IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The code in prepare_binary_handler needs to be run every time
search_binary_handler is called so move the call into search_binary_handler
itself to make the code simpler and easier to understand.
Link: https://lkml.kernel.org/r/87d070zrvx.fsf_-_@x220.int.ebiederm.org
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Add a flag preserve_creds that binfmt_misc can set to prevent
credentials from being updated. This allows binfmt_misc to always
call prepare_binprm. Allowing the credential computation logic to be
consolidated.
Not replacing the credentials with the interpreters credentials is
safe because because an open file descriptor to the executable is
passed to the interpreter. As the interpreter does not need to
reopen the executable it is guaranteed to see the same file that
exec sees.
Ref: c407c033de84 ("[PATCH] binfmt_misc: improve calculation of interpreter's credentials")
Link: https://lkml.kernel.org/r/87imgszrwo.fsf_-_@x220.int.ebiederm.org
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Rename bprm->cap_elevated to bprm->active_secureexec and initialize it
in prepare_binprm instead of in cap_bprm_set_creds. Initializing
bprm->active_secureexec in prepare_binprm allows multiple
implementations of security_bprm_repopulate_creds to play nicely with
each other.
Rename security_bprm_set_creds to security_bprm_reopulate_creds to
emphasize that this path recomputes part of bprm->cred. This
recomputation avoids the time of check vs time of use problems that
are inherent in unix #! interpreters.
In short two renames and a move in the location of initializing
bprm->active_secureexec.
Link: https://lkml.kernel.org/r/87o8qkzrxp.fsf_-_@x220.int.ebiederm.org
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Today security_bprm_set_creds has several implementations:
apparmor_bprm_set_creds, cap_bprm_set_creds, selinux_bprm_set_creds,
smack_bprm_set_creds, and tomoyo_bprm_set_creds.
Except for cap_bprm_set_creds they all test bprm->called_set_creds and
return immediately if it is true. The function cap_bprm_set_creds
ignores bprm->calld_sed_creds entirely.
Create a new LSM hook security_bprm_creds_for_exec that is called just
before prepare_binprm in __do_execve_file, resulting in a LSM hook
that is called exactly once for the entire of exec. Modify the bits
of security_bprm_set_creds that only want to be called once per exec
into security_bprm_creds_for_exec, leaving only cap_bprm_set_creds
behind.
Remove bprm->called_set_creds all of it's former users have been moved
to security_bprm_creds_for_exec.
Add or upate comments a appropriate to bring them up to date and
to reflect this change.
Link: https://lkml.kernel.org/r/87v9kszrzh.fsf_-_@x220.int.ebiederm.org
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Casey Schaufler <casey@schaufler-ca.com> # For the LSM and Smack bits
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The change to exec is relevant to the cleanup work I have been doing.
Merge it here so that I can build on top of it, and so hopefully
that other merge logic can pick up on this and see how to deal
with the conflict between that change and my exec cleanup work.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
I goofed when I added mm->user_ns support to would_dump. I missed the
fact that in the case of binfmt_loader, binfmt_em86, binfmt_misc, and
binfmt_script bprm->file is reassigned. Which made the move of
would_dump from setup_new_exec to __do_execve_file before exec_binprm
incorrect as it can result in would_dump running on the script instead
of the interpreter of the script.
The net result is that the code stopped making unreadable interpreters
undumpable. Which allows them to be ptraced and written to disk
without special permissions. Oops.
The move was necessary because the call in set_new_exec was after
bprm->mm was no longer valid.
To correct this mistake move the misplaced would_dump from
__do_execve_file into flos_old_exec, before exec_mmap is called.
I tested and confirmed that without this fix I can attach with gdb to
a script with an unreadable interpreter, and with this fix I can not.
Cc: stable@vger.kernel.org
Fixes: f84df2a6f268 ("exec: Ensure mm->user_ns contains the execed files")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Make the code more robust by marking the point of no return sooner.
This ensures that future code changes don't need to worry about how
they return errors if they are past this point.
This results in no actual change in behavior as __do_execve_file does
not force SIGSEGV when there is a pending fatal signal pending past
the point of no return. Further the only error returns from de_thread
and exec_mmap that can occur result in fatal signals being pending.
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/87sgga5klu.fsf_-_@x220.int.ebiederm.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Move the handing of the point of no return from search_binary_handler
into __do_execve_file so that it is easier to find, and to keep
things robust in the face of change.
Make it clear that an existing fatal signal will take precedence over
a forced SIGSEGV by not forcing SIGSEGV if a fatal signal is already
pending. This does not change the behavior but it saves a reader
of the code the tedium of reading and understanding force_sig
and the signal delivery code.
Update the comment in begin_new_exec about where SIGSEGV is forced.
Keep point_of_no_return from being a mystery by documenting
what the code is doing where it forces SIGSEGV if the
code is past the point of no return.
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/87y2q25knl.fsf_-_@x220.int.ebiederm.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Like exec_mm_release sync_mm_rss is about flushing out the state of
the old_mm, which does not need to happen under exec_update_mutex.
Make this explicit by moving sync_mm_rss outside of exec_update_mutex.
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/875zd66za3.fsf_-_@x220.int.ebiederm.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The comment describes work that now happens in unshare_sighand so
move the comment where it makes sense.
Link: https://lkml.kernel.org/r/87mu6i6zcs.fsf_-_@x220.int.ebiederm.org
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
There is and has been for a very long time been a lot more going on in
flush_old_exec than just flushing the old state. After the movement
of code from setup_new_exec there is a whole lot more going on than
just flushing the old executables state.
Rename flush_old_exec to begin_new_exec to more accurately reflect
what this function does.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Ungerer <gerg@linux-m68k.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The current idiom for the callers is:
flush_old_exec(bprm);
set_personality(...);
setup_new_exec(bprm);
In 2010 Linus split flush_old_exec into flush_old_exec and
setup_new_exec. With the intention that setup_new_exec be what is
called after the processes new personality is set.
Move the code that doesn't depend upon the personality from
setup_new_exec into flush_old_exec. This is to facilitate future
changes by having as much code together in one function as possible.
To see why it is safe to move this code please note that effectively
this change moves the personality setting in the binfmt and the following
three lines of code after everything except unlocking the mutexes:
arch_pick_mmap_layout
arch_setup_new_exec
mm->task_size = TASK_SIZE
The function arch_pick_mmap_layout at most sets:
mm->get_unmapped_area
mm->mmap_base
mm->mmap_legacy_base
mm->mmap_compat_base
mm->mmap_compat_legacy_base
which nothing in flush_old_exec or setup_new_exec depends on.
The function arch_setup_new_exec only sets architecture specific
state and the rest of the functions only deal in state that applies
to all architectures.
The last line just sets mm->task_size and again nothing in flush_old_exec
or setup_new_exec depend on task_size.
Ref: 221af7f87b97 ("Split 'flush_old_exec' into two functions")
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Ungerer <gerg@linux-m68k.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
At least gcc 8.3 when generating code for x86_64 has a hard time
consolidating multiple calls to current aka get_current(), and winds
up unnecessarily rereading %gs:current_task several times in
setup_new_exec.
Caching the value of current in the local variable of me generates
slightly better and shorter assembly.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Ungerer <gerg@linux-m68k.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The two functions are now always called one right after the
other so merge them together to make future maintenance easier.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Ungerer <gerg@linux-m68k.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Update the comments and make the code easier to understand by
renaming this flag.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Ungerer <gerg@linux-m68k.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
With install_exec_creds updated to follow immediately after
setup_new_exec, the failure of unshare_sighand is the only
code path where exec_update_mutex is held but not explicitly
unlocked.
Update that code path to explicitly unlock exec_update_mutex.
Remove the unlocking of exec_update_mutex from free_bprm.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Ungerer <gerg@linux-m68k.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
With the introduction of exchange_tids thread_group_leader and
has_group_leader_pid have become equivalent. Further at this point in the
code a thread group has exactly two threads, the previous thread_group_leader
that is waiting to be reaped and tsk. So we know it is impossible for tsk to
be the thread_group_leader.
This is also the last user of has_group_leader_pid so removing this check
will allow has_group_leader_pid to be removed.
So remove the "BUG_ON(has_group_leader_pid)" that will never fire.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
When the thread group leader changes during exec and the old leaders
thread is reaped proc_flush_pid will flush the dentries for the entire
process because the leader still has it's original pid.
Fix this by exchanging the pids in an rcu safe manner,
and wrapping the code to do that up in a helper exchange_tids.
When I removed switch_exec_pids and introduced this behavior
in d73d65293e3e ("[PATCH] pidhash: kill switch_exec_pids") there
really was nothing that cared as flushing happened with
the cached dentry and de_thread flushed both of them on exec.
This lack of fully exchanging pids became a problem a few months later
when I introduced 48e6484d4902 ("[PATCH] proc: Rewrite the proc dentry
flush on exit optimization"). Which overlooked the de_thread case
was no longer swapping pids, and I was looking up proc dentries
by task->pid.
The current behavior isn't properly a bug as everything in proc will
continue to work correctly just a little bit less efficiently. Fix
this just so there are no little surprise corner cases waiting to bite
people.
-- Oleg points out this could be an issue in next_tgid in proc where
has_group_leader_pid is called, and reording some of the assignments
should fix that.
-- Oleg points out this will break the 10 year old hack in __exit_signal.c
> /*
> * This can only happen if the caller is de_thread().
> * FIXME: this is the temporary hack, we should teach
> * posix-cpu-timers to handle this case correctly.
> */
> if (unlikely(has_group_leader_pid(tsk)))
> posix_cpu_timers_exit_group(tsk);
The code in next_tgid has been changed to use PIDTYPE_TGID,
and the posix cpu timers code has been fixed so it does not
need the 10 year old hack, so this should be safe to merge
now.
Link: https://lore.kernel.org/lkml/87h7x3ajll.fsf_-_@x220.int.ebiederm.org/
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Fixes: 48e6484d4902 ("[PATCH] proc: Rewrite the proc dentry flush on exit optimization").
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Pull exec/proc updates from Eric Biederman:
"This contains two significant pieces of work: the work to sort out
proc_flush_task, and the work to solve a deadlock between strace and
exec.
Fixing proc_flush_task so that it no longer requires a persistent
mount makes improvements to proc possible. The removal of the
persistent mount solves an old regression that that caused the hidepid
mount option to only work on remount not on mount. The regression was
found and reported by the Android folks. This further allows Alexey
Gladkov's work making proc mount options specific to an individual
mount of proc to move forward.
The work on exec starts solving a long standing issue with exec that
it takes mutexes of blocking userspace applications, which makes exec
extremely deadlock prone. For the moment this adds a second mutex with
a narrower scope that handles all of the easy cases. Which makes the
tricky cases easy to spot. With a little luck the code to solve those
deadlocks will be ready by next merge window"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (25 commits)
signal: Extend exec_id to 64bits
pidfd: Use new infrastructure to fix deadlocks in execve
perf: Use new infrastructure to fix deadlocks in execve
proc: io_accounting: Use new infrastructure to fix deadlocks in execve
proc: Use new infrastructure to fix deadlocks in execve
kernel/kcmp.c: Use new infrastructure to fix deadlocks in execve
kernel: doc: remove outdated comment cred.c
mm: docs: Fix a comment in process_vm_rw_core
selftests/ptrace: add test cases for dead-locks
exec: Fix a deadlock in strace
exec: Add exec_update_mutex to replace cred_guard_mutex
exec: Move exec_mmap right after de_thread in flush_old_exec
exec: Move cleanup of posix timers on exec out of de_thread
exec: Factor unshare_sighand out of de_thread and call it separately
exec: Only compute current once in flush_old_exec
pid: Improve the comment about waiting in zap_pid_ns_processes
proc: Remove the now unnecessary internal mount of proc
uml: Create a private mount of proc for mconsole
uml: Don't consult current to find the proc_mnt in mconsole_proc
proc: Use a list of inodes to flush from proc
...
Replace the 32bit exec_id with a 64bit exec_id to make it impossible
to wrap the exec_id counter. With care an attacker can cause exec_id
wrap and send arbitrary signals to a newly exec'd parent. This
bypasses the signal sending checks if the parent changes their
credentials during exec.
The severity of this problem can been seen that in my limited testing
of a 32bit exec_id it can take as little as 19s to exec 65536 times.
Which means that it can take as little as 14 days to wrap a 32bit
exec_id. Adam Zabrocki has succeeded wrapping the self_exe_id in 7
days. Even my slower timing is in the uptime of a typical server.
Which means self_exec_id is simply a speed bump today, and if exec
gets noticably faster self_exec_id won't even be a speed bump.
Extending self_exec_id to 64bits introduces a problem on 32bit
architectures where reading self_exec_id is no longer atomic and can
take two read instructions. Which means that is is possible to hit
a window where the read value of exec_id does not match the written
value. So with very lucky timing after this change this still
remains expoiltable.
I have updated the update of exec_id on exec to use WRITE_ONCE
and the read of exec_id in do_notify_parent to use READ_ONCE
to make it clear that there is no locking between these two
locations.
Link: https://lore.kernel.org/kernel-hardening/20200324215049.GA3710@pi3.com.pl
Fixes: 2.3.23pre2
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The cred_guard_mutex is problematic as it is held over possibly
indefinite waits for userspace. The possible indefinite waits for
userspace that I have identified are: The cred_guard_mutex is held in
PTRACE_EVENT_EXIT waiting for the tracer. The cred_guard_mutex is
held over "put_user(0, tsk->clear_child_tid)" in exit_mm(). The
cred_guard_mutex is held over "get_user(futex_offset, ...") in
exit_robust_list. The cred_guard_mutex held over copy_strings.
The functions get_user and put_user can trigger a page fault which can
potentially wait indefinitely in the case of userfaultfd or if
userspace implements part of the page fault path.
In any of those cases the userspace process that the kernel is waiting
for might make a different system call that winds up taking the
cred_guard_mutex and result in deadlock.
Holding a mutex over any of those possibly indefinite waits for
userspace does not appear necessary. Add exec_update_mutex that will
just cover updating the process during exec where the permissions and
the objects pointed to by the task struct may be out of sync.
The plan is to switch the users of cred_guard_mutex to
exec_update_mutex one by one. This lets us move forward while still
being careful and not introducing any regressions.
Link: https://lore.kernel.org/lkml/20160921152946.GA24210@dhcp22.suse.cz/
Link: https://lore.kernel.org/lkml/AM6PR03MB5170B06F3A2B75EFB98D071AE4E60@AM6PR03MB5170.eurprd03.prod.outlook.com/
Link: https://lore.kernel.org/linux-fsdevel/20161102181806.GB1112@redhat.com/
Link: https://lore.kernel.org/lkml/20160923095031.GA14923@redhat.com/
Link: https://lore.kernel.org/lkml/20170213141452.GA30203@redhat.com/
Ref: 45c1a159b85b ("Add PTRACE_O_TRACEVFORKDONE and PTRACE_O_TRACEEXIT facilities.")
Ref: 456f17cd1a28 ("[PATCH] user-vm-unlock-2.5.31-A2")
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
I have read through the code in exec_mmap and I do not see anything
that depends on sighand or the sighand lock, or on signals in anyway
so this should be safe.
This rearrangement of code has two significant benefits. It makes
the determination of passing the point of no return by testing bprm->mm
accurate. All failures prior to that point in flush_old_exec are
either truly recoverable or they are fatal.
Further this consolidates all of the possible indefinite waits for
userspace together at the top of flush_old_exec. The possible wait
for a ptracer on PTRACE_EVENT_EXIT, the possible wait for a page fault
to be resolved in clear_child_tid, and the possible wait for a page
fault in exit_robust_list.
This consolidation allows the creation of a mutex to replace
cred_guard_mutex that is not held over possible indefinite userspace
waits. Which will allow removing deadlock scenarios from the kernel.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
These functions have very little to do with de_thread move them out
of de_thread an into flush_old_exec proper so it can be more clearly
seen what flush_old_exec is doing.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This makes the code clearer and makes it easier to implement a mutex
that is not taken over any locations that may block indefinitely waiting
for userspace.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Make it clear that current only needs to be computed once in
flush_old_exec. This may have some efficiency improvements and it
makes the code easier to change.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
I have an experimental setup where almost every possible system
service (even early startup ones) runs in separate namespace, using a
dedicated, minimal file system. In process of minimizing the contents
of the file systems with regards to modules and firmware files, I
noticed that in my system, the firmware files are loaded from three
different mount namespaces, those of systemd-udevd, init and
systemd-networkd. The logic of the source namespace is not very clear,
it seems to depend on the driver, but the namespace of the current
process is used.
So, this patch tries to make things a bit clearer and changes the
loading of firmware files only from the mount namespace of init. This
may also improve security, though I think that using firmware files as
attack vector could be too impractical anyway.
Later, it might make sense to make the mount namespace configurable,
for example with a new file in /proc/sys/kernel/firmware_config/. That
would allow a dedicated file system only for firmware files and those
need not be present anywhere else. This configurability would make
more sense if made also for kernel modules and /sbin/modprobe. Modules
are already loaded from init namespace (usermodehelper uses kthreadd
namespace) except when directly loaded by systemd-udevd.
Instead of using the mount namespace of the current process to load
firmware files, use the mount namespace of init process.
Link: https://lore.kernel.org/lkml/bb46ebae-4746-90d9-ec5b-fce4c9328c86@gmail.com/
Link: https://lore.kernel.org/lkml/0e3f7653-c59d-9341-9db2-c88f5b988c68@gmail.com/
Signed-off-by: Topi Miettinen <toiwoton@gmail.com>
Link: https://lore.kernel.org/r/20200123125839.37168-1-toiwoton@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull updates from Andrew Morton:
"Most of -mm and quite a number of other subsystems: hotfixes, scripts,
ocfs2, misc, lib, binfmt, init, reiserfs, exec, dma-mapping, kcov.
MM is fairly quiet this time. Holidays, I assume"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (118 commits)
kcov: ignore fault-inject and stacktrace
include/linux/io-mapping.h-mapping: use PHYS_PFN() macro in io_mapping_map_atomic_wc()
execve: warn if process starts with executable stack
reiserfs: prevent NULL pointer dereference in reiserfs_insert_item()
init/main.c: fix misleading "This architecture does not have kernel memory protection" message
init/main.c: fix quoted value handling in unknown_bootoption
init/main.c: remove unnecessary repair_env_string in do_initcall_level
init/main.c: log arguments and environment passed to init
fs/binfmt_elf.c: coredump: allow process with empty address space to coredump
fs/binfmt_elf.c: coredump: delete duplicated overflow check
fs/binfmt_elf.c: coredump: allocate core ELF header on stack
fs/binfmt_elf.c: make BAD_ADDR() unlikely
fs/binfmt_elf.c: better codegen around current->mm
fs/binfmt_elf.c: don't copy ELF header around
fs/binfmt_elf.c: fix ->start_code calculation
fs/binfmt_elf.c: smaller code generation around auxv vector fill
lib/find_bit.c: uninline helper _find_next_bit()
lib/find_bit.c: join _find_next_bit{_le}
uapi: rename ext2_swab() to swab() and share globally in swab.h
lib/scatterlist.c: adjust indentation in __sg_alloc_table
...
There were few episodes of silent downgrade to an executable stack over
years:
1) linking innocent looking assembly file will silently add executable
stack if proper linker options is not given as well:
$ cat f.S
.intel_syntax noprefix
.text
.globl f
f:
ret
$ cat main.c
void f(void);
int main(void)
{
f();
return 0;
}
$ gcc main.c f.S
$ readelf -l ./a.out
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RWE 0x10
^^^
2) converting C99 nested function into a closure
https://nullprogram.com/blog/2019/11/15/
void intsort2(int *base, size_t nmemb, _Bool invert)
{
int cmp(const void *a, const void *b)
{
int r = *(int *)a - *(int *)b;
return invert ? -r : r;
}
qsort(base, nmemb, sizeof(*base), cmp);
}
will silently require stack trampolines while non-closure version will
not.
Without doubt this behaviour is documented somewhere, add a warning so
that developers and users can at least notice. After so many years of
x86_64 having proper executable stack support it should not cause too
many problems.
Link: http://lkml.kernel.org/r/20191208171918.GC19716@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Will Deacon <will@kernel.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unfortunately, GCC 9.1 is expected to be be released without support for
MPX. This means that there was only a relatively small window where
folks could have ever used MPX. It failed to gain wide adoption in the
industry, and Linux was the only mainstream OS to ever support it widely.
Support for the feature may also disappear on future processors.
This set completes the process that we started during the 5.4 merge window.
-----BEGIN PGP SIGNATURE-----
iQIcBAABCAAGBQJeK1/pAAoJEGg1lTBwyZKwgC8QAIiVn1d7A9Uj/WpnpgfCChCZ
9XiV6Ak999qD9fbAcrgNfPjieaD4mtokocSRVJuRgJu5iLnIJCINlozLPe4yVl7P
7zebnxkLq0CIA8d56bEUoFlC0J+oWYlDVQePZzNQsSk5KHVGXVLpF6U4vDVzZeQy
cprgvdeY+ehB7G6IIo0MWTg5ylKYAsOAyVvK8NIGpKY2k6/YqCnsptnsVE7bvlHy
TrEOiUWLv+hh0bMkZdP1PwKQKEuMO/IZly0HtviFbMN7T4TB1spfg7ELoBucEq3T
s4EVbYRe+nIE4tuEAveaX3CgxJek8cY5MlticskdaKSEACBwabdOF55qsZy0u+WA
PYC4iUIXfbOH8OgieKWtGX4IuSkRYdQ2nP4BOpe4ZX4+zvU7zOCIyVSKRrwkX8cc
ADtWI5FAtB36KCgUuWnHGHNZpOxPTbTLBuBataFY4Q2uBNJEBJpscZ5H9ObtyGFU
ZjlzqFnM0nFNDKEI1EEtv9jLzgZTU1RQ46s7EFeSeEQ2/s9wJ3+s5sBlVbljsmus
o658bLOEaRWC/aF15dgmEXW9GAO6uifNdmbzGnRn7oEMYyFQPTWbZvi1zGz58QaG
Y6WTtigVtsSrHS4wpYd+p+n1W06VnB6J3BpBM4G1VQv1Vm0dNd1tUOfkqOzPjg7c
33Itmsz2LaW1mb67GlgZ
=g4cC
-----END PGP SIGNATURE-----
Merge tag 'mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx
Pull x86 MPX removal from Dave Hansen:
"MPX requires recompiling applications, which requires compiler
support. Unfortunately, GCC 9.1 is expected to be be released without
support for MPX. This means that there was only a relatively small
window where folks could have ever used MPX. It failed to gain wide
adoption in the industry, and Linux was the only mainstream OS to ever
support it widely.
Support for the feature may also disappear on future processors.
This set completes the process that we started during the 5.4 merge
window when the MPX prctl()s were removed. XSAVE support is left in
place, which allows MPX-using KVM guests to continue to function"
* tag 'mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx:
x86/mpx: remove MPX from arch/x86
mm: remove arch_bprm_mm_init() hook
x86/mpx: remove bounds exception code
x86/mpx: remove build infrastructure
x86/alternatives: add missing insn.h include
From: Dave Hansen <dave.hansen@linux.intel.com>
MPX is being removed from the kernel due to a lack of support
in the toolchain going forward (gcc).
arch_bprm_mm_init() is used at execve() time. The only non-stub
implementation is on x86 for MPX. Remove the hook entirely from
all architectures and generic code.
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: x86@kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-arch@vger.kernel.org
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Pull timer updates from Ingo Molnar:
"The main changes in the timer code in this cycle were:
- Clockevent updates:
- timer-of framework cleanups. (Geert Uytterhoeven)
- Use timer-of for the renesas-ostm and the device name to prevent
name collision in case of multiple timers. (Geert Uytterhoeven)
- Check if there is an error after calling of_clk_get in asm9260
(Chuhong Yuan)
- ABI fix: Zero out high order bits of nanoseconds on compat
syscalls. This got broken a year ago, with apparently no side
effects so far.
Since the kernel would use random data otherwise I don't think we'd
have other options but to fix the bug, even if there was a side
effect to applications (Dmitry Safonov)
- Optimize ns_to_timespec64() on 32-bit systems: move away from
div_s64_rem() which can be slow, to div_u64_rem() which is faster
(Arnd Bergmann)
- Annotate KCSAN-reported false positive data races in
hrtimer_is_queued() users by moving timer->state handling over to
the READ_ONCE()/WRITE_ONCE() APIs. This documents these accesses
(Eric Dumazet)
- Misc cleanups and small fixes"
[ I undid the "ABI fix" and updated the comments instead. The reason
there were apparently no side effects is that the fix was a no-op.
The updated comment is to say _why_ it was a no-op. - Linus ]
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Zero the upper 32-bits in __kernel_timespec on 32-bit
time: Rename tsk->real_start_time to ->start_boottime
hrtimer: Remove the comment about not used HRTIMER_SOFTIRQ
time: Fix spelling mistake in comment
time: Optimize ns_to_timespec64()
hrtimer: Annotate lockless access to timer->state
clocksource/drivers/asm9260: Add a check for of_clk_get
clocksource/drivers/renesas-ostm: Use unique device name instead of ostm
clocksource/drivers/renesas-ostm: Convert to timer_of
clocksource/drivers/timer-of: Use unique device name instead of timer
clocksource/drivers/timer-of: Convert last full_name to %pOF
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl3O0OoACgkQ+7dXa6fL
C2tAwA//VH9Y81azemXFdflDF90sSH3TCASlKHVYHbBNAkH/QP5F00G4BEM4nNqH
F3x7qcU9vzfGdumF1pc90Yt6XSYlsQEGF+xMyMw/VS2wKs40yv+b/doVbzOWbN9C
NfrklgHeuuBk+JzU2llDisVqKRTLt4SmDpYu1ZdcchUQFZCCl3BpgdSEC+xXrHay
+KlRPVNMSd2kXMCDuSWrr71lVNdCTdf3nNC5p1i780+VrgpIBIG/jmiNdCcd7PLH
1aesPlr8UZY3+bmRtqe587fVRAhT2qA2xibKtyf9R0hrDtUKR4NSnpPmaeIjb26e
LhVntcChhYxQqzy/T4ScTDNVjpSlwi6QMo5DwAwzNGf2nf/v5/CZ+vGYDVdXRFHj
tgH1+8eDpHsi7jJp6E4cmZjiolsUx/ePDDTrQ4qbdDMO7fmIV6YQKFAMTLJepLBY
qnJVqoBq3qn40zv6tVZmKgWiXQ65jEkBItZhEUmcQRBiSbBDPweIdEzx/mwzkX7U
1gShGdut6YP4GX7BnOhkiQmzucS85mgkUfG43+mBfYXb+4zNTEjhhkqhEduz2SQP
xnjHxEM+MTGCj3PozIpJxNKzMTEceYY7cAUdNEMDQcHog7OCnIdGBIc7BPnsN8yA
CPzntwP4mmLfK3weq3PIGC6d9xfc9PpmiR9docxQOvE6sk2Ifeo=
=FKC7
-----END PGP SIGNATURE-----
Merge tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull pipe rework from David Howells:
"This is my set of preparatory patches for building a general
notification queue on top of pipes. It makes a number of significant
changes:
- It removes the nr_exclusive argument from __wake_up_sync_key() as
this is always 1. This prepares for the next step:
- Adds wake_up_interruptible_sync_poll_locked() so that poll can be
woken up from a function that's holding the poll waitqueue
spinlock.
- Change the pipe buffer ring to be managed in terms of unbounded
head and tail indices rather than bounded index and length. This
means that reading the pipe only needs to modify one index, not
two.
- A selection of helper functions are provided to query the state of
the pipe buffer, plus a couple to apply updates to the pipe
indices.
- The pipe ring is allowed to have kernel-reserved slots. This allows
many notification messages to be spliced in by the kernel without
allowing userspace to pin too many pages if it writes to the same
pipe.
- Advance the head and tail indices inside the pipe waitqueue lock
and use wake_up_interruptible_sync_poll_locked() to poke poll
without having to take the lock twice.
- Rearrange pipe_write() to preallocate the buffer it is going to
write into and then drop the spinlock. This allows kernel
notifications to then be added the ring whilst it is filling the
buffer it allocated. The read side is stalled because the pipe
mutex is still held.
- Don't wake up readers on a pipe if there was already data in it
when we added more.
- Don't wake up writers on a pipe if the ring wasn't full before we
removed a buffer"
* tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
pipe: Remove sync on wake_ups
pipe: Increase the writer-wakeup threshold to reduce context-switch count
pipe: Check for ring full inside of the spinlock in pipe_write()
pipe: Remove redundant wakeup from pipe_write()
pipe: Rearrange sequence in pipe_write() to preallocate slot
pipe: Conditionalise wakeup in pipe_read()
pipe: Advance tail pointer inside of wait spinlock in pipe_read()
pipe: Allow pipes to have kernel-reserved slots
pipe: Use head and tail pointers for the ring, not cursor and length
Add wake_up_interruptible_sync_poll_locked()
Remove the nr_exclusive argument from __wake_up_sync_key()
pipe: Reduce #inclusion of pipe_fs_i.h
mm_release() contains the futex exit handling. mm_release() is called from
do_exit()->exit_mm() and from exec()->exec_mm().
In the exit_mm() case PF_EXITING and the futex state is updated. In the
exec_mm() case these states are not touched.
As the futex exit code needs further protections against exit races, this
needs to be split into two functions.
Preparatory only, no functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191106224556.240518241@linutronix.de
Since it stores CLOCK_BOOTTIME, not, as the name suggests,
CLOCK_REALTIME, let's rename ->real_start_time to ->start_bootime.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The membarrier_state field is located within the mm_struct, which
is not guaranteed to exist when used from runqueue-lock-free iteration
on runqueues by the membarrier system call.
Copy the membarrier_state from the mm_struct into the scheduler runqueue
when the scheduler switches between mm.
When registering membarrier for mm, after setting the registration bit
in the mm membarrier state, issue a synchronize_rcu() to ensure the
scheduler observes the change. In order to take care of the case
where a runqueue keeps executing the target mm without swapping to
other mm, iterate over each runqueue and issue an IPI to copy the
membarrier_state from the mm_struct into each runqueue which have the
same mm which state has just been modified.
Move the mm membarrier_state field closer to pgd in mm_struct to use
a cache line already touched by the scheduler switch_mm.
The membarrier_execve() (now membarrier_exec_mmap) hook now needs to
clear the runqueue's membarrier state in addition to clear the mm
membarrier state, so move its implementation into the scheduler
membarrier code so it can access the runqueue structure.
Add memory barrier in membarrier_exec_mmap() prior to clearing
the membarrier state, ensuring memory accesses executed prior to exec
are not reordered with the stores clearing the membarrier state.
As suggested by Linus, move all membarrier.c RCU read-side locks outside
of the for each cpu loops.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When going through execve(), zero out the NUMA fault statistics instead of
freeing them.
During execve, the task is reachable through procfs and the scheduler. A
concurrent /proc/*/sched reader can read data from a freed ->numa_faults
allocation (confirmed by KASAN) and write it back to userspace.
I believe that it would also be possible for a use-after-free read to occur
through a race between a NUMA fault and execve(): task_numa_fault() can
lead to task_numa_compare(), which invokes task_weight() on the currently
running task of a different CPU.
Another way to fix this would be to make ->numa_faults RCU-managed or add
extra locking, but it seems easier to wipe the NUMA fault statistics on
execve.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Fixes: 82727018b0d3 ("sched/numa: Call task_numa_free() from do_execve()")
Link: https://lkml.kernel.org/r/20190716152047.14424-1-jannh@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull force_sig() argument change from Eric Biederman:
"A source of error over the years has been that force_sig has taken a
task parameter when it is only safe to use force_sig with the current
task.
The force_sig function is built for delivering synchronous signals
such as SIGSEGV where the userspace application caused a synchronous
fault (such as a page fault) and the kernel responded with a signal.
Because the name force_sig does not make this clear, and because the
force_sig takes a task parameter the function force_sig has been
abused for sending other kinds of signals over the years. Slowly those
have been fixed when the oopses have been tracked down.
This set of changes fixes the remaining abusers of force_sig and
carefully rips out the task parameter from force_sig and friends
making this kind of error almost impossible in the future"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (27 commits)
signal/x86: Move tsk inside of CONFIG_MEMORY_FAILURE in do_sigbus
signal: Remove the signal number and task parameters from force_sig_info
signal: Factor force_sig_info_to_task out of force_sig_info
signal: Generate the siginfo in force_sig
signal: Move the computation of force into send_signal and correct it.
signal: Properly set TRACE_SIGNAL_LOSE_INFO in __send_signal
signal: Remove the task parameter from force_sig_fault
signal: Use force_sig_fault_to_task for the two calls that don't deliver to current
signal: Explicitly call force_sig_fault on current
signal/unicore32: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from ptrace_break
signal/nds32: Remove tsk parameter from send_sigtrap
signal/riscv: Remove tsk parameter from do_trap
signal/sh: Remove tsk parameter from force_sig_info_fault
signal/um: Remove task parameter from send_sigtrap
signal/x86: Remove task parameter from send_sigtrap
signal: Remove task parameter from force_sig_mceerr
signal: Remove task parameter from force_sig
signal: Remove task parameter from force_sigsegv
...
The function force_sigsegv is always called on the current task
so passing in current is redundant and not passing in current
makes this fact obvious.
This also makes it clear force_sigsegv always calls force_sig
on the current task.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
->recursion_depth is changed only by current, therefore decrementing can
be done without taking any locks.
Link: http://lkml.kernel.org/r/20190417213150.GA26474@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Large enterprise clients often run applications out of networked file
systems where the IT mandated layout of project volumes can end up
leading to paths that are longer than 128 characters. Bumping this up
to the next order of two solves this problem in all but the most
egregious case while still fitting into a 512b slab.
[oleg@redhat.com: update comment, per Kees]
Link: http://lkml.kernel.org/r/20181112160956.GA28472@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Ben Woodard <woodard@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- refcount conversions
- Solve the rq->leaf_cfs_rq_list can of worms for real.
- improve power-aware scheduling
- add sysctl knob for Energy Aware Scheduling
- documentation updates
- misc other changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
kthread: Do not use TIMER_IRQSAFE
kthread: Convert worker lock to raw spinlock
sched/fair: Use non-atomic cpumask_{set,clear}_cpu()
sched/fair: Remove unused 'sd' parameter from select_idle_smt()
sched/wait: Use freezable_schedule() when possible
sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block
sched/fair: Explain LLC nohz kick condition
sched/fair: Simplify nohz_balancer_kick()
sched/topology: Fix percpu data types in struct sd_data & struct s_data
sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
sched/fair: Fix O(nr_cgroups) in the load balancing path
sched/fair: Optimize update_blocked_averages()
sched/fair: Fix insertion in rq->leaf_cfs_rq_list
sched/fair: Add tmp_alone_branch assertion
sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock()
sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK
sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity
sched/fair: Update scale invariance of PELT
sched/fair: Move the rq_of() helper function
sched/core: Convert task_struct.stack_refcount to refcount_t
...
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable sighand_struct.count is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
** Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.
The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the sighand_struct.count it might make a difference
in following places:
- __cleanup_sighand: decrement in refcount_dec_and_test() only
provides RELEASE ordering and control dependency on success
vs. fully ordered atomic counterpart
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1547814450-18902-2-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull trivial vfs updates from Al Viro:
"A few cleanups + Neil's namespace_unlock() optimization"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
exec: make prepare_bprm_creds static
genheaders: %-<width>s had been there since v6; %-*s - since v7
VFS: use synchronize_rcu_expedited() in namespace_unlock()
iov_iter: reduce code duplication
This is already done for us internally by the signal machinery.
[akpm@linux-foundation.org: fix fs/buffer.c]
Link: http://lkml.kernel.org/r/20181116002713.8474-7-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_arg_page() checks bprm->rlim_stack.rlim_cur and re-calculates the
"extra" size for argv/envp pointers every time, this is a bit ugly and
even not strictly correct: acct_arg_size() must not account this size.
Remove all the rlimit code in get_arg_page(). Instead, add bprm->argmin
calculated once at the start of __do_execve_file() and change
copy_strings to check bprm->p >= bprm->argmin.
The patch adds the new helper, prepare_arg_pages() which initializes
bprm->argc/envc and bprm->argmin.
[oleg@redhat.com: fix !CONFIG_MMU version of get_arg_page()]
Link: http://lkml.kernel.org/r/20181126122307.GA1660@redhat.com
[akpm@linux-foundation.org: use max_t]
Link: http://lkml.kernel.org/r/20181112160910.GA28440@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>