IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Use ARRAY_SIZE macro already defined in linux/kernel.h
Signed-off-by: Ahmed S. Darwish <darwish.07@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@gate.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The stack frame address was being printed incorrectly in the backtrace
option of XMON on PPC. This patch fixes it to print the actual stack
address instead of the address of the local variable that contains it.
Signed-off-by: Josh Boyer <jdub@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The following patch allows XMON to run on the 4xx platform. Tested on
Walnut, Ebony, and Nova (440GX based) eval boards. 440EP, 440SP, and
440SPE boards should work as well. Patch is against 2.6.18-rc6.
Signed-off-by: Josh Boyer <jdub@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
32-bit CHRP machines are now supported only in arch/powerpc, as are
all 64-bit PowerPC processors. This means that we don't use
Open Firmware on any platform in arch/ppc any more.
This makes PReP support a single-platform option like every other
platform support option in arch/ppc now, thus CONFIG_PPC_MULTIPLATFORM
is gone from arch/ppc. CONFIG_PPC_PREP is the option that selects
PReP support and is generally what has replaced
CONFIG_PPC_MULTIPLATFORM within arch/ppc.
_machine is all but dead now, being #defined to 0.
Updated Makefiles, comments and Kconfig options generally to reflect
these changes.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Fix up xmon compilation after the last change.
Remove lots of dead code, all the pmac and chrp support is in arch/powerpc
Signed-off-by: Olaf Hering <olh@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
A few symbols are exported twice, remove them from ppc_ksyms.c
Remove users of sys_ctrler in arch/ppc/
WARNING: vmlinux: duplicate symbol '__delay' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol '__up' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol '__down' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol '__down_interruptible' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol 'sys_ctrler' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol 'strncat' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol 'strncmp' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol 'strchr' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol 'strrchr' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol 'strnlen' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol 'strpbrk' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol 'memscan' previous definition was in vmlinux
WARNING: vmlinux: duplicate symbol 'strstr' previous definition was in vmlinux
Signed-off-by: Olaf Hering <olh@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This makes it possible to build kernels for PReP and/or CHRP
with ARCH=ppc by removing the (non-building) powermac support.
It's now also possible to select PReP and CHRP independently.
Powermac users should now build with ARCH=powerpc instead of
ARCH=ppc. (This does mean that it is no longer possible to
build a 32-bit kernel for a G5.)
Signed-off-by: Paul Mackerras <paulus@samba.org>
)
From: Ingo Molnar <mingo@elte.hu>
This is the latest version of the scheduler cache-hot-auto-tune patch.
The first problem was that detection time scaled with O(N^2), which is
unacceptable on larger SMP and NUMA systems. To solve this:
- I've added a 'domain distance' function, which is used to cache
measurement results. Each distance is only measured once. This means
that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT
distances 0 and 1, and on SMP distance 0 is measured. The code walks
the domain tree to determine the distance, so it automatically follows
whatever hierarchy an architecture sets up. This cuts down on the boot
time significantly and removes the O(N^2) limit. The only assumption
is that migration costs can be expressed as a function of domain
distance - this covers the overwhelming majority of existing systems,
and is a good guess even for more assymetric systems.
[ People hacking systems that have assymetries that break this
assumption (e.g. different CPU speeds) should experiment a bit with
the cpu_distance() function. Adding a ->migration_distance factor to
the domain structure would be one possible solution - but lets first
see the problem systems, if they exist at all. Lets not overdesign. ]
Another problem was that only a single cache-size was used for measuring
the cost of migration, and most architectures didnt set that variable
up. Furthermore, a single cache-size does not fit NUMA hierarchies with
L3 caches and does not fit HT setups, where different CPUs will often
have different 'effective cache sizes'. To solve this problem:
- Instead of relying on a single cache-size provided by the platform and
sticking to it, the code now auto-detects the 'effective migration
cost' between two measured CPUs, via iterating through a wide range of
cachesizes. The code searches for the maximum migration cost, which
occurs when the working set of the test-workload falls just below the
'effective cache size'. I.e. real-life optimized search is done for
the maximum migration cost, between two real CPUs.
This, amongst other things, has the positive effect hat if e.g. two
CPUs share a L2/L3 cache, a different (and accurate) migration cost
will be found than between two CPUs on the same system that dont share
any caches.
(The reliable measurement of migration costs is tricky - see the source
for details.)
Furthermore i've added various boot-time options to override/tune
migration behavior.
Firstly, there's a blanket override for autodetection:
migration_cost=1000,2000,3000
will override the depth 0/1/2 values with 1msec/2msec/3msec values.
Secondly, there's a global factor that can be used to increase (or
decrease) the autodetected values:
migration_factor=120
will increase the autodetected values by 20%. This option is useful to
tune things in a workload-dependent way - e.g. if a workload is
cache-insensitive then CPU utilization can be maximized by specifying
migration_factor=0.
I've tested the autodetection code quite extensively on x86, on 3
P3/Xeon/2MB, and the autodetected values look pretty good:
Dual Celeron (128K L2 cache):
---------------------
migration cost matrix (max_cache_size: 131072, cpu: 467 MHz):
---------------------
[00] [01]
[00]: - 1.7(1)
[01]: 1.7(1) -
---------------------
cacheflush times [2]: 0.0 (0) 1.7 (1784008)
---------------------
Here the slow memory subsystem dominates system performance, and even
though caches are small, the migration cost is 1.7 msecs.
Dual HT P4 (512K L2 cache):
---------------------
migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz):
---------------------
[00] [01] [02] [03]
[00]: - 0.4(1) 0.0(0) 0.4(1)
[01]: 0.4(1) - 0.4(1) 0.0(0)
[02]: 0.0(0) 0.4(1) - 0.4(1)
[03]: 0.4(1) 0.0(0) 0.4(1) -
---------------------
cacheflush times [2]: 0.0 (33900) 0.4 (448514)
---------------------
Here it can be seen that there is no migration cost between two HT
siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory
system makes inter-physical-CPU migration pretty cheap: 0.4 msecs.
8-way P3/Xeon [2MB L2 cache]:
---------------------
migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz):
---------------------
[00] [01] [02] [03] [04] [05] [06] [07]
[00]: - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[01]: 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[02]: 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[03]: 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[04]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1)
[05]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1)
[06]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1)
[07]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) -
---------------------
cacheflush times [2]: 0.0 (0) 19.2 (19281756)
---------------------
This one has huge caches and a relatively slow memory subsystem - so the
migration cost is 19 msecs.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Cc: <wilder@us.ibm.com>
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Building ARCH=ppc for multiplatforms with CONFIG_CHRP not set fails
due to some unshielded code in xmon
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
xmon() prototype is inconsistent between ARCH=ppc and ARCH=powerpc,
thus causing ARCH=ppc build breakage.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Mention a few more commands in xmon. System.map processing was replaced
with kallsyms.
Signed-off-by: Olaf Hering <olh@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This fixes up a variety of minor problems in compiling with ARCH=ppc
arising from using the merged versions of various header files.
A lot of the changes are just adding #include <asm/machdep.h> to
files that use ppc_md or smp_ops_t.
This also arranges for us to use semaphore.c, vecemu.c, vector.S and
fpu.S from arch/powerpc/kernel when compiling with ARCH=ppc.
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch kills the whole embedded System.map mecanism and the
bootloader-passed System.map that was used to provide symbol resolution in
xmon. Instead, xmon now uses kallsyms like ppc64 does.
No hurry getting that in Linus tree, let it be tested in -mm for a while
first and make sure it doesn't break various embedded configs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!