IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
net: sctp: Fix data chunk fragmentation for MTU values which are not multiple of 4
Initially the problem was observed with ipsec, but later it became clear that
SCTP data chunk fragmentation algorithm has problems with MTU values which are
not multiple of 4. Test program was used which just transmits 2000 bytes long
packets to other host. tcpdump was used to observe re-fragmentation in IP layer
after SCTP already fragmented data chunks.
With MTU 1500:
12:54:34.082904 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 1500)
10.151.38.153.39303 > 10.151.24.91.54321: sctp (1) [DATA] (B) [TSN: 2366088589] [SID: 0] [SSEQ 1] [PPID 0x0]
12:54:34.082933 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 596)
10.151.38.153.39303 > 10.151.24.91.54321: sctp (1) [DATA] (E) [TSN: 2366088590] [SID: 0] [SSEQ 1] [PPID 0x0]
12:54:34.090576 IP (tos 0x2,ECT(0), ttl 63, id 0, offset 0, flags [DF], proto SCTP (132), length 48)
10.151.24.91.54321 > 10.151.38.153.39303: sctp (1) [SACK] [cum ack 2366088590] [a_rwnd 79920] [#gap acks 0] [#dup tsns 0]
With MTU 1499:
13:02:49.955220 IP (tos 0x2,ECT(0), ttl 64, id 48215, offset 0, flags [+], proto SCTP (132), length 1492)
10.151.38.153.39084 > 10.151.24.91.54321: sctp[|sctp]
13:02:49.955249 IP (tos 0x2,ECT(0), ttl 64, id 48215, offset 1472, flags [none], proto SCTP (132), length 28)
10.151.38.153 > 10.151.24.91: ip-proto-132
13:02:49.955262 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 600)
10.151.38.153.39084 > 10.151.24.91.54321: sctp (1) [DATA] (E) [TSN: 404355346] [SID: 0] [SSEQ 1] [PPID 0x0]
13:02:49.956770 IP (tos 0x2,ECT(0), ttl 63, id 0, offset 0, flags [DF], proto SCTP (132), length 48)
10.151.24.91.54321 > 10.151.38.153.39084: sctp (1) [SACK] [cum ack 404355346] [a_rwnd 79920] [#gap acks 0] [#dup tsns 0]
Here problem in data portion limit calculation leads to re-fragmentation in IP,
which is sub-optimal. The problem is max_data initial value, which doesn't take
into account the fact, that data chunk must be padded to 4-bytes boundary.
It's enough to correct max_data, because all later adjustments are correctly
aligned to 4-bytes boundary.
After the fix is applied, everything is fragmented correctly for uneven MTUs:
15:16:27.083881 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 1496)
10.151.38.153.53417 > 10.151.24.91.54321: sctp (1) [DATA] (B) [TSN: 3077098183] [SID: 0] [SSEQ 1] [PPID 0x0]
15:16:27.083907 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 600)
10.151.38.153.53417 > 10.151.24.91.54321: sctp (1) [DATA] (E) [TSN: 3077098184] [SID: 0] [SSEQ 1] [PPID 0x0]
15:16:27.085640 IP (tos 0x2,ECT(0), ttl 63, id 0, offset 0, flags [DF], proto SCTP (132), length 48)
10.151.24.91.54321 > 10.151.38.153.53417: sctp (1) [SACK] [cum ack 3077098184] [a_rwnd 79920] [#gap acks 0] [#dup tsns 0]
The bug was there for years already, but
- is a performance issue, the packets are still transmitted
- doesn't show up with default MTU 1500, but possibly with ipsec (MTU 1438)
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@nsn.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pablo Neira Ayuso says:
====================
The following batch contains:
* Three fixes for the new synproxy target available in your
net-next tree, from Jesper D. Brouer and Patrick McHardy.
* One fix for TCPMSS to correctly handling the fragmentation
case, from Phil Oester. I'll pass this one to -stable.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
In commit b396966c4 (netfilter: xt_TCPMSS: Fix missing fragmentation handling),
I attempted to add safe fragment handling to xt_TCPMSS. However, Andy Padavan
of Project N56U correctly points out that returning XT_CONTINUE in this
function does not work. The callers (tcpmss_tg[46]) expect to receive a value
of 0 in order to return XT_CONTINUE.
Signed-off-by: Phil Oester <kernel@linuxace.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Packets reaching SYNPROXY were default dropped, as they were most
likely invalid (given the recommended state matching). This
patch, changes SYNPROXY target to let packets, not consumed,
continue being processed by the stack.
This will be more in line other target modules. As it will allow
more flexible configurations of handling, logging or matching on
packets in INVALID states.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
With CONFIG_NETFILTER_DEBUG we get the following warning during SYNPROXY init:
[ 80.558906] WARNING: CPU: 1 PID: 4833 at net/netfilter/nf_conntrack_extend.c:80 __nf_ct_ext_add_length+0x217/0x220 [nf_conntrack]()
The reason is that the conntrack template is set to confirmed before adding
the extension and it is invalid to add extensions to already confirmed
conntracks. Fix by adding the extensions before setting the conntrack to
confirmed.
Reported-by: Jesper Dangaard Brouer <jesper.brouer@gmail.com>
Signed-off-by: Patrick McHardy <kaber@trash.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Its seems Patrick missed to incoorporate some of my requested changes
during review v2 of SYNPROXY netfilter module.
Which were, to avoid SYN+ACK packets to enter the path, meant for the
ACK packet from the client (from the 3WHS).
Further there were a bug in ip6t_SYNPROXY.c, for matching SYN packets
that didn't exclude the ACK flag.
Go a step further with SYN packet/flag matching by excluding flags
ACK+FIN+RST, in both IPv4 and IPv6 modules.
The intented usage of SYNPROXY is as follows:
(gracefully describing usage in commit)
iptables -t raw -A PREROUTING -i eth0 -p tcp --dport 80 --syn -j NOTRACK
iptables -A INPUT -i eth0 -p tcp --dport 80 -m state UNTRACKED,INVALID \
-j SYNPROXY --sack-perm --timestamp --mss 1480 --wscale 7 --ecn
echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose
This does filter SYN flags early, for packets in the UNTRACKED state,
but packets in the INVALID state with other TCP flags could still
reach the module, thus this stricter flag matching is still needed.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
tcp_rcv_established() returns only one value namely 0. We change the return
value to void (as suggested by David Miller).
After commit 0c24604b (tcp: implement RFC 5961 4.2), we no longer send RSTs in
response to SYNs. We can remove the check and processing on the return value of
tcp_rcv_established().
We also fix jtcp_rcv_established() in tcp_probe.c to match that of
tcp_rcv_established().
Signed-off-by: Vijay Subramanian <subramanian.vijay@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With recent changes in tcp_probe module (e.g. f925d0a62d ("net: tcp_probe:
add IPv6 support")) we also need to take into account that tbuf needs to
be updated as format string will be further expanded. tbuf sits on the stack
in tcpprobe_read() function that is invoked when user space reads procfs
file /proc/net/tcpprobe, hence not fast path as in jtcp_rcv_established().
Having a size similarly as in sctp_probe module of 256 bytes is fully
sufficient for that, we need theoretical maximum of 252 bytes otherwise we
could get truncated.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This was found with a manual audit and I don't have a reproducer. We
limit ->calling_len and ->called_len when we get them from
copy_from_user() in x25_ioctl() so when they come from skb->data then
we should cap them there as well.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently we're linking upper devices to lower ones, which results in
upside-down relationship: upper devices seeing lower devices via its upper
lists.
Fix this by correctly linking lower devices to the upper ones.
CC: "David S. Miller" <davem@davemloft.net>
CC: Eric Dumazet <edumazet@google.com>
CC: Jiri Pirko <jiri@resnulli.us>
CC: Alexander Duyck <alexander.h.duyck@intel.com>
CC: Cong Wang <amwang@redhat.com>
Signed-off-by: Veaceslav Falico <vfalico@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The goal of this patch is to harmonize cleanup done on a skbuff on rx path.
Before this patch, behaviors were different depending of the tunnel type.
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The goal of this patch is to harmonize cleanup done on a skbuff on xmit path.
Before this patch, behaviors were different depending of the tunnel type.
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This function was only used when a packet was sent to another netns. Now, it can
also be used after tunnel encapsulation or decapsulation.
Only skb_orphan() should not be done when a packet is not crossing netns.
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This argument is not used, let's remove it.
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This argument is not used, let's remove it.
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This function is being removed, so remove the reference to it.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This function is being removed, rename the reference.
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Antonio Quartulli <ordex@autistici.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert the llc_<foo> static inlines to the
equivalents from etherdevice.h and remove
the llc_<foo> static inline functions.
llc_mac_null -> is_zero_ether_addr
llc_mac_multicast -> is_multicast_ether_addr
llc_mac_match -> ether_addr_equal
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Marc Kleine-Budde says:
====================
this is a pull request for net-next. There are two patches from Gerhard
Sittig, which improves the clock handling on mpc5121. Oliver Hartkopp
provides a patch that adds a per rule limitation of frame hops.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
John W. Linville says:
====================
Please accept this batch of updates intended for the 3.12 stream.
For the mac80211 bits, Johannes says this:
"This time I have various improvements all over the place: IBSS, mesh,
testmode, AP client powersave handling, one of the rare rfkill patches
and some code cleanup."
Also for mac80211:
"And I also have some more changes for -next, just a few small fixes and
improvements, nothing really stands out."
And for iwlwifi:
"This time I have some powersave work (notably uAPSD support), CQM
offloads, support for a new firmware API and various code cleanups."
Regarding the Bluetooth bits, Gustavo says:
"Patches to 3.12, here we have:
* implementation of a proper tty_port for RFCOMM devices, this fixes some
issues people were seeing lately in the kernel.
* Add voice_setting option for SCO, it is used for SCO Codec selection
* bugfixes, small improvements and clean ups"
For the NFC bits, Samuel says:
"With this one we have:
- A few pn533 improvements and minor fixes. Testing our pn533 driver
against Google's NCI stack triggered a few issues that we fixed now.
We also added Tx fragmentation support to this driver.
- More NFC secure element handling. We added a GET_SE netlink command
for getting all the discovered secure elements, and we defined 2
additional secure element netlink event (transaction and connectivity).
We also fixed a couple of typos and copy-paste bugs from the secure
element handling code.
- Firmware download support for the pn544 driver. This chipset can enter a
special mode where it's waiting for firmware blobs to replace the
already flashed one. We now support that mode."
With repect to the ath tree, Kalle says:
"New features in ath10k are rx/tx checsumming in hw and survey scan
implemented by Michal. Also he made fixes to different areas of the
driver, most notable being fixing the case when using two streams and
reducing the number of interface combinations to avoid firmware crashes.
Bartosz did a clean related to how we handle SoC power save in PCI
layer.
For ath6kl Mohammed and Vasanth sent each a patch to fix two infrequent
crashes."
I also pulled the wireless tree into wireless-next to support a
request from Johannes. On top of all that, there are the usual
sort of driver updates. The mwifiex, brcmfmac, brcmsmac, ath9k,
and rt2x00 drivers all get some attention, as does the bcma bus and
a few other random bits here and there.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a follow-up commit for commit b1dcdc68b1f4 ("net: tcp_probe:
allow more advanced ingress filtering by mark") that allows for
advanced SCTP probe module filtering based on skb mark (for a more
detailed description and advantages using mark, refer to b1dcdc68b1f4).
The current option to filter by a given port is still being preserved.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This config option is superfluous in that it only guards a call
to neigh_app_ns(). Enabling CONFIG_ARPD by default has no
change in behavior. There will now be call to __neigh_notify()
for each ARP resolution, which has no impact unless there is a
user space daemon waiting to receive the notification, i.e.,
the case for which CONFIG_ARPD was designed anyways.
Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Cc: James Morris <jmorris@namei.org>
Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
Cc: Patrick McHardy <kaber@trash.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Gao feng <gaofeng@cn.fujitsu.com>
Cc: Joe Perches <joe@perches.com>
Cc: Veaceslav Falico <vfalico@redhat.com>
Signed-off-by: Tim Gardner <tim.gardner@canonical.com>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A device inheriting a random or set address should reflect this in
its addr_assign_type.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
A device inheriting a random or set address should reflect this in
its addr_assign_type.
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fengguang reported:
net/built-in.o: In function `in6_dev_finish_destroy':
(.text+0x4ca7d): undefined reference to `snmp_mib_free'
this is due to snmp_mib_free() is defined when CONFIG_INET is enabled,
but in6_dev_finish_destroy() is now moved to core kernel.
I think snmp_mib_free() is small enough to be inlined, so just make it
static inline.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As suggested by Pravin, we can unify the code in case of duplicated
code.
Cc: Pravin Shelar <pshelar@nicira.com>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Similar to commit 731362674580cb0c696cd1b1a03d8461a10cf90a
(tunneling: Add generic Tunnel segmentation)
This patch adds generic tunneling offloading support for
IPv6-UDP based tunnels.
This can be used by tunneling protocols like VXLAN.
Cc: Jesse Gross <jesse@nicira.com>
Cc: Pravin B Shelar <pshelar@nicira.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds the IPv6 version of "arp_reduce", ndisc_send_na()
will be needed.
Cc: David S. Miller <davem@davemloft.net>
Cc: David Stevens <dlstevens@us.ibm.com>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
in6_dev_put() will be needed by vxlan module, so is
in6_dev_finish_destroy().
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
route short circuit only has IPv4 part, this patch adds
the IPv6 part. nd_tbl will be needed.
Cc: David S. Miller <davem@davemloft.net>
Cc: David Stevens <dlstevens@us.ibm.com>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds IPv6 support to vxlan device, as the new version
RFC already mentions it:
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-03
Cc: David Stevens <dlstevens@us.ibm.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Because vxlan module will call ip6_dst_lookup() in TX path,
which will hold write lock. So we have to release this write lock
before calling ndisc_send_rs(), otherwise could deadlock.
Reviewed-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is needed by vxlan module. Noticed by Mike.
Cc: Mike Rapoport <mike.rapoport@ravellosystems.com>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In case IPv6 is compiled as a module, introduce a stub
for ipv6_sock_mc_join and ipv6_sock_mc_drop etc.. It will be used
by vxlan module. Suggested by Ben.
This is an ugly but easy solution for now.
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It will be used by vxlan, and may not be inlined.
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Multiqueue scheduler refers to default_qdisc_ops; therefore the
variable definition needs to be moved to handle case where net
scheduler API is not available.
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fixes warnings introduced by the qdisc default patch.
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
By default, the pfifo_fast queue discipline has been used by default
for all devices. But we have better choices now.
This patch allow setting the default queueing discipline with sysctl.
This allows easy use of better queueing disciplines on all devices
without having to use tc qdisc scripts. It is intended to allow
an easy path for distributions to make fq_codel or sfq the default
qdisc.
This patch also makes pfifo_fast more of a first class qdisc, since
it is now possible to manually override the default and explicitly
use pfifo_fast. The behavior for systems who do not use the sysctl
is unchanged, they still get pfifo_fast
Also removes leftover random # in sysctl net core.
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A sk variable initialized to ndisc_sk is already available outside
of the branch.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
RTT cached in the TCP metrics are valuable for the initial timeout
because SYN RTT usually does not account for serialization delays
on low BW path.
However using it to seed the RTT estimator maybe disruptive because
other components (e.g., pacing) require the smooth RTT to be obtained
from actual connection.
The solution is to use the higher cached RTT to set the first RTO
conservatively like tcp_rtt_estimator(), but avoid seeding the other
RTT estimator variables such as srtt. It is also a good idea to
keep RTO conservative to obtain the first RTT sample, and the
performance is insured by TCP loss probe if SYN RTT is available.
To keep the seeding formula consistent across SYN RTT and cached RTT,
the rttvar is twice the cached RTT instead of cached RTTVAR value. The
reason is because cached variation may be too small (near min RTO)
which defeats the purpose of being conservative on first RTO. However
the metrics still keep the RTT variations as they might be useful for
user applications (through ip).
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Tested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
kbuild bot reported following m68k build error :
net/sched/sch_fq.c: In function 'fq_dequeue':
>> net/sched/sch_fq.c:491:2: error: implicit declaration of function
'prefetch' [-Werror=implicit-function-declaration]
cc1: some warnings being treated as errors
While we are fixing this, move this prefetch() call a bit earlier.
Reported-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
- Uses perfect flow match (not stochastic hash like SFQ/FQ_codel)
- Uses the new_flow/old_flow separation from FQ_codel
- New flows get an initial credit allowing IW10 without added delay.
- Special FIFO queue for high prio packets (no need for PRIO + FQ)
- Uses a hash table of RB trees to locate the flows at enqueue() time
- Smart on demand gc (at enqueue() time, RB tree lookup evicts old
unused flows)
- Dynamic memory allocations.
- Designed to allow millions of concurrent flows per Qdisc.
- Small memory footprint : ~8K per Qdisc, and 104 bytes per flow.
- Single high resolution timer for throttled flows (if any).
- One RB tree to link throttled flows.
- Ability to have a max rate per flow. We might add a socket option
to add per socket limitation.
Attempts have been made to add TCP pacing in TCP stack, but this
seems to add complex code to an already complex stack.
TCP pacing is welcomed for flows having idle times, as the cwnd
permits TCP stack to queue a possibly large number of packets.
This removes the 'slow start after idle' choice, hitting badly
large BDP flows, and applications delivering chunks of data
as video streams.
Nicely spaced packets :
Here interface is 10Gbit, but flow bottleneck is ~20Mbit
cwin is big, yet FQ avoids the typical bursts generated by TCP
(as in netperf TCP_RR -- -r 100000,100000)
15:01:23.545279 IP A > B: . 78193:81089(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.545394 IP B > A: . ack 81089 win 3668 <nop,nop,timestamp 11597985 1115>
15:01:23.546488 IP A > B: . 81089:83985(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.546565 IP B > A: . ack 83985 win 3668 <nop,nop,timestamp 11597986 1115>
15:01:23.547713 IP A > B: . 83985:86881(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.547778 IP B > A: . ack 86881 win 3668 <nop,nop,timestamp 11597987 1115>
15:01:23.548911 IP A > B: . 86881:89777(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.548949 IP B > A: . ack 89777 win 3668 <nop,nop,timestamp 11597988 1115>
15:01:23.550116 IP A > B: . 89777:92673(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.550182 IP B > A: . ack 92673 win 3668 <nop,nop,timestamp 11597989 1115>
15:01:23.551333 IP A > B: . 92673:95569(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.551406 IP B > A: . ack 95569 win 3668 <nop,nop,timestamp 11597991 1115>
15:01:23.552539 IP A > B: . 95569:98465(2896) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.552576 IP B > A: . ack 98465 win 3668 <nop,nop,timestamp 11597992 1115>
15:01:23.553756 IP A > B: . 98465:99913(1448) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554138 IP A > B: P 99913:100001(88) ack 65248 win 3125 <nop,nop,timestamp 1115 11597805>
15:01:23.554204 IP B > A: . ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.554234 IP B > A: . 65248:68144(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.555620 IP B > A: . 68144:71040(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.557005 IP B > A: . 71040:73936(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.558390 IP B > A: . 73936:76832(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.559773 IP B > A: . 76832:79728(2896) ack 100001 win 3668 <nop,nop,timestamp 11597993 1115>
15:01:23.561158 IP B > A: . 79728:82624(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.562543 IP B > A: . 82624:85520(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.563928 IP B > A: . 85520:88416(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.565313 IP B > A: . 88416:91312(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.566698 IP B > A: . 91312:94208(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.568083 IP B > A: . 94208:97104(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.569467 IP B > A: . 97104:100000(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.570852 IP B > A: . 100000:102896(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.572237 IP B > A: . 102896:105792(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.573639 IP B > A: . 105792:108688(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.575024 IP B > A: . 108688:111584(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.576408 IP B > A: . 111584:114480(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
15:01:23.577793 IP B > A: . 114480:117376(2896) ack 100001 win 3668 <nop,nop,timestamp 11597994 1115>
TCP timestamps show that most packets from B were queued in the same ms
timeframe (TSval 1159799{3,4}), but FQ managed to send them right
in time to avoid a big burst.
In slow start or steady state, very few packets are throttled [1]
FQ gets a bunch of tunables as :
limit : max number of packets on whole Qdisc (default 10000)
flow_limit : max number of packets per flow (default 100)
quantum : the credit per RR round (default is 2 MTU)
initial_quantum : initial credit for new flows (default is 10 MTU)
maxrate : max per flow rate (default : unlimited)
buckets : number of RB trees (default : 1024) in hash table.
(consumes 8 bytes per bucket)
[no]pacing : disable/enable pacing (default is enable)
All of them can be changed on a live qdisc.
$ tc qd add dev eth0 root fq help
Usage: ... fq [ limit PACKETS ] [ flow_limit PACKETS ]
[ quantum BYTES ] [ initial_quantum BYTES ]
[ maxrate RATE ] [ buckets NUMBER ]
[ [no]pacing ]
$ tc -s -d qd
qdisc fq 8002: dev eth0 root refcnt 32 limit 10000p flow_limit 100p buckets 256 quantum 3028 initial_quantum 15140
Sent 216532416 bytes 148395 pkt (dropped 0, overlimits 0 requeues 14)
backlog 0b 0p requeues 14
511 flows, 511 inactive, 0 throttled
110 gc, 0 highprio, 0 retrans, 1143 throttled, 0 flows_plimit
[1] Except if initial srtt is overestimated, as if using
cached srtt in tcp metrics. We'll provide a fix for this issue.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Usually the received CAN frames can be processed/routed as much as 'max_hops'
times (which is given at module load time of the can-gw module).
Introduce a new configuration option to reduce the number of possible hops
for a specific gateway rule to a value smaller then max_hops.
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Instead of hard-coding reciprocal_divide function, use the inline
function from reciprocal_div.h.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We currently allow for different fanout scheduling policies in pf_packet
such as scheduling by skb's rxhash, round-robin, by cpu, and rollover.
Also allow for a random, equidistributed selection of the socket from the
fanout process group.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This function returns the next dev in the dev->upper_dev_list after the
struct list_head **iter position, and updates *iter accordingly. Returns
NULL if there are no devices left.
Caller must hold RCU read lock.
CC: "David S. Miller" <davem@davemloft.net>
CC: Eric Dumazet <edumazet@google.com>
CC: Jiri Pirko <jiri@resnulli.us>
CC: Alexander Duyck <alexander.h.duyck@intel.com>
CC: Cong Wang <amwang@redhat.com>
Signed-off-by: Veaceslav Falico <vfalico@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We already don't need it cause we see every upper/lower device in the list
already.
CC: "David S. Miller" <davem@davemloft.net>
CC: Eric Dumazet <edumazet@google.com>
CC: Jiri Pirko <jiri@resnulli.us>
CC: Alexander Duyck <alexander.h.duyck@intel.com>
CC: Cong Wang <amwang@redhat.com>
Signed-off-by: Veaceslav Falico <vfalico@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds lower_dev_list list_head to net_device, which is the same
as upper_dev_list, only for lower devices, and begins to use it in the same
way as the upper list.
It also changes the way the whole adjacent device lists work - now they
contain *all* of upper/lower devices, not only the first level. The first
level devices are distinguished by the bool neighbour field in
netdev_adjacent, also added by this patch.
There are cases when a device can be added several times to the adjacent
list, the simplest would be:
/---- eth0.10 ---\
eth0- --- bond0
\---- eth0.20 ---/
where both bond0 and eth0 'see' each other in the adjacent lists two times.
To avoid duplication of netdev_adjacent structures ref_nr is being kept as
the number of times the device was added to the list.
The 'full view' is achieved by adding, on link creation, all of the
upper_dev's upper_dev_list devices as upper devices to all of the
lower_dev's lower_dev_list devices (and to the lower_dev itself), and vice
versa. On unlink they are removed using the same logic.
I've tested it with thousands vlans/bonds/bridges, everything works ok and
no observable lags even on a huge number of interfaces.
Memory footprint for 128 devices interconnected with each other via both
upper and lower (which is impossible, but for the comparison) lists would be:
128*128*2*sizeof(netdev_adjacent) = 1.5MB
but in the real world we usualy have at most several devices with slaves
and a lot of vlans, so the footprint will be much lower.
CC: "David S. Miller" <davem@davemloft.net>
CC: Eric Dumazet <edumazet@google.com>
CC: Jiri Pirko <jiri@resnulli.us>
CC: Alexander Duyck <alexander.h.duyck@intel.com>
CC: Cong Wang <amwang@redhat.com>
Signed-off-by: Veaceslav Falico <vfalico@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rename the structure to reflect the upcoming addition of lower_dev_list.
CC: "David S. Miller" <davem@davemloft.net>
CC: Eric Dumazet <edumazet@google.com>
CC: Jiri Pirko <jiri@resnulli.us>
CC: Alexander Duyck <alexander.h.duyck@intel.com>
CC: Cong Wang <amwang@redhat.com>
Signed-off-by: Veaceslav Falico <vfalico@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>