IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Fix netfs_page_mkwrite() to check that folio->mapping is valid once it has
taken the folio lock (as filemap_page_mkwrite() does). Without this,
generic/247 occasionally oopses with something like the following:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
RIP: 0010:trace_event_raw_event_netfs_folio+0x61/0xc0
...
Call Trace:
<TASK>
? __die_body+0x1a/0x60
? page_fault_oops+0x6e/0xa0
? exc_page_fault+0xc2/0xe0
? asm_exc_page_fault+0x22/0x30
? trace_event_raw_event_netfs_folio+0x61/0xc0
trace_netfs_folio+0x39/0x40
netfs_page_mkwrite+0x14c/0x1d0
do_page_mkwrite+0x50/0x90
do_pte_missing+0x184/0x200
__handle_mm_fault+0x42d/0x500
handle_mm_fault+0x121/0x1f0
do_user_addr_fault+0x23e/0x3c0
exc_page_fault+0xc2/0xe0
asm_exc_page_fault+0x22/0x30
This is due to the invalidate_inode_pages2_range() issued at the end of the
DIO write interfering with the mmap'd writes.
Fixes: 102a7e2c59 ("netfs: Allow buffered shared-writeable mmap through netfs_page_mkwrite()")
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/780211.1719318546@warthog.procyon.org.uk
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: Matthew Wilcox <willy@infradead.org>
cc: Jeff Layton <jlayton@kernel.org>
cc: netfs@lists.linux.dev
cc: v9fs@lists.linux.dev
cc: linux-afs@lists.infradead.org
cc: linux-cifs@vger.kernel.org
cc: linux-mm@kvack.org
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Pull vfs fixes from Christian Brauner:
- Fix io_uring based write-through after converting cifs to use the
netfs library
- Fix aio error handling when doing write-through via netfs library
- Fix performance regression in iomap when used with non-large folio
mappings
- Fix signalfd error code
- Remove obsolete comment in signalfd code
- Fix async request indication in netfs_perform_write() by raising
BDP_ASYNC when IOCB_NOWAIT is set
- Yield swap device immediately to prevent spurious EBUSY errors
- Don't cross a .backup mountpoint from backup volumes in afs to avoid
infinite loops
- Fix a race between umount and async request completion in 9p after 9p
was converted to use the netfs library
* tag 'vfs-6.10-rc2.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
netfs, 9p: Fix race between umount and async request completion
afs: Don't cross .backup mountpoint from backup volume
swap: yield device immediately
netfs: Fix setting of BDP_ASYNC from iocb flags
signalfd: drop an obsolete comment
signalfd: fix error return code
iomap: fault in smaller chunks for non-large folio mappings
filemap: add helper mapping_max_folio_size()
netfs: Fix AIO error handling when doing write-through
netfs: Fix io_uring based write-through
This can be triggered by mounting a cifs filesystem with a cache=strict
mount option and then, using the fsx program from xfstests, doing:
ltp/fsx -A -d -N 1000 -S 11463 -P /tmp /cifs-mount/foo \
--replay-ops=gen112-fsxops
Where gen112-fsxops holds:
fallocate 0x6be7 0x8fc5 0x377d3
copy_range 0x9c71 0x77e8 0x2edaf 0x377d3
write 0x2776d 0x8f65 0x377d3
The problem is that netfs_io_request::len is being used for two purposes
and ends up getting set to the amount of data we transferred, not the
amount of data the caller asked to be transferred (for various reasons,
such as mmap'd writes, we might end up rounding out the data written to the
server to include the entire folio at each end).
Fix this by keeping the amount we were asked to write in ->len and using
->submitted to track what we issued ops for. Then, when we come to calling
->ki_complete(), ->len is the right size.
This also required netfs_cleanup_dio_write() to change since we're no
longer advancing wreq->len. Use wreq->transferred instead as we might have
done a short read.
With this, the generic/112 xfstest passes if cifs is forced to put all
non-DIO opens into write-through mode.
Fixes: 288ace2f57 ("netfs: New writeback implementation")
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/295086.1716298663@warthog.procyon.org.uk
cc: Jeff Layton <jlayton@kernel.org>
cc: Steve French <stfrench@microsoft.com>
cc: Enzo Matsumiya <ematsumiya@suse.de>
cc: netfs@lists.linux.dev
cc: v9fs@lists.linux.dev
cc: linux-afs@lists.infradead.org
cc: linux-cifs@vger.kernel.org
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
With the changes to folios/netfs it is now easier to reenable
swapfile support over SMB3 which fixes various xfstests
Reviewed-by: David Howells <dhowells@redhat.com>
Suggested-by: David Howells <dhowells@redhat.com>
Fixes: e1209d3a7a ("mm: introduce ->swap_rw and use it for reads from SWP_FS_OPS swap-space")
Signed-off-by: Steve French <stfrench@microsoft.com>
Fix to take the i_rwsem (through the netfs locking wrappers) before taking
cinode->lock_sem.
Fixes: 3ee1a1fc39 ("cifs: Cut over to using netfslib")
Reported-by: Enzo Matsumiya <ematsumiya@suse.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Make the cifs filesystem use netfslib to handle reading and writing on
behalf of cifs. The changes include:
(1) Various read_iter/write_iter type functions are turned into wrappers
around netfslib API functions or are pointed directly at those
functions:
cifs_file_direct{,_nobrl}_ops switch to use
netfs_unbuffered_read_iter and netfs_unbuffered_write_iter.
Large pieces of code that will be removed are #if'd out and will be removed
in subsequent patches.
[?] Why does cifs mark the page dirty in the destination buffer of a DIO
read? Should that happen automatically? Does netfs need to do that?
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Steve French <sfrench@samba.org>
cc: Shyam Prasad N <nspmangalore@gmail.com>
cc: Rohith Surabattula <rohiths.msft@gmail.com>
cc: Jeff Layton <jlayton@kernel.org>
cc: linux-cifs@vger.kernel.org
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Provide implementation of the netfslib hooks that will be used by netfslib
to ask cifs to set up and perform operations. Of particular note are
(*) cifs_clamp_length() - This is used to negotiate the size of the next
subrequest in a read request, taking into account the credit available
and the rsize. The credits are attached to the subrequest.
(*) cifs_req_issue_read() - This is used to issue a subrequest that has
been set up and clamped.
(*) cifs_prepare_write() - This prepares to fill a subrequest by picking a
channel, reopening the file and requesting credits so that we can set
the maximum size of the subrequest and also sets the maximum number of
segments if we're doing RDMA.
(*) cifs_issue_write() - This releases any unneeded credits and issues an
asynchronous data write for the contiguous slice of file covered by
the subrequest. This should possibly be folded in to all
->async_writev() ops and that called directly.
(*) cifs_begin_writeback() - This gets the cached writable handle through
which we do writeback (this does not affect writethrough, unbuffered
or direct writes).
At this point, cifs is not wired up to actually *use* netfslib; that will
be done in a subsequent patch.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Steve French <sfrench@samba.org>
cc: Shyam Prasad N <nspmangalore@gmail.com>
cc: Rohith Surabattula <rohiths.msft@gmail.com>
cc: Jeff Layton <jlayton@kernel.org>
cc: linux-cifs@vger.kernel.org
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Add some write-side stats to count buffered writes, buffered writethrough,
and writepages calls.
Whilst we're at it, clean up the naming on some of the existing stats
counters and organise the output into two sets.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
The current netfslib writeback implementation creates writeback requests of
contiguous folio data and then separately tiles subrequests over the space
twice, once for the server and once for the cache. This creates a few
issues:
(1) Every time there's a discontiguity or a change between writing to only
one destination or writing to both, it must create a new request.
This makes it harder to do vectored writes.
(2) The folios don't have the writeback mark removed until the end of the
request - and a request could be hundreds of megabytes.
(3) In future, I want to support a larger cache granularity, which will
require aggregation of some folios that contain unmodified data (which
only need to go to the cache) and some which contain modifications
(which need to be uploaded and stored to the cache) - but, currently,
these are treated as discontiguous.
There's also a move to get everyone to use writeback_iter() to extract
writable folios from the pagecache. That said, currently writeback_iter()
has some issues that make it less than ideal:
(1) there's no way to cancel the iteration, even if you find a "temporary"
error that means the current folio and all subsequent folios are going
to fail;
(2) there's no way to filter the folios being written back - something
that will impact Ceph with it's ordered snap system;
(3) and if you get a folio you can't immediately deal with (say you need
to flush the preceding writes), you are left with a folio hanging in
the locked state for the duration, when really we should unlock it and
relock it later.
In this new implementation, I use writeback_iter() to pump folios,
progressively creating two parallel, but separate streams and cleaning up
the finished folios as the subrequests complete. Either or both streams
can contain gaps, and the subrequests in each stream can be of variable
size, don't need to align with each other and don't need to align with the
folios.
Indeed, subrequests can cross folio boundaries, may cover several folios or
a folio may be spanned by multiple folios, e.g.:
+---+---+-----+-----+---+----------+
Folios: | | | | | | |
+---+---+-----+-----+---+----------+
+------+------+ +----+----+
Upload: | | |.....| | |
+------+------+ +----+----+
+------+------+------+------+------+
Cache: | | | | | |
+------+------+------+------+------+
The progressive subrequest construction permits the algorithm to be
preparing both the next upload to the server and the next write to the
cache whilst the previous ones are already in progress. Throttling can be
applied to control the rate of production of subrequests - and, in any
case, we probably want to write them to the server in ascending order,
particularly if the file will be extended.
Content crypto can also be prepared at the same time as the subrequests and
run asynchronously, with the prepped requests being stalled until the
crypto catches up with them. This might also be useful for transport
crypto, but that happens at a lower layer, so probably would be harder to
pull off.
The algorithm is split into three parts:
(1) The issuer. This walks through the data, packaging it up, encrypting
it and creating subrequests. The part of this that generates
subrequests only deals with file positions and spans and so is usable
for DIO/unbuffered writes as well as buffered writes.
(2) The collector. This asynchronously collects completed subrequests,
unlocks folios, frees crypto buffers and performs any retries. This
runs in a work queue so that the issuer can return to the caller for
writeback (so that the VM can have its kswapd thread back) or async
writes.
(3) The retryer. This pauses the issuer, waits for all outstanding
subrequests to complete and then goes through the failed subrequests
to reissue them. This may involve reprepping them (with cifs, the
credits must be renegotiated, and a subrequest may need splitting),
and doing RMW for content crypto if there's a conflicting change on
the server.
[!] Note that some of the functions are prefixed with "new_" to avoid
clashes with existing functions. These will be renamed in a later patch
that cuts over to the new algorithm.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: Eric Van Hensbergen <ericvh@kernel.org>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: v9fs@lists.linux.dev
cc: linux-afs@lists.infradead.org
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
Make the netfs_io_request::subreq_counter, used to generate values for
netfs_io_subrequest::debug_index, into an atomic_t so that it can be called
from the retry thread at the same time as the app thread issuing writes.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
When dirty data is being written to the cache, setting/waiting on/clearing
the fscache flag is always done in tandem with setting/waiting on/clearing
the writeback flag. The netfslib buffered write routines wait on and set
both flags and the write request cleanup clears both flags, so the fscache
flag is almost superfluous.
The reason it isn't superfluous is because the fscache flag is also used to
indicate that data just read from the server is being written to the cache.
The flag is used to prevent a race involving overlapping direct-I/O writes
to the cache.
Change this to indicate that a page is in need of being copied to the cache
by placing a magic value in folio->private and marking the folios dirty.
Then when the writeback code sees a folio marked in this way, it only
writes it to the cache and not to the server.
If a folio that has this magic value set is modified, the value is just
replaced and the folio will then be uplodaded too.
With this, PG_fscache is no longer required by the netfslib core, 9p and
afs.
Ceph and nfs, however, still need to use the old PG_fscache-based tracking.
To deal with this, a flag, NETFS_ICTX_USE_PGPRIV2, now has to be set on the
flags in the netfs_inode struct for those filesystems. This reenables the
use of PG_fscache in that inode. 9p and afs use the netfslib write helpers
so get switched over; cifs, for the moment, does page-by-page manual access
to the cache, so doesn't use PG_fscache and is unaffected.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: Matthew Wilcox (Oracle) <willy@infradead.org>
cc: Eric Van Hensbergen <ericvh@kernel.org>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Xiubo Li <xiubli@redhat.com>
cc: Steve French <sfrench@samba.org>
cc: Paulo Alcantara <pc@manguebit.com>
cc: Ronnie Sahlberg <ronniesahlberg@gmail.com>
cc: Shyam Prasad N <sprasad@microsoft.com>
cc: Tom Talpey <tom@talpey.com>
cc: Bharath SM <bharathsm@microsoft.com>
cc: Trond Myklebust <trond.myklebust@hammerspace.com>
cc: Anna Schumaker <anna@kernel.org>
cc: netfs@lists.linux.dev
cc: v9fs@lists.linux.dev
cc: linux-afs@lists.infradead.org
cc: ceph-devel@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: linux-nfs@vger.kernel.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
In netfs_perform_write(), when the file is marked NETFS_ICTX_WRITETHROUGH
or O_*SYNC or RWF_*SYNC was specified, write-through caching is performed
on a buffered file. When setting up for write-through, we flush any
conflicting writes in the region and wait for the write to complete,
failing if there's a write error to return.
The issue arises if we're writing at or above the EOF position because we
skip the flush and - more importantly - the wait. This becomes a problem
if there's a partial folio at the end of the file that is being written out
and we want to make a write to it too. Both the already-running write and
the write we start both want to clear the writeback mark, but whoever is
second causes a warning looking something like:
------------[ cut here ]------------
R=00000012: folio 11 is not under writeback
WARNING: CPU: 34 PID: 654 at fs/netfs/write_collect.c:105
...
CPU: 34 PID: 654 Comm: kworker/u386:27 Tainted: G S ...
...
Workqueue: events_unbound netfs_write_collection_worker
...
RIP: 0010:netfs_writeback_lookup_folio
Fix this by making the flush-and-wait unconditional. It will do nothing if
there are no folios in the pagecache and will return quickly if there are
no folios in the region specified.
Further, move the WBC attachment above the flush call as the flush is going
to attach a WBC and detach it again if it is not present - and since we
need one anyway we might as well share it.
Fixes: 41d8e7673a ("netfs: Implement a write-through caching option")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202404161031.468b84f-oliver.sang@intel.com
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/2150448.1714130115@warthog.procyon.org.uk
Reviewed-by: Jeffrey Layton <jlayton@kernel.org>
cc: Eric Van Hensbergen <ericvh@kernel.org>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
cc: v9fs@lists.linux.dev
cc: linux-afs@lists.infradead.org
cc: linux-cifs@vger.kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Pull netfs updates from Christian Brauner:
"This extends the netfs helper library that network filesystems can use
to replace their own implementations. Both afs and 9p are ported. cifs
is ready as well but the patches are way bigger and will be routed
separately once this is merged. That will remove lots of code as well.
The overal goal is to get high-level I/O and knowledge of the page
cache and ouf of the filesystem drivers. This includes knowledge about
the existence of pages and folios
The pull request converts afs and 9p. This removes about 800 lines of
code from afs and 300 from 9p. For 9p it is now possible to do writes
in larger than a page chunks. Additionally, multipage folio support
can be turned on for 9p. Separate patches exist for cifs removing
another 2000+ lines. I've included detailed information in the
individual pulls I took.
Summary:
- Add NFS-style (and Ceph-style) locking around DIO vs buffered I/O
calls to prevent these from happening at the same time.
- Support for direct and unbuffered I/O.
- Support for write-through caching in the page cache.
- O_*SYNC and RWF_*SYNC writes use write-through rather than writing
to the page cache and then flushing afterwards.
- Support for write-streaming.
- Support for write grouping.
- Skip reads for which the server could only return zeros or EOF.
- The fscache module is now part of the netfs library and the
corresponding maintainer entry is updated.
- Some helpers from the fscache subsystem are renamed to mark them as
belonging to the netfs library.
- Follow-up fixes for the netfs library.
- Follow-up fixes for the 9p conversion"
* tag 'vfs-6.8.netfs' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (50 commits)
netfs: Fix wrong #ifdef hiding wait
cachefiles: Fix signed/unsigned mixup
netfs: Fix the loop that unmarks folios after writing to the cache
netfs: Fix interaction between write-streaming and cachefiles culling
netfs: Count DIO writes
netfs: Mark netfs_unbuffered_write_iter_locked() static
netfs: Fix proc/fs/fscache symlink to point to "netfs" not "../netfs"
netfs: Rearrange netfs_io_subrequest to put request pointer first
9p: Use length of data written to the server in preference to error
9p: Do a couple of cleanups
9p: Fix initialisation of netfs_inode for 9p
cachefiles: Fix __cachefiles_prepare_write()
9p: Use netfslib read/write_iter
afs: Use the netfs write helpers
netfs: Export the netfs_sreq tracepoint
netfs: Optimise away reads above the point at which there can be no data
netfs: Implement a write-through caching option
netfs: Provide a launder_folio implementation
netfs: Provide a writepages implementation
netfs, cachefiles: Pass upper bound length to allow expansion
...
In the loop in netfs_rreq_unmark_after_write() that removes the PG_fscache
from folios after they've been written to the cache, as soon as we remove
the mark from a multipage folio, it can get split - and then we might see a
fragment of folio again.
Guard against this by advancing the 'unlocked' tracker to the index of the
last page in the folio to avoid a double removal of the PG_fscache mark.
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Matthew Wilcox <willy@infradead.org>
cc: linux-afs@lists.infradead.org
cc: linux-cachefs@redhat.com
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
An issue can occur between write-streaming (storing dirty data in partial
non-uptodate pages) and a cachefiles object being culled to make space.
The problem occurs because the cache object is only marked in use while
there are files open using it. Once it has been released, it can be culled
and the cookie marked disabled.
At this point, a streaming write is permitted to occur (if the cache is
active, we require pages to be prefetched and cached), but the cache can
become active again before this gets flushed out - and then two effects can
occur:
(1) The cache may be asked to write out a region that's less than its DIO
block size (assumed by cachefiles to be PAGE_SIZE) - and this causes
one of two debugging statements to be emitted.
(2) netfs_how_to_modify() gets confused because it sees a page that isn't
allowed to be non-uptodate being uptodate and tries to prefetch it -
leading to a warning that PG_fscache is set twice.
Fix this by the following means:
(1) Add a netfs_inode flag to disallow write-streaming to an inode and set
it if we ever do local caching of that inode. It remains set for the
lifetime of that inode - even if the cookie becomes disabled.
(2) If the no-write-streaming flag is set, then make netfs_how_to_modify()
always want to prefetch instead.
(3) If netfs_how_to_modify() decides it wants to prefetch a folio, but
that folio has write-streamed data in it, then it requires the folio
be flushed first.
(4) Export a counter of the number of times we wanted to prefetch a
non-uptodate page, but found it had write-streamed data in it.
(5) Export a counter of the number of times we cancelled a write to the
cache because it didn't DIO align and remove the debug statements.
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
cc: linux-erofs@lists.ozlabs.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Track the file position above which the server is not expected to have any
data (the "zero point") and preemptively assume that we can satisfy
requests by filling them with zeroes locally rather than attempting to
download them if they're over that line - even if we've written data back
to the server. Assume that any data that was written back above that
position is held in the local cache. Note that we have to split requests
that straddle the line.
Make use of this to optimise away some reads from the server. We need to
set the zero point in the following circumstances:
(1) When we see an extant remote inode and have no cache for it, we set
the zero_point to i_size.
(2) On local inode creation, we set zero_point to 0.
(3) On local truncation down, we reduce zero_point to the new i_size if
the new i_size is lower.
(4) On local truncation up, we don't change zero_point.
(5) On local modification, we don't change zero_point.
(6) On remote invalidation, we set zero_point to the new i_size.
(7) If stored data is discarded from the pagecache or culled from fscache,
we must set zero_point above that if the data also got written to the
server.
(8) If dirty data is written back to the server, but not fscache, we must
set zero_point above that.
(9) If a direct I/O write is made, set zero_point above that.
Assuming the above, any read from the server at or above the zero_point
position will return all zeroes.
The zero_point value can be stored in the cache, provided the above rules
are applied to it by any code that culls part of the local cache.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Provide a flag whereby a filesystem may request that cifs_perform_write()
perform write-through caching. This involves putting pages directly into
writeback rather than dirty and attaching them to a write operation as we
go.
Further, the writes being made are limited to the byte range being written
rather than whole folios being written. This can be used by cifs, for
example, to deal with strict byte-range locking.
This can't be used with content encryption as that may require expansion of
the write RPC beyond the write being made.
This doesn't affect writes via mmap - those are written back in the normal
way; similarly failed writethrough writes are marked dirty and left to
writeback to retry. Another option would be to simply invalidate them, but
the contents can be simultaneously accessed by read() and through mmap.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org