ext4, hpfs, sysv and ufs
do need it; fat doesn't since its ->remount_fs() only accesses assign-once
data (basically, it's "we have no atime on directories and only have atime on
files for vfat; force nodiratime and possibly noatime into *flags").
[folded a build fix from hch]
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Move BKL into ->put_super from the only caller. A couple of
filesystems had trivial enough ->put_super (only kfree and NULLing of
s_fs_info + stuff in there) to not get any locking: coda, cramfs, efs,
hugetlbfs, omfs, qnx4, shmem, all others got the full treatment. Most
of them probably don't need it, but I'd rather sort that out individually.
Preferably after all the other BKL pushdowns in that area.
[AV: original used to move lock_super() down as well; these changes are
removed since we don't do lock_super() at all in generic_shutdown_super()
now]
[AV: fuse, btrfs and xfs are known to need no damn BKL, exempt]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-2.6.31' of git://git.kernel.dk/linux-2.6-block: (153 commits)
block: add request clone interface (v2)
floppy: fix hibernation
ramdisk: remove long-deprecated "ramdisk=" boot-time parameter
fs/bio.c: add missing __user annotation
block: prevent possible io_context->refcount overflow
Add serial number support for virtio_blk, V4a
block: Add missing bounce_pfn stacking and fix comments
Revert "block: Fix bounce limit setting in DM"
cciss: decode unit attention in SCSI error handling code
cciss: Remove no longer needed sendcmd reject processing code
cciss: change SCSI error handling routines to work with interrupts enabled.
cciss: separate error processing and command retrying code in sendcmd_withirq_core()
cciss: factor out fix target status processing code from sendcmd functions
cciss: simplify interface of sendcmd() and sendcmd_withirq()
cciss: factor out core of sendcmd_withirq() for use by SCSI error handling code
cciss: Use schedule_timeout_uninterruptible in SCSI error handling code
block: needs to set the residual length of a bidi request
Revert "block: implement blkdev_readpages"
block: Fix bounce limit setting in DM
Removed reference to non-existing file Documentation/PCI/PCI-DMA-mapping.txt
...
Manually fix conflicts with tracing updates in:
block/blk-sysfs.c
drivers/ide/ide-atapi.c
drivers/ide/ide-cd.c
drivers/ide/ide-floppy.c
drivers/ide/ide-tape.c
include/trace/events/block.h
kernel/trace/blktrace.c
Until now we have had a 1:1 mapping between storage device physical
block size and the logical block sized used when addressing the device.
With SATA 4KB drives coming out that will no longer be the case. The
sector size will be 4KB but the logical block size will remain
512-bytes. Hence we need to distinguish between the physical block size
and the logical ditto.
This patch renames hardsect_size to logical_block_size.
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>