IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This commit adds the number of online CPUs to the state dump following
an unsuccesful callback-flood test.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Since commit 3a5a6d0c2b03("cpuset: don't nest cgroup_mutex inside
get_online_cpus()"), cpuset hotplug was done asynchronously via a work
function. This is to avoid recursive locking of cgroup_mutex.
Since then, the cgroup locking scheme has changed quite a bit. A
cpuset_mutex was introduced to protect cpuset specific operations.
The cpuset_mutex is then replaced by a cpuset_rwsem. With commit
d74b27d63a ("cgroup/cpuset: Change cpuset_rwsem and hotplug lock
order"), cpu_hotplug_lock is acquired before cpuset_rwsem. Later on,
cpuset_rwsem is reverted back to cpuset_mutex. All these locking changes
allow the hotplug code to call into cpuset core directly.
The following commits were also merged due to the asynchronous nature
of cpuset hotplug processing.
- commit b22afcdf04 ("cpu/hotplug: Cure the cpusets trainwreck")
- commit 50e7663233 ("sched/cpuset/pm: Fix cpuset vs. suspend-resume
bugs")
- commit 28b89b9e6f ("cpuset: handle race between CPU hotplug and
cpuset_hotplug_work")
Clean up all these bandages by making cpuset hotplug
processing synchronous again with the exception that the call to
cgroup_transfer_tasks() to transfer tasks out of an empty cgroup v1
cpuset, if necessary, will still be done via a work function due to the
existing cgroup_mutex -> cpu_hotplug_lock dependency. It is possible
to reverse that dependency, but that will require updating a number of
different cgroup controllers. This special hotplug code path should be
rarely taken anyway.
As all the cpuset states will be updated by the end of the hotplug
operation, we can revert most the above commits except commit
50e7663233 ("sched/cpuset/pm: Fix cpuset vs. suspend-resume bugs")
which is partially reverted. Also removing some cpus_read_lock trylock
attempts in the cpuset partition code as they are no longer necessary
since the cpu_hotplug_lock is now held for the whole duration of the
cpuset hotplug code path.
Signed-off-by: Waiman Long <longman@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Add a function which allows to modify easily the EM after the new voltage
information is available. The device drivers for the chip can adjust
the voltage values after setup. The voltage for the same frequency in OPP
can be different due to chip binning. The voltage impacts the power usage
and the EM power values can be updated to reflect that.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Extract em_table_dup() and em_recalc_and_update() from
em_adjust_new_capacity(). Both functions will be later reused by the
'update EM due to chip binning' functionality.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
s2idle works like a regular suspend with freezing processes and freezing
devices. All CPUs except the control CPU go into idle. Once this is
completed the control CPU kicks all other CPUs out of idle, so that they
reenter the idle loop and then enter s2idle state. The control CPU then
issues an swait() on the suspend state and therefore enters the idle loop
as well.
Due to being kicked out of idle, the other CPUs leave their NOHZ states,
which means the tick is active and the corresponding hrtimer is programmed
to the next jiffie.
On entering s2idle the CPUs shut down their local clockevent device to
prevent wakeups. The last CPU which enters s2idle shuts down its local
clockevent and freezes timekeeping.
On resume, one of the CPUs receives the wakeup interrupt, unfreezes
timekeeping and its local clockevent and starts the resume process. At that
point all other CPUs are still in s2idle with their clockevents switched
off. They only resume when they are kicked by another CPU or after resuming
devices and then receiving a device interrupt.
That means there is no guarantee that all CPUs will wakeup directly on
resume. As a consequence there is no guarantee that timers which are queued
on those CPUs and should expire directly after resume, are handled. Also
timer list timers which are remotely queued to one of those CPUs after
resume will not result in a reprogramming IPI as the tick is
active. Queueing a hrtimer will also not result in a reprogramming IPI
because the first hrtimer event is already in the past.
The recent introduction of the timer pull model (7ee9887703 ("timers:
Implement the hierarchical pull model")) amplifies this problem, if the
current migrator is one of the non woken up CPUs. When a non pinned timer
list timer is queued and the queuing CPU goes idle, it relies on the still
suspended migrator CPU to expire the timer which will happen by chance.
The problem exists since commit 8d89835b04 ("PM: suspend: Do not pause
cpuidle in the suspend-to-idle path"). There the cpuidle_pause() call which
in turn invoked a wakeup for all idle CPUs was moved to a later point in
the resume process. This might not be reached or reached very late because
it waits on a timer of a still suspended CPU.
Address this by kicking all CPUs out of idle after the control CPU returns
from swait() so that they resume their timers and restore consistent system
state.
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218641
Fixes: 8d89835b04 ("PM: suspend: Do not pause cpuidle in the suspend-to-idle path")
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: 5.16+ <stable@kernel.org> # 5.16+
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Kernel timekeeping is designed to keep the change in cycles (since the last
timer interrupt) below max_cycles, which prevents multiplication overflow
when converting cycles to nanoseconds. However, if timer interrupts stop,
the clocksource_cyc2ns() calculation will eventually overflow.
Add protection against that. Simplify by folding together
clocksource_delta() and clocksource_cyc2ns() into cycles_to_nsec_safe().
Check against max_cycles, falling back to a slower higher precision
calculation.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240325064023.2997-20-adrian.hunter@intel.com
Kernel timekeeping is designed to keep the change in cycles (since the last
timer interrupt) below max_cycles, which prevents multiplication overflow
when converting cycles to nanoseconds. However, if timer interrupts stop,
the calculation will eventually overflow.
Add protection against that. In timekeeping_cycles_to_ns() calculation,
check against max_cycles, falling back to a slower higher precision
calculation. In timekeeping_forward_now(), process delta in chunks of at
most max_cycles.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240325064023.2997-18-adrian.hunter@intel.com
It's a bit hard to read the logic since the virq is used before checking it
for 0. Rearrange the code to make it better to understand.
This, in particular, should clearly answer the question whether the caller
needs to perform this check or not, and there are plenty of places for both
variants, confirming a confusion.
Fun fact that the new code is shorter:
Function old new delta
irq_dispose_mapping 278 271 -7
Total: Before=11625, After=11618, chg -0.06%
when compiled by GCC on Debian for x86_64.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240405190105.3932034-1-andriy.shevchenko@linux.intel.com
Pull timer fixes from Ingo Molnar:
"Fix various timer bugs:
- Fix a timer migration bug that may result in missed events
- Fix timer migration group hierarchy event updates
- Fix a PowerPC64 build warning
- Fix a handful of DocBook annotation bugs"
* tag 'timers-urgent-2024-04-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers/migration: Return early on deactivation
timers/migration: Fix ignored event due to missing CPU update
vdso: Use CONFIG_PAGE_SHIFT in vdso/datapage.h
timers: Fix text inconsistencies and spelling
tick/sched: Fix struct tick_sched doc warnings
tick/sched: Fix various kernel-doc warnings
timers: Fix kernel-doc format and add Return values
time/timekeeping: Fix kernel-doc warnings and typos
time/timecounter: Fix inline documentation
Currently, a set of core BPF kfuncs (e.g. bpf_task_*, bpf_cgroup_*,
bpf_cpumask_*, etc) cannot be invoked from BPF_PROG_TYPE_SYSCALL
programs. The whitelist approach taken for enabling kfuncs makes sense:
it not safe to call these kfuncs from every program type. For example,
it may not be safe to call bpf_task_acquire() in an fentry to
free_task().
BPF_PROG_TYPE_SYSCALL, on the other hand, is a perfectly safe program
type from which to invoke these kfuncs, as it's a very controlled
environment, and we should never be able to run into any of the typical
problems such as recursive invoations, acquiring references on freeing
kptrs, etc. Being able to invoke these kfuncs would be useful, as
BPF_PROG_TYPE_SYSCALL can be invoked with BPF_PROG_RUN, and would
therefore enable user space programs to synchronously call into BPF to
manipulate these kptrs.
This patch therefore enables invoking the aforementioned core kfuncs
from BPF_PROG_TYPE_SYSCALL progs.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20240405143041.632519-2-void@manifault.com
Taking different maps within a single bpf_for_each_map_elem call is not
allowed before, because from the second map,
bpf_insn_aux_data->map_ptr_state will be marked as *poison*. In fact
both map_ptr and state are needed to support this use case: map_ptr is
used by set_map_elem_callback_state() while poison state is needed to
determine whether to use direct call.
Signed-off-by: Philo Lu <lulie@linux.alibaba.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240405025536.18113-3-lulie@linux.alibaba.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, bpf_insn_aux_data->map_ptr_state is used to store either
map_ptr or its poison state (i.e., BPF_MAP_PTR_POISON). Thus
BPF_MAP_PTR_POISON must be checked before reading map_ptr. In certain
cases, we may need valid map_ptr even in case of poison state.
This will be explained in next patch with bpf_for_each_map_elem()
helper.
This patch changes map_ptr_state into a new struct including both map
pointer and its state (poison/unpriv). It's in the same union with
struct bpf_loop_inline_state, so there is no extra memory overhead.
Besides, macros BPF_MAP_PTR_UNPRIV/BPF_MAP_PTR_POISON/BPF_MAP_PTR are no
longer needed.
This patch does not change any existing functionality.
Signed-off-by: Philo Lu <lulie@linux.alibaba.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240405025536.18113-2-lulie@linux.alibaba.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The newly added code to handle bpf_get_branch_snapshot fails to link when
CONFIG_PERF_EVENTS is disabled:
aarch64-linux-ld: kernel/bpf/verifier.o: in function `do_misc_fixups':
verifier.c:(.text+0x1090c): undefined reference to `__SCK__perf_snapshot_branch_stack'
Add a build-time check for that Kconfig symbol around the code to
remove the link time dependency.
Fixes: 314a53623c ("bpf: inline bpf_get_branch_snapshot() helper")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20240405142637.577046-1-arnd@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 4b6f4c5a67 ("timer/migration: Remove buggy early return on
deactivation") removed the logic to return early in tmigr_update_events()
on deactivation. With this the problem with a not properly updated first
global event in a hierarchy containing only a single group was fixed.
But when having a look at this code path with a hierarchy with more than a
single level, now unnecessary work is done (example is partially copied
from the message of the commit mentioned above):
[GRP1:0]
migrator = GRP0:0
active = GRP0:0
nextevt = T0:0i, T0:1
/ \
[GRP0:0] [GRP0:1]
migrator = 0 migrator = NONE
active = 0 active = NONE
nextevt = T0i, T1 nextevt = T2
/ \ / \
0 (T0i) 1 (T1) 2 (T2) 3
active idle idle idle
0) CPU 0 is active thus its event is ignored (the letter 'i') and so are
upper levels' events. CPU 1 is idle and has the timer T1 enqueued.
CPU 2 also has a timer. The expiry order is T0 (ignored) < T1 < T2
[GRP1:0]
migrator = GRP0:0
active = GRP0:0
nextevt = T0:0i, T0:1
/ \
[GRP0:0] [GRP0:1]
migrator = NONE migrator = NONE
active = NONE active = NONE
nextevt = T1 nextevt = T2
/ \ / \
0 (T0i) 1 (T1) 2 (T2) 3
idle idle idle idle
1) CPU 0 goes idle without global event queued. Therefore KTIME_MAX is
pushed as its next expiry and its own event kept as "ignore". Without this
early return the following steps happen in tmigr_update_events() when
child = null and group = GRP0:0 :
lock(GRP0:0->lock);
timerqueue_del(GRP0:0, T0i);
unlock(GRP0:0->lock);
[GRP1:0]
migrator = NONE
active = NONE
nextevt = T0:0, T0:1
/ \
[GRP0:0] [GRP0:1]
migrator = NONE migrator = NONE
active = NONE active = NONE
nextevt = T1 nextevt = T2
/ \ / \
0 (T0i) 1 (T1) 2 (T2) 3
idle idle idle idle
2) The change now propagates up to the top. Then tmigr_update_events()
updates the group event of GRP0:0 and executes the following steps
(child = GRP0:0 and group = GRP0:0):
lock(GRP0:0->lock);
lock(GRP1:0->lock);
evt = tmigr_next_groupevt(GRP0:0); -> this removes the ignored events
in GRP0:0
... update GRP1:0 group event and timerqueue ...
unlock(GRP1:0->lock);
unlock(GRP0:0->lock);
So the dance in 1) with locking the GRP0:0->lock and removing the T0i from
the timerqueue is redundand as this is done nevertheless in 2) when
tmigr_next_groupevt(GRP0:0) is executed.
Revert commit 4b6f4c5a67 ("timer/migration: Remove buggy early return on
deactivation") and add a condition into return path to skip the return
only, when hierarchy contains a single group. Adapt comments accordingly.
Fixes: 4b6f4c5a67 ("timer/migration: Remove buggy early return on deactivation")
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87cyr49on2.fsf@somnus
When a group event is updated with its expiry unchanged but a different
CPU, that target change may go unnoticed and the event may be propagated
up with a stale CPU value. The following depicts a scenario that has
been actually observed:
[GRP2:0]
migrator = GRP1:1
active = GRP1:1
nextevt = TGRP1:0 (T0)
/ \
[GRP1:0] [GRP1:1]
migrator = NONE [...]
active = NONE
nextevt = TGRP0:0 (T0)
/ \
[GRP0:0] [...]
migrator = NONE
active = NONE
nextevt = T0
/ \
0 (T0) 1 (T1)
idle idle
0) The hierarchy has 3 levels. The left part (GRP1:0) is all idle,
including CPU 0 and CPU 1 which have a timer each: T0 and T1. They have
the same expiry value.
[GRP2:0]
migrator = GRP1:1
active = GRP1:1
nextevt = KTIME_MAX
/ \
[GRP1:0] [GRP1:1]
migrator = NONE [...]
active = NONE
nextevt = TGRP0:0 (T0)
/ \
[GRP0:0] [...]
migrator = NONE
active = NONE
nextevt = T0
/ \
0 (T0) 1 (T1)
idle idle
1) The migrator in GRP1:1 handles remotely T0. The event is dequeued
from the top and T0 executed.
[GRP2:0]
migrator = GRP1:1
active = GRP1:1
nextevt = KTIME_MAX
/ \
[GRP1:0] [GRP1:1]
migrator = NONE [...]
active = NONE
nextevt = TGRP0:0 (T0)
/ \
[GRP0:0] [...]
migrator = NONE
active = NONE
nextevt = T1
/ \
0 1 (T1)
idle idle
2) The migrator in GRP1:1 fetches the next timer for CPU 0 and finds
none. But it updates the events from its groups, starting with GRP0:0
which now has T1 as its next event. So far so good.
[GRP2:0]
migrator = GRP1:1
active = GRP1:1
nextevt = KTIME_MAX
/ \
[GRP1:0] [GRP1:1]
migrator = NONE [...]
active = NONE
nextevt = TGRP0:0 (T0)
/ \
[GRP0:0] [...]
migrator = NONE
active = NONE
nextevt = T1
/ \
0 1 (T1)
idle idle
3) The migrator in GRP1:1 proceeds upward and updates the events in
GRP1:0. The child event TGRP0:0 is found queued with the same expiry
as before. And therefore it is left unchanged. However the target CPU
is not the same but that fact is ignored so TGRP0:0 still points to
CPU 0 when it should point to CPU 1.
[GRP2:0]
migrator = GRP1:1
active = GRP1:1
nextevt = TGRP1:0 (T0)
/ \
[GRP1:0] [GRP1:1]
migrator = NONE [...]
active = NONE
nextevt = TGRP0:0 (T0)
/ \
[GRP0:0] [...]
migrator = NONE
active = NONE
nextevt = T1
/ \
0 1 (T1)
idle idle
4) The propagation has reached the top level and TGRP1:0, having TGRP0:0
as its first event, also wrongly points to CPU 0. TGRP1:0 is added to
the top level group.
[GRP2:0]
migrator = GRP1:1
active = GRP1:1
nextevt = KTIME_MAX
/ \
[GRP1:0] [GRP1:1]
migrator = NONE [...]
active = NONE
nextevt = TGRP0:0 (T0)
/ \
[GRP0:0] [...]
migrator = NONE
active = NONE
nextevt = T1
/ \
0 1 (T1)
idle idle
5) The migrator in GRP1:1 dequeues the next event in top level pointing
to CPU 0. But since it actually doesn't see any real event in CPU 0, it
early returns.
6) T1 is left unhandled until either CPU 0 or CPU 1 wake up.
Some other bad scenario may involve trees with just two levels.
Fix this with unconditionally updating the CPU of the child event before
considering to early return while updating a queued event with an
unchanged expiry value.
Fixes: 7ee9887703 ("timers: Implement the hierarchical pull model")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/Zg2Ct6M2RJAYHgCB@localhost.localdomain
r10 is a special register that is not under BPF program's control and is
always effectively precise. The rest of precision logic assumes that
only r0-r9 SCALAR registers are marked as precise, so prevent r10 from
being marked precise.
This can happen due to signed cast instruction allowing to do something
like `r0 = (s8)r10;`, which later, if r0 needs to be precise, would lead
to an attempt to mark r10 as precise.
Prevent this with an extra check during instruction backtracking.
Fixes: 8100928c88 ("bpf: Support new sign-extension mov insns")
Reported-by: syzbot+148110ee7cf72f39f33e@syzkaller.appspotmail.com
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240404214536.3551295-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pull networking fixes from Jakub Kicinski:
"Including fixes from netfilter, bluetooth and bpf.
Fairly usual collection of driver and core fixes. The large selftest
accompanying one of the fixes is also becoming a common occurrence.
Current release - regressions:
- ipv6: fix infinite recursion in fib6_dump_done()
- net/rds: fix possible null-deref in newly added error path
Current release - new code bugs:
- net: do not consume a full cacheline for system_page_pool
- bpf: fix bpf_arena-related file descriptor leaks in the verifier
- drv: ice: fix freeing uninitialized pointers, fixing misuse of the
newfangled __free() auto-cleanup
Previous releases - regressions:
- x86/bpf: fixes the BPF JIT with retbleed=stuff
- xen-netfront: add missing skb_mark_for_recycle, fix page pool
accounting leaks, revealed by recently added explicit warning
- tcp: fix bind() regression for v6-only wildcard and v4-mapped-v6
non-wildcard addresses
- Bluetooth:
- replace "hci_qca: Set BDA quirk bit if fwnode exists in DT" with
better workarounds to un-break some buggy Qualcomm devices
- set conn encrypted before conn establishes, fix re-connecting to
some headsets which use slightly unusual sequence of msgs
- mptcp:
- prevent BPF accessing lowat from a subflow socket
- don't account accept() of non-MPC client as fallback to TCP
- drv: mana: fix Rx DMA datasize and skb_over_panic
- drv: i40e: fix VF MAC filter removal
Previous releases - always broken:
- gro: various fixes related to UDP tunnels - netns crossing
problems, incorrect checksum conversions, and incorrect packet
transformations which may lead to panics
- bpf: support deferring bpf_link dealloc to after RCU grace period
- nf_tables:
- release batch on table validation from abort path
- release mutex after nft_gc_seq_end from abort path
- flush pending destroy work before exit_net release
- drv: r8169: skip DASH fw status checks when DASH is disabled"
* tag 'net-6.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (81 commits)
netfilter: validate user input for expected length
net/sched: act_skbmod: prevent kernel-infoleak
net: usb: ax88179_178a: avoid the interface always configured as random address
net: dsa: sja1105: Fix parameters order in sja1110_pcs_mdio_write_c45()
net: ravb: Always update error counters
net: ravb: Always process TX descriptor ring
netfilter: nf_tables: discard table flag update with pending basechain deletion
netfilter: nf_tables: Fix potential data-race in __nft_flowtable_type_get()
netfilter: nf_tables: reject new basechain after table flag update
netfilter: nf_tables: flush pending destroy work before exit_net release
netfilter: nf_tables: release mutex after nft_gc_seq_end from abort path
netfilter: nf_tables: release batch on table validation from abort path
Revert "tg3: Remove residual error handling in tg3_suspend"
tg3: Remove residual error handling in tg3_suspend
net: mana: Fix Rx DMA datasize and skb_over_panic
net/sched: fix lockdep splat in qdisc_tree_reduce_backlog()
net: phy: micrel: lan8814: Fix when enabling/disabling 1-step timestamping
net: stmmac: fix rx queue priority assignment
net: txgbe: fix i2c dev name cannot match clkdev
net: fec: Set mac_managed_pm during probe
...
Inline bpf_get_branch_snapshot() helper using architecture-agnostic
inline BPF code which calls directly into underlying callback of
perf_snapshot_branch_stack static call. This callback is set early
during kernel initialization and is never updated or reset, so it's ok
to fetch actual implementation using static_call_query() and call
directly into it.
This change eliminates a full function call and saves one LBR entry
in PERF_SAMPLE_BRANCH_ANY LBR mode.
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240404002640.1774210-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Using new per-CPU BPF instruction, partially inline
bpf_map_lookup_elem() helper for per-CPU hashmap BPF map. Just like for
normal HASH map, we still generate a call into __htab_map_lookup_elem(),
but after that we resolve per-CPU element address using a new
instruction, saving on extra functions calls.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/20240402021307.1012571-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add a new BPF instruction for resolving absolute addresses of per-CPU
data from their per-CPU offsets. This instruction is internal-only and
users are not allowed to use them directly. They will only be used for
internal inlining optimizations for now between BPF verifier and BPF JITs.
We use a special BPF_MOV | BPF_ALU64 | BPF_X form with insn->off field
set to BPF_ADDR_PERCPU = -1. I used negative offset value to distinguish
them from positive ones used by user-exposed instructions.
Such instruction performs a resolution of a per-CPU offset stored in
a register to a valid kernel address which can be dereferenced. It is
useful in any use case where absolute address of a per-CPU data has to
be resolved (e.g., in inlining bpf_map_lookup_elem()).
BPF disassembler is also taught to recognize them to support dumping
final BPF assembly code (non-JIT'ed version).
Add arch-specific way for BPF JITs to mark support for this instructions.
This patch also adds support for these instructions in x86-64 BPF JIT.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/20240402021307.1012571-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
strncpy() is deprecated for use on NUL-terminated destination strings
[1] and as such we should prefer more robust and less ambiguous string
interfaces.
bpf sym names get looked up and compared/cleaned with various string
apis. This suggests they need to be NUL-terminated (strncpy() suggests
this but does not guarantee it).
| static int compare_symbol_name(const char *name, char *namebuf)
| {
| cleanup_symbol_name(namebuf);
| return strcmp(name, namebuf);
| }
| static void cleanup_symbol_name(char *s)
| {
| ...
| res = strstr(s, ".llvm.");
| ...
| }
Use strscpy() as this method guarantees NUL-termination on the
destination buffer.
This patch also replaces two uses of strncpy() used in log.c. These are
simple replacements as postfix has been zero-initialized on the stack
and has source arguments with a size less than the destination's size.
Note that this patch uses the new 2-argument version of strscpy
introduced in commit e6584c3964 ("string: Allow 2-argument strscpy()").
Signed-off-by: Justin Stitt <justinstitt@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1]
Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2]
Link: https://github.com/KSPP/linux/issues/90
Link: https://lore.kernel.org/bpf/20240402-strncpy-kernel-bpf-core-c-v1-1-7cb07a426e78@google.com
Sometimes the readout of /sys/kernel/debug/swiotlb/io_tlb_used and
io_tlb_used_hiwater can be a huge number (e.g. 18446744073709551615),
which is actually a negative number if we use "%ld" to print the number.
When swiotlb_create_default_debugfs() is running from late_initcall,
mem->total_used may already be non-zero, because the storage driver
may have already started to perform I/O operations: if the storage
driver is built-in, its probe() callback is called before late_initcall.
swiotlb_create_debugfs_files() should not blindly set mem->total_used
and mem->used_hiwater to 0; actually it doesn't have to initialize the
fields at all, because the fields, as part of the global struct
io_tlb_default_mem, have been implicitly initialized to zero.
Also don't explicitly set mem->transient_nslabs to 0.
Fixes: 8b0977ecc8 ("swiotlb: track and report io_tlb_used high water marks in debugfs")
Fixes: 02e7656970 ("swiotlb: add debugfs to track swiotlb transient pool usage")
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
In current code, swiotlb_bounce() may do partial sync's correctly in
some circumstances, but may incorrectly fail in other circumstances.
The failure cases require both of these to be true:
1) swiotlb_align_offset() returns a non-zero "offset" value
2) the tlb_addr of the partial sync area points into the first
"offset" bytes of the _second_ or subsequent swiotlb slot allocated
for the mapping
Code added in commit 868c9ddc18 ("swiotlb: add overflow checks
to swiotlb_bounce") attempts to WARN on the invalid case where
tlb_addr points into the first "offset" bytes of the _first_
allocated slot. But there's no way for swiotlb_bounce() to distinguish
the first slot from the second and subsequent slots, so the WARN
can be triggered incorrectly when #2 above is true.
Related, current code calculates an adjustment to the orig_addr stored
in the swiotlb slot. The adjustment compensates for the difference
in the tlb_addr used for the partial sync vs. the tlb_addr for the full
mapping. The adjustment is stored in the local variable tlb_offset.
But when #1 and #2 above are true, it's valid for this adjustment to
be negative. In such case the arithmetic to adjust orig_addr produces
the wrong result due to tlb_offset being declared as unsigned.
Fix these problems by removing the over-constraining validations added
in 868c9ddc18. Change the declaration of tlb_offset to be signed
instead of unsigned so the adjustment arithmetic works correctly.
Tested with a test-only hack to how swiotlb_tbl_map_single() calls
swiotlb_bounce(). Instead of calling swiotlb_bounce() just once
for the entire mapped area, do a loop with each iteration doing
only a 128 byte partial sync until the entire mapped area is
sync'ed. Then with swiotlb=force on the kernel boot line, run a
variety of raw disk writes followed by read and verification of
all bytes of the written data. The storage device has DMA
min_align_mask set, and the writes are done with a variety of
original buffer memory address alignments and overall buffer
sizes. For many of the combinations, current code triggers the
WARN statements, or the data verification fails. With the fixes,
no WARNs occur and all verifications pass.
Fixes: 5f89468e2f ("swiotlb: manipulate orig_addr when tlb_addr has offset")
Fixes: 868c9ddc18 ("swiotlb: add overflow checks to swiotlb_bounce")
Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Dominique Martinet <dominique.martinet@atmark-techno.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Allow a buffer pre-padding of up to alloc_align_mask, even if it requires
allocating additional IO TLB slots.
If the allocation alignment is bigger than IO_TLB_SIZE and min_align_mask
covers any non-zero bits in the original address between IO_TLB_SIZE and
alloc_align_mask, these bits are not preserved in the swiotlb buffer
address.
To fix this case, increase the allocation size and use a larger offset
within the allocated buffer. As a result, extra padding slots may be
allocated before the mapping start address.
Leave orig_addr in these padding slots initialized to INVALID_PHYS_ADDR.
These slots do not correspond to any CPU buffer, so attempts to sync the
data should be ignored.
The padding slots should be automatically released when the buffer is
unmapped. However, swiotlb_tbl_unmap_single() takes only the address of the
DMA buffer slot, not the first padding slot. Save the number of padding
slots in struct io_tlb_slot and use it to adjust the slot index in
swiotlb_release_slots(), so all allocated slots are properly freed.
Fixes: 2fd4fa5d3fb5 ("swiotlb: Fix alignment checks when both allocation and DMA masks are present")
Link: https://lore.kernel.org/linux-iommu/20240311210507.217daf8b@meshulam.tesarici.cz/
Signed-off-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
This patch improves the run-time calculation for program stats by
capturing the duration as soon as possible after the program returns.
Previously, the duration included u64_stats_t operations. While the
instrumentation overhead is part of the total time spent when stats are
enabled, distinguishing between the program's native execution time and
the time spent due to instrumentation is crucial for accurate
performance analysis.
By making this change, the patch facilitates more precise optimization
of BPF programs, enabling users to understand their performance in
environments without stats enabled.
I used a virtualized environment to measure the run-time over one minute
for a basic raw_tracepoint/sys_enter program, which just increments a
local counter. Although the virtualization introduced some performance
degradation that could affect the results, I observed approximately a
16% decrease in average run-time reported by stats with this change
(310 -> 260 nsec).
Signed-off-by: Jose Fernandez <josef@netflix.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240402034010.25060-1-josef@netflix.com
Avoid open-coding that simple expression each time by moving
BYTES_TO_BITS() from the probes code to <linux/bitops.h> to export
it to the rest of the kernel.
Simplify the macro while at it. `BITS_PER_LONG / sizeof(long)` always
equals to %BITS_PER_BYTE, regardless of the target architecture.
Do the same for the tools ecosystem as well (incl. its version of
bitops.h). The previous implementation had its implicit type of long,
while the new one is int, so adjust the format literal accordingly in
the perf code.
Suggested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Acked-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>