IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Pull user namespace enhancements from Eric Biederman:
"This is a course correction for the user namespace, so that we can
reach an inexpensive, maintainable, and reasonably complete
implementation.
Highlights:
- Config guards make it impossible to enable the user namespace and
code that has not been converted to be user namespace safe.
- Use of the new kuid_t type ensures the if you somehow get past the
config guards the kernel will encounter type errors if you enable
user namespaces and attempt to compile in code whose permission
checks have not been updated to be user namespace safe.
- All uids from child user namespaces are mapped into the initial
user namespace before they are processed. Removing the need to add
an additional check to see if the user namespace of the compared
uids remains the same.
- With the user namespaces compiled out the performance is as good or
better than it is today.
- For most operations absolutely nothing changes performance or
operationally with the user namespace enabled.
- The worst case performance I could come up with was timing 1
billion cache cold stat operations with the user namespace code
enabled. This went from 156s to 164s on my laptop (or 156ns to
164ns per stat operation).
- (uid_t)-1 and (gid_t)-1 are reserved as an internal error value.
Most uid/gid setting system calls treat these value specially
anyway so attempting to use -1 as a uid would likely cause
entertaining failures in userspace.
- If setuid is called with a uid that can not be mapped setuid fails.
I have looked at sendmail, login, ssh and every other program I
could think of that would call setuid and they all check for and
handle the case where setuid fails.
- If stat or a similar system call is called from a context in which
we can not map a uid we lie and return overflowuid. The LFS
experience suggests not lying and returning an error code might be
better, but the historical precedent with uids is different and I
can not think of anything that would break by lying about a uid we
can't map.
- Capabilities are localized to the current user namespace making it
safe to give the initial user in a user namespace all capabilities.
My git tree covers all of the modifications needed to convert the core
kernel and enough changes to make a system bootable to runlevel 1."
Fix up trivial conflicts due to nearby independent changes in fs/stat.c
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
userns: Silence silly gcc warning.
cred: use correct cred accessor with regards to rcu read lock
userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq
userns: Convert cgroup permission checks to use uid_eq
userns: Convert tmpfs to use kuid and kgid where appropriate
userns: Convert sysfs to use kgid/kuid where appropriate
userns: Convert sysctl permission checks to use kuid and kgids.
userns: Convert proc to use kuid/kgid where appropriate
userns: Convert ext4 to user kuid/kgid where appropriate
userns: Convert ext3 to use kuid/kgid where appropriate
userns: Convert ext2 to use kuid/kgid where appropriate.
userns: Convert devpts to use kuid/kgid where appropriate
userns: Convert binary formats to use kuid/kgid where appropriate
userns: Add negative depends on entries to avoid building code that is userns unsafe
userns: signal remove unnecessary map_cred_ns
userns: Teach inode_capable to understand inodes whose uids map to other namespaces.
userns: Fail exec for suid and sgid binaries with ids outside our user namespace.
userns: Convert stat to return values mapped from kuids and kgids
userns: Convert user specfied uids and gids in chown into kuids and kgid
userns: Use uid_eq gid_eq helpers when comparing kuids and kgids in the vfs
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQEcBAABAgAGBQJPnb50AAoJEHm+PkMAQRiGAE0H/A4zFZIUGmF3miKPDYmejmrZ
oVDYxVAu6JHjHWhu8E3VsinvyVscowjV8dr15eSaQzmDmRkSHAnUQ+dB7Di7jLC2
MNopxsWjwyZ8zvvr3rFR76kjbWKk/1GYytnf7GPZLbJQzd51om2V/TY/6qkwiDSX
U8Tt7ihSgHAezefqEmWp2X/1pxDCEt+VFyn9vWpkhgdfM1iuzF39MbxSZAgqDQ/9
JJrBHFXhArqJguhENwL7OdDzkYqkdzlGtS0xgeY7qio2CzSXxZXK4svT6FFGA8Za
xlAaIvzslDniv3vR2ZKd6wzUwFHuynX222hNim3QMaYdXm012M+Nn1ufKYGFxI0=
=4d4w
-----END PGP SIGNATURE-----
Merge tag 'v3.4-rc5' into next
Linux 3.4-rc5
Merge to pull in prerequisite change for Smack:
86812bb0de
Requested by Casey.
- Use uid_eq when comparing kuids
Use gid_eq when comparing kgids
- Use make_kuid(user_ns, 0) to talk about the user_namespace root uid
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
cred.h and a few trivial users of struct cred are changed. The rest of the users
of struct cred are left for other patches as there are too many changes to make
in one go and leave the change reviewable. If the user namespace is disabled and
CONFIG_UIDGID_STRICT_TYPE_CHECKS are disabled the code will contiue to compile
and behave correctly.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
- Transform userns->creator from a user_struct reference to a simple
kuid_t, kgid_t pair.
In cap_capable this allows the check to see if we are the creator of
a namespace to become the classic suser style euid permission check.
This allows us to remove the need for a struct cred in the mapping
functions and still be able to dispaly the user namespace creators
uid and gid as 0.
- Remove the now unnecessary delayed_work in free_user_ns.
All that is left for free_user_ns to do is to call kmem_cache_free
and put_user_ns. Those functions can be called in any context
so call them directly from free_user_ns removing the need for delayed work.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Add missing "personality.h"
security/commoncap.c: In function 'cap_bprm_set_creds':
security/commoncap.c:510: error: 'PER_CLEAR_ON_SETID' undeclared (first use in this function)
security/commoncap.c:510: error: (Each undeclared identifier is reported only once
security/commoncap.c:510: error: for each function it appears in.)
Signed-off-by: Jonghwan Choi <jhbird.choi@samsung.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
If a process increases permissions using fcaps all of the dangerous
personality flags which are cleared for suid apps should also be cleared.
Thus programs given priviledge with fcaps will continue to have address space
randomization enabled even if the parent tried to disable it to make it
easier to attack.
Signed-off-by: Eric Paris <eparis@redhat.com>
Reviewed-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
With this change, calling
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)
disables privilege granting operations at execve-time. For example, a
process will not be able to execute a setuid binary to change their uid
or gid if this bit is set. The same is true for file capabilities.
Additionally, LSM_UNSAFE_NO_NEW_PRIVS is defined to ensure that
LSMs respect the requested behavior.
To determine if the NO_NEW_PRIVS bit is set, a task may call
prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0);
It returns 1 if set and 0 if it is not set. If any of the arguments are
non-zero, it will return -1 and set errno to -EINVAL.
(PR_SET_NO_NEW_PRIVS behaves similarly.)
This functionality is desired for the proposed seccomp filter patch
series. By using PR_SET_NO_NEW_PRIVS, it allows a task to modify the
system call behavior for itself and its child tasks without being
able to impact the behavior of a more privileged task.
Another potential use is making certain privileged operations
unprivileged. For example, chroot may be considered "safe" if it cannot
affect privileged tasks.
Note, this patch causes execve to fail when PR_SET_NO_NEW_PRIVS is
set and AppArmor is in use. It is fixed in a subsequent patch.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Will Drewry <wad@chromium.org>
Acked-by: Eric Paris <eparis@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
v18: updated change desc
v17: using new define values as per 3.4
Signed-off-by: James Morris <james.l.morris@oracle.com>
I am about to remove the struct user_namespace reference from struct user_struct.
So keep an explicit track of the parent user namespace.
Take advantage of this new reference and replace instances of user_ns->creator->user_ns
with user_ns->parent.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Optimize performance and prepare for the removal of the user_ns reference
from user_struct. Remove the slow long walk through cred->user->user_ns and
instead go straight to cred->user_ns.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
* 'for-linus' of git://selinuxproject.org/~jmorris/linux-security:
capabilities: remove __cap_full_set definition
security: remove the security_netlink_recv hook as it is equivalent to capable()
ptrace: do not audit capability check when outputing /proc/pid/stat
capabilities: remove task_ns_* functions
capabitlies: ns_capable can use the cap helpers rather than lsm call
capabilities: style only - move capable below ns_capable
capabilites: introduce new has_ns_capabilities_noaudit
capabilities: call has_ns_capability from has_capability
capabilities: remove all _real_ interfaces
capabilities: introduce security_capable_noaudit
capabilities: reverse arguments to security_capable
capabilities: remove the task from capable LSM hook entirely
selinux: sparse fix: fix several warnings in the security server cod
selinux: sparse fix: fix warnings in netlink code
selinux: sparse fix: eliminate warnings for selinuxfs
selinux: sparse fix: declare selinux_disable() in security.h
selinux: sparse fix: move selinux_complete_init
selinux: sparse fix: make selinux_secmark_refcount static
SELinux: Fix RCU deref check warning in sel_netport_insert()
Manually fix up a semantic mis-merge wrt security_netlink_recv():
- the interface was removed in commit fd77846152 ("security: remove
the security_netlink_recv hook as it is equivalent to capable()")
- a new user of it appeared in commit a38f7907b9 ("crypto: Add
userspace configuration API")
causing no automatic merge conflict, but Eric Paris pointed out the
issue.
Once upon a time netlink was not sync and we had to get the effective
capabilities from the skb that was being received. Today we instead get
the capabilities from the current task. This has rendered the entire
purpose of the hook moot as it is now functionally equivalent to the
capable() call.
Signed-off-by: Eric Paris <eparis@redhat.com>
The capabilities framework is based around credentials, not necessarily the
current task. Yet we still passed the current task down into LSMs from the
security_capable() LSM hook as if it was a meaningful portion of the security
decision. This patch removes the 'generic' passing of current and instead
forces individual LSMs to use current explicitly if they think it is
appropriate. In our case those LSMs are SELinux and AppArmor.
I believe the AppArmor use of current is incorrect, but that is wholely
unrelated to this patch. This patch does not change what AppArmor does, it
just makes it clear in the AppArmor code that it is doing it.
The SELinux code still uses current in it's audit message, which may also be
wrong and needs further investigation. Again this is NOT a change, it may
have always been wrong, this patch just makes it clear what is happening.
Signed-off-by: Eric Paris <eparis@redhat.com>
Initialize has_cap in cap_bprm_set_creds()
Reported-by: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: James Morris <jmorris@namei.org>
A task (when !SECURE_NOROOT) which executes a setuid-root binary will
obtain root privileges while executing that binary. If the binary also
has effective capabilities set, then only those capabilities will be
granted. The rationale is that the same binary can carry both setuid-root
and the minimal file capability set, so that on a filesystem not
supporting file caps the binary can still be executed with privilege,
while on a filesystem supporting file caps it will run with minimal
privilege.
This special case currently does NOT happen if there are file capabilities
but no effective capabilities. Since capability-aware programs can very
well start with empty pE but populated pP and move those caps to pE when
needed. In other words, if the file has file capabilities but NOT
effective capabilities, then we should do the same thing as if there
were file capabilities, and not grant full root privileges.
This patchset does that.
(Changelog by Serge Hallyn).
Signed-off-by: Zhi Li <lizhi1215@gmail.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: James Morris <jmorris@namei.org>
When the global init task is exec'd we have special case logic to make sure
the pE is not reduced. There is no reason for this. If init wants to drop
it's pE is should be allowed to do so. Remove this special logic.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
ptrace is allowed to tasks in the same user namespace according to the
usual rules (i.e. the same rules as for two tasks in the init user
namespace). ptrace is also allowed to a user namespace to which the
current task the has CAP_SYS_PTRACE capability.
Changelog:
Dec 31: Address feedback by Eric:
. Correct ptrace uid check
. Rename may_ptrace_ns to ptrace_capable
. Also fix the cap_ptrace checks.
Jan 1: Use const cred struct
Jan 11: use task_ns_capable() in place of ptrace_capable().
Feb 23: same_or_ancestore_user_ns() was not an appropriate
check to constrain cap_issubset. Rather, cap_issubset()
only is meaningful when both capsets are in the same
user_ns.
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Introduce ns_capable to test for a capability in a non-default
user namespace.
- Teach cap_capable to handle capabilities in a non-default
user namespace.
The motivation is to get to the unprivileged creation of new
namespaces. It looks like this gets us 90% of the way there, with
only potential uid confusion issues left.
I still need to handle getting all caps after creation but otherwise I
think I have a good starter patch that achieves all of your goals.
Changelog:
11/05/2010: [serge] add apparmor
12/14/2010: [serge] fix capabilities to created user namespaces
Without this, if user serge creates a user_ns, he won't have
capabilities to the user_ns he created. THis is because we
were first checking whether his effective caps had the caps
he needed and returning -EPERM if not, and THEN checking whether
he was the creator. Reverse those checks.
12/16/2010: [serge] security_real_capable needs ns argument in !security case
01/11/2011: [serge] add task_ns_capable helper
01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion
02/16/2011: [serge] fix a logic bug: the root user is always creator of
init_user_ns, but should not always have capabilities to
it! Fix the check in cap_capable().
02/21/2011: Add the required user_ns parameter to security_capable,
fixing a compile failure.
02/23/2011: Convert some macros to functions as per akpm comments. Some
couldn't be converted because we can't easily forward-declare
them (they are inline if !SECURITY, extern if SECURITY). Add
a current_user_ns function so we can use it in capability.h
without #including cred.h. Move all forward declarations
together to the top of the #ifdef __KERNEL__ section, and use
kernel-doc format.
02/23/2011: Per dhowells, clean up comment in cap_capable().
02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable.
(Original written and signed off by Eric; latest, modified version
acked by him)
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: export current_user_ns() for ecryptfs]
[serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6: (1480 commits)
bonding: enable netpoll without checking link status
xfrm: Refcount destination entry on xfrm_lookup
net: introduce rx_handler results and logic around that
bonding: get rid of IFF_SLAVE_INACTIVE netdev->priv_flag
bonding: wrap slave state work
net: get rid of multiple bond-related netdevice->priv_flags
bonding: register slave pointer for rx_handler
be2net: Bump up the version number
be2net: Copyright notice change. Update to Emulex instead of ServerEngines
e1000e: fix kconfig for crc32 dependency
netfilter ebtables: fix xt_AUDIT to work with ebtables
xen network backend driver
bonding: Improve syslog message at device creation time
bonding: Call netif_carrier_off after register_netdevice
bonding: Incorrect TX queue offset
net_sched: fix ip_tos2prio
xfrm: fix __xfrm_route_forward()
be2net: Fix UDP packet detected status in RX compl
Phonet: fix aligned-mode pipe socket buffer header reserve
netxen: support for GbE port settings
...
Fix up conflicts in drivers/staging/brcm80211/brcmsmac/wl_mac80211.c
with the staging updates.
Netlink message processing in the kernel is synchronous these days,
capabilities can be checked directly in security_netlink_recv() from
the current process.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Reviewed-by: James Morris <jmorris@namei.org>
[chrisw: update to include pohmelfs and uvesafb]
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Both settimeofday() and clock_settime() promise with a 'const'
attribute not to alter the arguments passed in. This patch adds the
missing 'const' attribute into the various kernel functions
implementing these calls.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134417.545698637@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The addition of CONFIG_SECURITY_DMESG_RESTRICT resulted in a build
failure when CONFIG_PRINTK=n. This is because the capabilities code
which used the new option was built even though the variable in question
didn't exist.
The patch here fixes this by moving the capabilities checks out of the
LSM and into the caller. All (known) LSMs should have been calling the
capabilities hook already so it actually makes the code organization
better to eliminate the hook altogether.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel syslog contains debugging information that is often useful
during exploitation of other vulnerabilities, such as kernel heap
addresses. Rather than futilely attempt to sanitize hundreds (or
thousands) of printk statements and simultaneously cripple useful
debugging functionality, it is far simpler to create an option that
prevents unprivileged users from reading the syslog.
This patch, loosely based on grsecurity's GRKERNSEC_DMESG, creates the
dmesg_restrict sysctl. When set to "0", the default, no restrictions are
enforced. When set to "1", only users with CAP_SYS_ADMIN can read the
kernel syslog via dmesg(8) or other mechanisms.
[akpm@linux-foundation.org: explain the config option in kernel.txt]
Signed-off-by: Dan Rosenberg <drosenberg@vsecurity.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Eugene Teo <eugeneteo@kernel.org>
Acked-by: Kees Cook <kees.cook@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All security modules shouldn't change sched_param parameter of
security_task_setscheduler(). This is not only meaningless, but also
make a harmful result if caller pass a static variable.
This patch remove policy and sched_param parameter from
security_task_setscheduler() becuase none of security module is
using it.
Cc: James Morris <jmorris@namei.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: James Morris <jmorris@namei.org>
Make do_execve() take a const filename pointer so that kernel_execve() compiles
correctly on ARM:
arch/arm/kernel/sys_arm.c:88: warning: passing argument 1 of 'do_execve' discards qualifiers from pointer target type
This also requires the argv and envp arguments to be consted twice, once for
the pointer array and once for the strings the array points to. This is
because do_execve() passes a pointer to the filename (now const) to
copy_strings_kernel(). A simpler alternative would be to cast the filename
pointer in do_execve() when it's passed to copy_strings_kernel().
do_execve() may not change any of the strings it is passed as part of the argv
or envp lists as they are some of them in .rodata, so marking these strings as
const should be fine.
Further kernel_execve() and sys_execve() need to be changed to match.
This has been test built on x86_64, frv, arm and mips.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the comment of cap_file_mmap(), replace mmap_min_addr to be dac_mmap_min_addr.
Signed-off-by: Zhitong Wang <zhitong.wangzt@alibaba-inc.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Drop my typoed comment as it is both unhelpful and redundant.
Signed-off-by: Kees Cook <kees.cook@canonical.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Right now the syslog "type" action are just raw numbers which makes
the source difficult to follow. This patch replaces the raw numbers
with defined constants for some level of sanity.
Signed-off-by: Kees Cook <kees.cook@canonical.com>
Acked-by: John Johansen <john.johansen@canonical.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
This allows the LSM to distinguish between syslog functions originating
from /proc/kmsg access and direct syscalls. By default, the commoncaps
will now no longer require CAP_SYS_ADMIN to read an opened /proc/kmsg
file descriptor. For example the kernel syslog reader can now drop
privileges after opening /proc/kmsg, instead of staying privileged with
CAP_SYS_ADMIN. MAC systems that implement security_syslog have unchanged
behavior.
Signed-off-by: Kees Cook <kees.cook@canonical.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: James Morris <jmorris@namei.org>
As far as I know, all distros currently ship kernels with default
CONFIG_SECURITY_FILE_CAPABILITIES=y. Since having the option on
leaves a 'no_file_caps' option to boot without file capabilities,
the main reason to keep the option is that turning it off saves
you (on my s390x partition) 5k. In particular, vmlinux sizes
came to:
without patch fscaps=n: 53598392
without patch fscaps=y: 53603406
with this patch applied: 53603342
with the security-next tree.
Against this we must weigh the fact that there is no simple way for
userspace to figure out whether file capabilities are supported,
while things like per-process securebits, capability bounding
sets, and adding bits to pI if CAP_SETPCAP is in pE are not supported
with SECURITY_FILE_CAPABILITIES=n, leaving a bit of a problem for
applications wanting to know whether they can use them and/or why
something failed.
It also adds another subtly different set of semantics which we must
maintain at the risk of severe security regressions.
So this patch removes the SECURITY_FILE_CAPABILITIES compile
option. It drops the kernel size by about 50k over the stock
SECURITY_FILE_CAPABILITIES=y kernel, by removing the
cap_limit_ptraced_target() function.
Changelog:
Nov 20: remove cap_limit_ptraced_target() as it's logic
was ifndef'ed.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Andrew G. Morgan" <morgan@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
Remove the root_plug example LSM code. It's unmaintained and
increasingly broken in various ways.
Made at the 2009 Kernel Summit in Tokyo!
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: James Morris <jmorris@namei.org>
Currently SELinux enforcement of controls on the ability to map low memory
is determined by the mmap_min_addr tunable. This patch causes SELinux to
ignore the tunable and instead use a seperate Kconfig option specific to how
much space the LSM should protect.
The tunable will now only control the need for CAP_SYS_RAWIO and SELinux
permissions will always protect the amount of low memory designated by
CONFIG_LSM_MMAP_MIN_ADDR.
This allows users who need to disable the mmap_min_addr controls (usual reason
being they run WINE as a non-root user) to do so and still have SELinux
controls preventing confined domains (like a web server) from being able to
map some area of low memory.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Currently we duplicate the mmap_min_addr test in cap_file_mmap and in
security_file_mmap if !CONFIG_SECURITY. This patch moves cap_file_mmap
into commoncap.c and then calls that function directly from
security_file_mmap ifndef CONFIG_SECURITY like all of the other capability
checks are done.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
The ->ptrace_may_access() methods are named confusingly - the real
ptrace_may_access() returns a bool, while these security checks have
a retval convention.
Rename it to ptrace_access_check, to reduce the confusion factor.
[ Impact: cleanup, no code changed ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: James Morris <jmorris@namei.org>
One-liner: capsh --print is broken without this patch.
In certain cases, cap_prctl returns error > 0 for success. However,
the 'no_change' label was always setting error to 0. As a result,
for example, 'prctl(CAP_BSET_READ, N)' would always return 0.
It should return 1 if a process has N in its bounding set (as
by default it does).
I'm keeping the no_change label even though it's now functionally
the same as 'error'.
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Distributions face a backward compatibility problem with starting to use
file capabilities. For instance, removing setuid root from ping and
doing setcap cap_net_raw=pe means that booting with an older kernel
or one compiled without file capabilities means ping won't work for
non-root users.
In order to replace the setuid root bit on a capability-unaware
program, one has to set the effective, or legacy, file capability,
which makes the capability effective immediately. This patch
uses the legacy bit as a queue to not automatically add full
privilege to a setuid-root program.
So, with this patch, an ordinary setuid-root program will run with
privilege. But if /bin/ping has both setuid-root and cap_net_raw in
fP and fE, then ping (when run by non-root user) will not run
with only cap_net_raw.
Changelog:
Apr 2 2009: Print a message once when such a binary is loaded,
as per James Morris' suggestion.
Apr 2 2009: Fix the condition to only catch uid!=0 && euid==0.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: James Morris <jmorris@namei.org>
Fix a regression in cap_capable() due to:
commit 3b11a1dece
Author: David Howells <dhowells@redhat.com>
Date: Fri Nov 14 10:39:26 2008 +1100
CRED: Differentiate objective and effective subjective credentials on a task
The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.
There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.
Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds. However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.
One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.
The affected capability check is in generic_permission():
if (!(mask & MAY_EXEC) || execute_ok(inode))
if (capable(CAP_DAC_OVERRIDE))
return 0;
This change passes the set of credentials to be tested down into the commoncap
and SELinux code. The security functions called by capable() and
has_capability() select the appropriate set of credentials from the process
being checked.
This can be tested by compiling the following program from the XFS testsuite:
/*
* t_access_root.c - trivial test program to show permission bug.
*
* Written by Michael Kerrisk - copyright ownership not pursued.
* Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
*/
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"
static void
errExit(char *msg)
{
perror(msg);
exit(EXIT_FAILURE);
} /* errExit */
static void
accessTest(char *file, int mask, char *mstr)
{
printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */
int
main(int argc, char *argv[])
{
int fd, perm, uid, gid;
char *testpath;
char cmd[PATH_MAX + 20];
testpath = (argc > 1) ? argv[1] : TESTPATH;
perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
uid = (argc > 3) ? atoi(argv[3]) : UID;
gid = (argc > 4) ? atoi(argv[4]) : GID;
unlink(testpath);
fd = open(testpath, O_RDWR | O_CREAT, 0);
if (fd == -1) errExit("open");
if (fchown(fd, uid, gid) == -1) errExit("fchown");
if (fchmod(fd, perm) == -1) errExit("fchmod");
close(fd);
snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
system(cmd);
if (seteuid(uid) == -1) errExit("seteuid");
accessTest(testpath, 0, "0");
accessTest(testpath, R_OK, "R_OK");
accessTest(testpath, W_OK, "W_OK");
accessTest(testpath, X_OK, "X_OK");
accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
exit(EXIT_SUCCESS);
} /* main */
This can be run against an Ext3 filesystem as well as against an XFS
filesystem. If successful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns 0
access(/tmp/xxx, W_OK) returns 0
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns 0
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
If unsuccessful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns -1
access(/tmp/xxx, W_OK) returns -1
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns -1
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
I've also tested the fix with the SELinux and syscalls LTP testsuites.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: J. Bruce Fields <bfields@citi.umich.edu>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
We used to have rather schizophrenic set of checks for NULL ->i_op even
though it had been eliminated years ago. You'd need to go out of your
way to set it to NULL explicitly _and_ a bunch of code would die on
such inodes anyway. After killing two remaining places that still
did that bogosity, all that crap can go away.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Fix a regression in cap_capable() due to:
commit 5ff7711e635b32f0a1e558227d030c7e45b4a465
Author: David Howells <dhowells@redhat.com>
Date: Wed Dec 31 02:52:28 2008 +0000
CRED: Differentiate objective and effective subjective credentials on a task
The problem is that the above patch allows a process to have two sets of
credentials, and for the most part uses the subjective credentials when
accessing current's creds.
There is, however, one exception: cap_capable(), and thus capable(), uses the
real/objective credentials of the target task, whether or not it is the current
task.
Ordinarily this doesn't matter, since usually the two cred pointers in current
point to the same set of creds. However, sys_faccessat() makes use of this
facility to override the credentials of the calling process to make its test,
without affecting the creds as seen from other processes.
One of the things sys_faccessat() does is to make an adjustment to the
effective capabilities mask, which cap_capable(), as it stands, then ignores.
The affected capability check is in generic_permission():
if (!(mask & MAY_EXEC) || execute_ok(inode))
if (capable(CAP_DAC_OVERRIDE))
return 0;
This change splits capable() from has_capability() down into the commoncap and
SELinux code. The capable() security op now only deals with the current
process, and uses the current process's subjective creds. A new security op -
task_capable() - is introduced that can check any task's objective creds.
strictly the capable() security op is superfluous with the presence of the
task_capable() op, however it should be faster to call the capable() op since
two fewer arguments need be passed down through the various layers.
This can be tested by compiling the following program from the XFS testsuite:
/*
* t_access_root.c - trivial test program to show permission bug.
*
* Written by Michael Kerrisk - copyright ownership not pursued.
* Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
*/
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#define UID 500
#define GID 100
#define PERM 0
#define TESTPATH "/tmp/t_access"
static void
errExit(char *msg)
{
perror(msg);
exit(EXIT_FAILURE);
} /* errExit */
static void
accessTest(char *file, int mask, char *mstr)
{
printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
} /* accessTest */
int
main(int argc, char *argv[])
{
int fd, perm, uid, gid;
char *testpath;
char cmd[PATH_MAX + 20];
testpath = (argc > 1) ? argv[1] : TESTPATH;
perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
uid = (argc > 3) ? atoi(argv[3]) : UID;
gid = (argc > 4) ? atoi(argv[4]) : GID;
unlink(testpath);
fd = open(testpath, O_RDWR | O_CREAT, 0);
if (fd == -1) errExit("open");
if (fchown(fd, uid, gid) == -1) errExit("fchown");
if (fchmod(fd, perm) == -1) errExit("fchmod");
close(fd);
snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
system(cmd);
if (seteuid(uid) == -1) errExit("seteuid");
accessTest(testpath, 0, "0");
accessTest(testpath, R_OK, "R_OK");
accessTest(testpath, W_OK, "W_OK");
accessTest(testpath, X_OK, "X_OK");
accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
exit(EXIT_SUCCESS);
} /* main */
This can be run against an Ext3 filesystem as well as against an XFS
filesystem. If successful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns 0
access(/tmp/xxx, W_OK) returns 0
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns 0
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
If unsuccessful, it will show:
[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
access(/tmp/xxx, 0) returns 0
access(/tmp/xxx, R_OK) returns -1
access(/tmp/xxx, W_OK) returns -1
access(/tmp/xxx, X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK) returns -1
access(/tmp/xxx, R_OK | X_OK) returns -1
access(/tmp/xxx, W_OK | X_OK) returns -1
access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
I've also tested the fix with the SELinux and syscalls LTP testsuites.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
When CONFIG_SECURITY_FILE_CAPABILITIES is not set the audit system may
try to call into the capabilities function vfs_cap_from_file. This
patch defines that function so kernels can build and work.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>