IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Currently, when a huge page is faulted in for a guest, we select the
rmap chain to insert the HPTE into based on the guest physical address
that the guest tried to access. Since there is an rmap chain for each
system page, there are many rmap chains for the area covered by a huge
page (e.g. 256 for 16MB pages when PAGE_SIZE = 64kB), and the huge-page
HPTE could end up in any one of them.
For consistency, and to make the huge-page HPTEs easier to find, we now
put huge-page HPTEs in the rmap chain corresponding to the base address
of the huge page.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
The global_invalidates() function contains a check that is intended
to tell whether we are currently executing in the context of a hypercall
issued by the guest. The reason is that the optimization of using a
local TLB invalidate instruction is only valid in that context. The
check was testing local_paca->kvm_hstate.kvm_vcore, which gets set
when entering the guest but no longer gets cleared when exiting the
guest. To fix this, we use the kvm_vcpu field instead, which does
get cleared when exiting the guest, by the kvmppc_release_hwthread()
calls inside kvmppc_run_core().
The effect of having the check wrong was that when kvmppc_do_h_remove()
got called from htab_write() on the destination machine during a
migration, it cleared the current cpu's bit in kvm->arch.need_tlb_flush.
This meant that when the guest started running in the destination VM,
it may miss out on doing a complete TLB flush, and therefore may end
up using stale TLB entries from a previous guest that used the same
LPID value.
This should make migration more reliable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Commit b005255e12a3 ("KVM: PPC: Book3S HV: Context-switch new POWER8
SPRs") added a definition of KVM_REG_PPC_WORT with the same register
number as the existing KVM_REG_PPC_VRSAVE (though in fact the
definitions are not identical because of the different register sizes.)
For clarity, this moves KVM_REG_PPC_WORT to the next unused number,
and also adds it to api.txt.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
We worked around some nasty KVM magic page hcall breakages:
1) NX bit not honored, so ignore NX when we detect it
2) LE guests swizzle hypercall instruction
Without these fixes in place, there's no way it would make sense to expose kvm
hypercalls to a guest. Chances are immensely high it would trip over and break.
So add a new CAP that gives user space a hint that we have workarounds for the
bugs above in place. It can use those as hint to disable PV hypercalls when
the guest CPU is anything POWER7 or higher and the host does not have fixes
in place.
Signed-off-by: Alexander Graf <agraf@suse.de>
When we reset the in-kernel MPIC controller, we forget to reset some hidden
state such as destmask and output. This state is usually set when the guest
writes to the IDR register for a specific IRQ line.
To make sure we stay in sync and don't forget hidden state, treat reset of
the IDR register as a simple write of the IDR register. That automatically
updates all the hidden state as well.
Reported-by: Paul Janzen <pcj@pauljanzen.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
There are LE Linux guests out there that don't handle hypercalls correctly.
Instead of interpreting the instruction stream from device tree as big endian
they assume it's a little endian instruction stream and fail.
When we see an illegal instruction from such a byte reversed instruction stream,
bail out graciously and just declare every hcall as error.
Signed-off-by: Alexander Graf <agraf@suse.de>
We get an array of instructions from the hypervisor via device tree that
we write into a buffer that gets executed whenever we want to make an
ePAPR compliant hypercall.
However, the hypervisor passes us these instructions in BE order which
we have to manually convert to LE when we want to run them in LE mode.
With this fixup in place, I can successfully run LE kernels with KVM
PV enabled on PR KVM.
Signed-off-by: Alexander Graf <agraf@suse.de>
Use make_dsisr instead of open coding it. This also have
the added benefit of handling alignment interrupt on additional
instructions.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Although it's optional, IBM POWER cpus always had DAR value set on
alignment interrupt. So don't try to compute these values.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Because old kernels enable the magic page and then choke on NXed trampoline
code we have to disable NX by default in KVM when we use the magic page.
However, since commit b18db0b8 we have successfully fixed that and can now
leave NX enabled, so tell the hypervisor about this.
Signed-off-by: Alexander Graf <agraf@suse.de>
Old guests try to use the magic page, but map their trampoline code inside
of an NX region.
Since we can't fix those old kernels, try to detect whether the guest is sane
or not. If not, just disable NX functionality in KVM so that old guests at
least work at all. For newer guests, add a bit that we can set to keep NX
functionality available.
Signed-off-by: Alexander Graf <agraf@suse.de>
On recent IBM Power CPUs, while the hashed page table is looked up using
the page size from the segmentation hardware (i.e. the SLB), it is
possible to have the HPT entry indicate a larger page size. Thus for
example it is possible to put a 16MB page in a 64kB segment, but since
the hash lookup is done using a 64kB page size, it may be necessary to
put multiple entries in the HPT for a single 16MB page. This
capability is called mixed page-size segment (MPSS). With MPSS,
there are two relevant page sizes: the base page size, which is the
size used in searching the HPT, and the actual page size, which is the
size indicated in the HPT entry. [ Note that the actual page size is
always >= base page size ].
We use "ibm,segment-page-sizes" device tree node to advertise
the MPSS support to PAPR guest. The penc encoding indicates whether
we support a specific combination of base page size and actual
page size in the same segment. We also use the penc value in the
LP encoding of HPTE entry.
This patch exposes MPSS support to KVM guest by advertising the
feature via "ibm,segment-page-sizes". It also adds the necessary changes
to decode the base page size and the actual page size correctly from the
HPTE entry.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Today when KVM tries to reserve memory for the hash page table it
allocates from the normal page allocator first. If that fails it
falls back to CMA's reserved region. One of the side effects of
this is that we could end up exhausting the page allocator and
get linux into OOM conditions while we still have plenty of space
available in CMA.
This patch addresses this issue by first trying hash page table
allocation from CMA's reserved region before falling back to the normal
page allocator. So if we run out of memory, we really are out of memory.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
POWER8 introduces transactional memory which brings along a number of new
registers and MSR bits.
Implementing all of those is a pretty big headache, so for now let's at least
emulate enough to make Linux's context switching code happy.
Signed-off-by: Alexander Graf <agraf@suse.de>
POWER8 introduces a new facility called the "Event Based Branch" facility.
It contains of a few registers that indicate where a guest should branch to
when a defined event occurs and it's in PR mode.
We don't want to really enable EBB as it will create a big mess with !PR guest
mode while hardware is in PR and we don't really emulate the PMU anyway.
So instead, let's just leave it at emulation of all its registers.
Signed-off-by: Alexander Graf <agraf@suse.de>
POWER8 implements a new register called TAR. This register has to be
enabled in FSCR and then from KVM's point of view is mere storage.
This patch enables the guest to use TAR.
Signed-off-by: Alexander Graf <agraf@suse.de>
POWER8 introduced a new interrupt type called "Facility unavailable interrupt"
which contains its status message in a new register called FSCR.
Handle these exits and try to emulate instructions for unhandled facilities.
Follow-on patches enable KVM to expose specific facilities into the guest.
Signed-off-by: Alexander Graf <agraf@suse.de>
In parallel to the Processor ID Register (PIR) threaded POWER8 also adds a
Thread ID Register (TIR). Since PR KVM doesn't emulate more than one thread
per core, we can just always expose 0 here.
Signed-off-by: Alexander Graf <agraf@suse.de>
When we expose a POWER8 CPU into the guest, it will start accessing PMU SPRs
that we don't emulate. Just ignore accesses to them.
Signed-off-by: Alexander Graf <agraf@suse.de>
With the previous patches applied, we can now successfully use PR KVM on
little endian hosts which means we can now allow users to select it.
However, HV KVM still needs some work, so let's keep the kconfig conflict
on that one.
Signed-off-by: Alexander Graf <agraf@suse.de>
When the host CPU we're running on doesn't support dcbz32 itself, but the
guest wants to have dcbz only clear 32 bytes of data, we loop through every
executable mapped page to search for dcbz instructions and patch them with
a special privileged instruction that we emulate as dcbz32.
The only guests that want to see dcbz act as 32byte are book3s_32 guests, so
we don't have to worry about little endian instruction ordering. So let's
just always search for big endian dcbz instructions, also when we're on a
little endian host.
Signed-off-by: Alexander Graf <agraf@suse.de>
The shared (magic) page is a data structure that contains often used
supervisor privileged SPRs accessible via memory to the user to reduce
the number of exits we have to take to read/write them.
When we actually share this structure with the guest we have to maintain
it in guest endianness, because some of the patch tricks only work with
native endian load/store operations.
Since we only share the structure with either host or guest in little
endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.
For booke, the shared struct stays big endian. For book3s_64 hv we maintain
the struct in host native endian, since it never gets shared with the guest.
For book3s_64 pr we introduce a variable that tells us which endianness the
shared struct is in and route every access to it through helper inline
functions that evaluate this variable.
Signed-off-by: Alexander Graf <agraf@suse.de>
We expose a blob of hypercall instructions to user space that it gives to
the guest via device tree again. That blob should contain a stream of
instructions necessary to do a hypercall in big endian, as it just gets
passed into the guest and old guests use them straight away.
Signed-off-by: Alexander Graf <agraf@suse.de>
When the guest does an RTAS hypercall it keeps all RTAS variables inside a
big endian data structure.
To make sure we don't have to bother about endianness inside the actual RTAS
handlers, let's just convert the whole structure to host endian before we
call our RTAS handlers and back to big endian when we return to the guest.
Signed-off-by: Alexander Graf <agraf@suse.de>
The HTAB on PPC is always in big endian. When we access it via hypercalls
on behalf of the guest and we're running on a little endian host, we need
to make sure we swap the bits accordingly.
Signed-off-by: Alexander Graf <agraf@suse.de>
The default MSR when user space does not define anything should be identical
on little and big endian hosts, so remove MSR_LE from it.
Signed-off-by: Alexander Graf <agraf@suse.de>
The "shadow SLB" in the PACA is shared with the hypervisor, so it has to
be big endian. We access the shadow SLB during world switch, so let's make
sure we access it in big endian even when we're on a little endian host.
Signed-off-by: Alexander Graf <agraf@suse.de>
The HTAB is always big endian. We access the guest's HTAB using
copy_from/to_user, but don't yet take care of the fact that we might
be running on an LE host.
Wrap all accesses to the guest HTAB with big endian accessors.
Signed-off-by: Alexander Graf <agraf@suse.de>
The HTAB is always big endian. We access the guest's HTAB using
copy_from/to_user, but don't yet take care of the fact that we might
be running on an LE host.
Wrap all accesses to the guest HTAB with big endian accessors.
Signed-off-by: Alexander Graf <agraf@suse.de>
Commit 9308ab8e2d made C/R HTAB updates go byte-wise into the target HTAB.
However, it didn't update the guest's copy of the HTAB, but instead the
host local copy of it.
Write to the guest's HTAB instead.
Signed-off-by: Alexander Graf <agraf@suse.de>
CC: Paul Mackerras <paulus@samba.org>
Acked-by: Paul Mackerras <paulus@samba.org>
This patch make sure we inherit the LE bit correctly in different case
so that we can run Little Endian distro in PR mode
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The dcbtls instruction is able to lock data inside the L1 cache.
We don't want to give the guest actual access to hardware cache locks,
as that could influence other VMs on the same system. But we can tell
the guest that its locking attempt failed.
By implementing the instruction we at least don't give the guest a
program exception which it definitely does not expect.
Signed-off-by: Alexander Graf <agraf@suse.de>
The L1 instruction cache control register contains bits that indicate
that we're still handling a request. Mask those out when we set the SPR
so that a read doesn't assume we're still doing something.
Signed-off-by: Alexander Graf <agraf@suse.de>
* pci/misc:
PCI: Fix return value from pci_user_{read,write}_config_*()
PCI: Turn pcibios_penalize_isa_irq() into a weak function
PCI: Test for std config alias when testing extended config space
* pci/hotplug:
PCI: cpqphp: Fix possible null pointer dereference
NVMe: Implement PCIe reset notification callback
PCI: Notify driver before and after device reset
* pci/pci_is_bridge:
pcmcia: Use pci_is_bridge() to simplify code
PCI: pciehp: Use pci_is_bridge() to simplify code
PCI: acpiphp: Use pci_is_bridge() to simplify code
PCI: cpcihp: Use pci_is_bridge() to simplify code
PCI: shpchp: Use pci_is_bridge() to simplify code
PCI: rpaphp: Use pci_is_bridge() to simplify code
sparc/PCI: Use pci_is_bridge() to simplify code
powerpc/PCI: Use pci_is_bridge() to simplify code
ia64/PCI: Use pci_is_bridge() to simplify code
x86/PCI: Use pci_is_bridge() to simplify code
PCI: Use pci_is_bridge() to simplify code
PCI: Add new pci_is_bridge() interface
PCI: Rename pci_is_bridge() to pci_has_subordinate()
* pci/virtualization:
PCI: Introduce new device binding path using pci_dev.driver_override
Conflicts:
drivers/pci/pci-sysfs.c
Now that CONFIG_USB_DEBUG is gone, remove it from a number of defconfig
files that were enabling it.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The PPC fixes are important because they fix breakage that is new in 3.15.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJTdivEAAoJEBvWZb6bTYbyw3YQAIILnflhHNtklj1mfPnnibQf
c3BLCkJ0gtK6A0FO2aAHgSja0kpgbEEnSphE/A/cb0vkLon3n5O0pQoSKjGUUbBO
Mo0ndjzBYNmCP4MGxhkrg49VdqD40NaR0BjJAZudb4vUOw892WLFIJMIVmIqs9eG
8V/y6S7mPLmrooAKHZxXql9y30UC77T1VZ3r4pXwYgKtUT51BQfTyWiSfjQBa8yI
oGOSb8uqEC7YiOYPJYUNIMsyVqW4E6Qqs46rqtP4XZmSxzWXDzzgP4nQHHyJJCdZ
aBYkeG+sJZG7ZwleJLejAncjWUY9Oq9GkMYNj0cTAoP/zA6jBGAll96KGKRbes9z
bZUtCNL3ifLcgbIGeAxgjmYOq0XLGahHbqm9QISYW2XdRkBI+8EJs5FCP4YEHzZn
FSm3zcCQ+wtbqjBbZZcqqLa6A/CGzjyO26qz+BCxrZ0BQkQX/2am3UykQ0JWam3H
vX5ZM2ewJhs6SjFisPcswd20AN+SHjPyzPvErBLDfrqnAVbwj2ehgqyN2slVsqrj
UyGzeKCfJgA0TiEH/4K6j6hvQWynUU+/2JglIfGE6AXmWddazCzl/qx4LvuGKFoB
b8JSQ7YaHSsq/tHc8WhHkvcP0FSDZEiHcJN2iY1pwLKTSQp9JN3aPNruPKiO8dsW
N+LoHL5fFcDi6Uu6wS7w
=E2fU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Small fixes for x86, slightly larger fixes for PPC, and a forgotten
s390 patch. The PPC fixes are important because they fix breakage
that is new in 3.15"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: s390: announce irqfd capability
KVM: x86: disable master clock if TSC is reset during suspend
KVM: vmx: disable APIC virtualization in nested guests
KVM guest: Make pv trampoline code executable
KVM: PPC: Book3S: ifdef on CONFIG_KVM_BOOK3S_32_HANDLER for 32bit
KVM: PPC: Book3S HV: Add missing code for transaction reclaim on guest exit
KVM: PPC: Book3S: HV: make _PAGE_NUMA take effect
Since commit "efcac65 powerpc: Per process DSCR + some fixes (try#4)"
it is no longer possible to set the DSCR on a per-CPU basis.
The old behaviour was to minipulate the DSCR SPR directly but this is no
longer sufficient: the value is quickly overwritten by context switching.
This patch stores the per-CPU DSCR value in a kernel variable rather than
directly in the SPR and it is used whenever a process has not set the DSCR
itself. The sysfs interface (/sys/devices/system/cpu/cpuN/dscr) is unchanged.
Writes to the old global default (/sys/devices/system/cpu/dscr_default)
now set all of the per-CPU values and reads return the last written value.
The new per-CPU default is added to the paca_struct and is used everywhere
outside of sysfs.c instead of the old global default.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Split the __SYSFS_SPRSETUP macro into two parts so that registers requiring
custom read and write functions can use common code for their show and store
functions.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cleaning up inconsistent NULL checks.
There is otherwise a risk of a possible null pointer dereference.
Was largely found by using a static code analysis program called cppcheck.
Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit 32e45ff43eaf5c17f changed the default value of
RECLAIM_DISTANCE to 30. However the comment around arch
specifc definition of RECLAIM_DISTANCE is not updated to
reflect the same. Correct the value mentioned in the comment.
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <Kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Upcoming POWER8 chips support a concept called split core. This is where the
core can be split into subcores that although not full cores, are able to
appear as full cores to a guest.
The splitting & unsplitting procedure is mildly complicated, and explained at
length in the comments within the patch.
One notable detail is that when splitting or unsplitting we need to pull
offline cpus out of their offline state to do work as part of the procedure.
The interface for changing the split mode is via a sysfs file, eg:
$ echo 2 > /sys/devices/system/cpu/subcores_per_core
Currently supported values are '1', '2' and '4'. And indicate respectively that
the core should be unsplit, split in half, and split in quarters. These modes
correspond to threads_per_subcore of 8, 4 and 2.
We do not allow changing the split mode while KVM VMs are active. This is to
prevent the value changing while userspace is configuring the VM, and also to
prevent the mode being changed in such a way that existing guests are unable to
be run.
CPU hotplug fixes by Srivatsa. max_cpus fixes by Mahesh. cpuset fixes by
benh. Fix for irq race by paulus. The rest by mikey and mpe.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
To support split core on POWER8 we need to modify various parts of the
KVM code to use threads_per_subcore instead of threads_per_core. On
systems that do not support split core threads_per_subcore ==
threads_per_core and these changes are a nop.
We use threads_per_subcore as the value reported by KVM_CAP_PPC_SMT.
This communicates to userspace that guests can only be created with
a value of threads_per_core that is less than or equal to the current
threads_per_subcore. This ensures that guests can only be created with a
thread configuration that we are able to run given the current split
core mode.
Although threads_per_subcore can change during the life of the system,
the commit that enables that will ensure that threads_per_subcore does
not change during the life of a KVM VM.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Alexander Graf <agraf@suse.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
To support split core we need to change the check in __cpu_up() that
determines if a cpu is allowed to come online.
Currently we refuse to online cpus which are not the primary thread
within their core.
On POWER8 with split core support this check needs to instead refuse to
online cpus which are not the primary thread within their *sub* core.
On POWER7 and other systems that do not support split core,
threads_per_subcore == threads_per_core and so the check is equivalent.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On POWER8 we have a new concept of a subcore. This is what happens when
you take a regular core and split it. A subcore is a grouping of two or
four SMT threads, as well as a handfull of SPRs which allows the subcore
to appear as if it were a core from the point of view of a guest.
Unlike threads_per_core which is fixed at boot, threads_per_subcore can
change while the system is running. Most code will not want to use
threads_per_subcore.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
To support split core we need to be able to force all secondaries into
nap, so the core can detect they are idle and do an unsplit.
Currently power7_nap() will return without napping if there is an irq
pending. We want to ignore the pending irq and nap anyway, we will deal
with the interrupt later.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
As part of the support for split core on POWER8, we want to be able to
block splitting of the core while KVM VMs are active.
The logic to do that would be exactly the same as the code we currently
have for inhibiting onlining of secondaries.
Instead of adding an identical mechanism to block split core, rework the
secondary inhibit code to be a "HV KVM is active" check. We can then use
that in both the cpu hotplug code and the upcoming split core code.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Alexander Graf <agraf@suse.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Based off 3bccd996 for ia64, convert powerpc to use the generic per-CPU
topology tracking, specifically:
initialize per cpu numa_node entry in start_secondary
remove the powerpc cpu_to_node()
define CONFIG_USE_PERCPU_NUMA_NODE_ID if NUMA
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>