IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The orig_ist[] array is a shadow copy of the IST array in the TSS. The
reason why it exists is that older kernels used two TSS variants with
different pointers into the debug stack. orig_ist[] contains the real
starting points.
There is no point anymore to do so because the same information can be
retrieved using the base address of the cpu entry area mapping and the
offsets of the various exception stacks.
No functional change. Preparation for removing orig_ist.
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.974900463@linutronix.de
The orig_ist[] array is a shadow copy of the IST array in the TSS. The
reason why it exists is that older kernels used two TSS variants with
different pointers into the debug stack. orig_ist[] contains the real
starting points.
There is no point anymore to do so because the same information can be
retrieved using the base address of the cpu entry area mapping and the
offsets of the various exception stacks.
No functional change. Preparation for removing orig_ist.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.885741626@linutronix.de
At the moment everything assumes a full linear mapping of the various
exception stacks. Adding guard pages to the cpu entry area mapping of the
exception stacks will break that assumption.
As a preparatory step convert both the real storage and the effective
mapping in the cpu entry area from character arrays to structures.
To ensure that both arrays have the same ordering and the same size of the
individual stacks fill the members with a macro. The guard size is the only
difference between the two resulting structures. For now both have guard
size 0 until the preparation of all usage sites is done.
Provide a couple of helper macros which are used in the following
conversions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.506807893@linutronix.de
Commit
37fe6a42b3 ("x86: Check stack overflow in detail")
added a broad check for the full exception stack area, i.e. it considers
the full exception stack area as valid.
That's wrong in two aspects:
1) It does not check the individual areas one by one
2) #DF, NMI and #MCE are not enabling interrupts which means that a
regular device interrupt cannot happen in their context. In fact if a
device interrupt hits one of those IST stacks that's a bug because some
code path enabled interrupts while handling the exception.
Limit the check to the #DB stack and consider all other IST stacks as
'overflow' or invalid.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.682135110@linutronix.de
Starting from Icelake, XMM registers can be collected in PEBS record.
But current code only output the pt_regs.
Add a new struct x86_perf_regs for both pt_regs and xmm_regs. The
xmm_regs will be used later to keep a pointer to PEBS record which has
XMM information.
XMM registers are 128 bit. To simplify the code, they are handled like
two different registers, which means setting two bits in the register
bitmap. This also allows only sampling the lower 64bit bits in XMM.
The index of XMM registers starts from 32. There are 16 XMM registers.
So all reserved space for regs are used. Remove REG_RESERVED.
Add PERF_REG_X86_XMM_MAX, which stands for the max number of all x86
regs including both GPRs and XMM.
Add REG_NOSUPPORT for 32bit to exclude unsupported registers.
Previous platforms can not collect XMM information in PEBS record.
Adding pebs_no_xmm_regs to indicate the unsupported platforms.
The common code still validates the supported registers. However, it
cannot check model specific registers, e.g. XMM. Add extra check in
x86_pmu_hw_config() to reject invalid config of regs_user and regs_intr.
The regs_user never supports XMM collection.
The regs_intr only supports XMM collection when sampling PEBS event on
icelake and later platforms.
Originally-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-3-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mikhail reported a lockdep splat related to the AMD specific ssb_state
lock:
CPU0 CPU1
lock(&st->lock);
local_irq_disable();
lock(&(&sighand->siglock)->rlock);
lock(&st->lock);
<Interrupt>
lock(&(&sighand->siglock)->rlock);
*** DEADLOCK ***
The connection between sighand->siglock and st->lock comes through seccomp,
which takes st->lock while holding sighand->siglock.
Make sure interrupts are disabled when __speculation_ctrl_update() is
invoked via prctl() -> speculation_ctrl_update(). Add a lockdep assert to
catch future offenders.
Fixes: 1f50ddb4f4 ("x86/speculation: Handle HT correctly on AMD")
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1904141948200.4917@nanos.tec.linutronix.de
When cache allocation is supported and the user creates a new resctrl
resource group, the allocations of the new resource group are
initialized to all regions that it can possibly use. At this time these
regions are all that are shareable by other resource groups as well as
regions that are not currently used. The new resource group's mode is
also initialized to reflect this initialization and set to "shareable".
The new resource group's mode is currently repeatedly initialized within
the loop that configures the hardware with the resource group's default
allocations.
Move the initialization of the resource group's mode outside the
hardware configuration loop. The resource group's mode is now
initialized only once as the final step to reflect that its configured
allocations are "shareable".
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1554839629-5448-1-git-send-email-xiaochen.shen@intel.com
If a task is scheduled out and receives a signal then it won't be
able to take the fastpath because the registers aren't available. The
slowpath is more expensive compared to XRSTOR + XSAVE which usually
succeeds.
Here are some clock_gettime() numbers from a bigger box with AVX512
during bootup:
- __fpregs_load_activate() takes 140ns - 350ns. If it was the most recent
FPU context on the CPU then the optimisation in __fpregs_load_activate()
will skip the load (which was disabled during the test).
- copy_fpregs_to_sigframe() takes 200ns - 450ns if it succeeds. On a
pagefault it is 1.8us - 3us usually in the 2.6us area.
- The slowpath takes 1.5us - 6us. Usually in the 2.6us area.
My testcases (including lat_sig) take the fastpath without
__fpregs_load_activate(). I expect this to be the majority.
Since the slowpath is in the >1us area it makes sense to load the
registers and attempt to save them directly. The direct save may fail
but should only happen on the first invocation or after fork() while the
page is read-only.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-27-bigeasy@linutronix.de
Defer loading of FPU state until return to userspace. This gives
the kernel the potential to skip loading FPU state for tasks that
stay in kernel mode, or for tasks that end up with repeated
invocations of kernel_fpu_begin() & kernel_fpu_end().
The fpregs_lock/unlock() section ensures that the registers remain
unchanged. Otherwise a context switch or a bottom half could save the
registers to its FPU context and the processor's FPU registers would
became random if modified at the same time.
KVM swaps the host/guest registers on entry/exit path. This flow has
been kept as is. First it ensures that the registers are loaded and then
saves the current (host) state before it loads the guest's registers. The
swap is done at the very end with disabled interrupts so it should not
change anymore before theg guest is entered. The read/save version seems
to be cheaper compared to memcpy() in a micro benchmark.
Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy().
For kernel threads, this flag gets never cleared which avoids saving /
restoring the FPU state for kernel threads and during in-kernel usage of
the FPU registers.
[
bp: Correct and update commit message and fix checkpatch warnings.
s/register/registers/ where it is used in plural.
minor comment corrections.
remove unused trace_x86_fpu_activate_state() TP.
]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Waiman Long <longman@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
The 64-bit case (both 64-bit and 32-bit frames) loads the new state from
user memory.
However, doing this is not desired if the FPU state is going to be
restored on return to userland: it would be required to disable
preemption in order to avoid a context switch which would set
TIF_NEED_FPU_LOAD. If this happens before the restore operation then the
loaded registers would become volatile.
Furthermore, disabling preemption while accessing user memory requires
to disable the pagefault handler. An error during FXRSTOR would then
mean that either a page fault occurred (and it would have to be retried
with enabled page fault handler) or a #GP occurred because the xstate is
bogus (after all, the signal handler can modify it).
In order to avoid that mess, copy the FPU state from userland, validate
it and then load it. The copy_kernel_…() helpers are basically just
like the old helpers except that they operate on kernel memory and the
fault handler just sets the error value and the caller handles it.
copy_user_to_fpregs_zeroing() and its helpers remain and will be used
later for a fastpath optimisation.
[ bp: Clarify commit message. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-22-bigeasy@linutronix.de
copy_fpstate_to_sigframe() stores the registers directly to user space.
This is okay because the FPU registers are valid and saving them
directly avoids saving them into kernel memory and making a copy.
However, this cannot be done anymore if the FPU registers are going
to be restored on the return to userland. It is possible that the FPU
registers will be invalidated in the middle of the save operation and
this should be done with disabled preemption / BH.
Save the FPU registers to the task's FPU struct and copy them to the
user memory later on.
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-18-bigeasy@linutronix.de
Commit
2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
added the new define UCODE_NEW to denote that an update should happen
only when newer microcode (than installed on the system) has been found.
But it missed adjusting that for the old /dev/cpu/microcode loading
interface. Fix it.
Fixes: 2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jannh@google.com>
Link: https://lkml.kernel.org/r/20190405133010.24249-3-bp@alien8.de
As reported by 0-DAY kernel test infrastructure:
arch/x86//kernel/ima_arch.c: In function 'arch_get_ima_policy':
>> arch/x86//kernel/ima_arch.c:78:4: error: implicit declaration of
function 'set_module_sig_enforced' [-Werror=implicit-function-declaration]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Change generic_load_microcode() to use the iov_iter API instead of a
clumsy open-coded version which has to pay attention to __user data
or kernel data, depending on the loading method. This allows to avoid
explicit casting between user and kernel pointers.
Because the iov_iter API makes it hard to read the same location twice,
as a side effect, also fix a double-read of the microcode header (which
could e.g. lead to out-of-bounds reads in microcode_sanity_check()).
Not that it matters much, only root is allowed to load microcode
anyway...
[ bp: Massage a bit, sort function-local variables. ]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190404111128.131157-1-jannh@google.com
user_fpu_begin() sets fpu_fpregs_owner_ctx to task's fpu struct. This is
always the case since there is no lazy FPU anymore.
fpu_fpregs_owner_ctx is used during context switch to decide if it needs
to load the saved registers or if the currently loaded registers are
valid. It could be skipped during a
taskA -> kernel thread -> taskA
switch because the switch to the kernel thread would not alter the CPU's
sFPU tate.
Since this field is always updated during context switch and
never invalidated, setting it manually (in user context) makes no
difference. A kernel thread with kernel_fpu_begin() block could
set fpu_fpregs_owner_ctx to NULL but a kernel thread does not use
user_fpu_begin().
This is a leftover from the lazy-FPU time.
Remove user_fpu_begin(), it does not change fpu_fpregs_owner_ctx's
content.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-9-bigeasy@linutronix.de
The struct fpu.initialized member is always set to one for user tasks
and zero for kernel tasks. This avoids saving/restoring the FPU
registers for kernel threads.
The ->initialized = 0 case for user tasks has been removed in previous
changes, for instance, by doing an explicit unconditional init at fork()
time for FPU-less systems which was otherwise delayed until the emulated
opcode.
The context switch code (switch_fpu_prepare() + switch_fpu_finish())
can't unconditionally save/restore registers for kernel threads. Not
only would it slow down the switch but also load a zeroed xcomp_bv for
XSAVES.
For kernel_fpu_begin() (+end) the situation is similar: EFI with runtime
services uses this before alternatives_patched is true. Which means that
this function is used too early and it wasn't the case before.
For those two cases, use current->mm to distinguish between user and
kernel thread. For kernel_fpu_begin() skip save/restore of the FPU
registers.
During the context switch into a kernel thread don't do anything. There
is no reason to save the FPU state of a kernel thread.
The reordering in __switch_to() is important because the current()
pointer needs to be valid before switch_fpu_finish() is invoked so ->mm
is seen of the new task instead the old one.
N.B.: fpu__save() doesn't need to check ->mm because it is called by
user tasks only.
[ bp: Massage. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-8-bigeasy@linutronix.de
In commit
72a671ced6 ("x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels")
the 32bit and 64bit path of the signal delivery code were merged.
The 32bit version:
int save_i387_xstate_ia32(void __user *buf)
…
if (cpu_has_xsave)
return save_i387_xsave(fp);
if (cpu_has_fxsr)
return save_i387_fxsave(fp);
The 64bit version:
int save_i387_xstate(void __user *buf)
…
if (user_has_fpu()) {
if (use_xsave())
err = xsave_user(buf);
else
err = fxsave_user(buf);
if (unlikely(err)) {
__clear_user(buf, xstate_size);
return err;
The merge:
int save_xstate_sig(void __user *buf, void __user *buf_fx, int size)
…
if (user_has_fpu()) {
/* Save the live register state to the user directly. */
if (save_user_xstate(buf_fx))
return -1;
/* Update the thread's fxstate to save the fsave header. */
if (ia32_fxstate)
fpu_fxsave(&tsk->thread.fpu);
I don't think that we needed to save the FPU registers to ->thread.fpu
because the registers were stored in buf_fx. Today the state will be
restored from buf_fx after the signal was handled (I assume that this
was also the case with lazy-FPU).
Since commit
66463db4fc ("x86, fpu: shift drop_init_fpu() from save_xstate_sig() to handle_signal()")
it is ensured that the signal handler starts with clear/fresh set of FPU
registers which means that the previous store is futile.
Remove the copy_fxregs_to_kernel() call because task's FPU state is
cleared later in handle_signal() via fpu__clear().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-7-bigeasy@linutronix.de
With lazy-FPU support the (now named variable) ->initialized was set to
true if the CPU's FPU registers were holding a valid state of the
FPU registers for the active process. If it was set to false then the
FPU state was saved in fpu->state and the FPU was deactivated.
With lazy-FPU gone, ->initialized is always true for user threads and
kernel threads never call this function so ->initialized is always true
in copy_fpstate_to_sigframe().
The using_compacted_format() check is also a leftover from the lazy-FPU
time. In the
->initialized == false
case copy_to_user() would copy the compacted buffer while userland would
expect the non-compacted format instead. So in order to save the FPU
state in the non-compacted form it issues XSAVE to save the *current*
FPU state.
If the FPU is not enabled, the attempt raises the FPU trap, the trap
restores the FPU contents and re-enables the FPU and XSAVE is invoked
again and succeeds.
*This* does not longer work since commit
bef8b6da95 ("x86/fpu: Handle #NM without FPU emulation as an error")
Remove the check for ->initialized because it is always true and remove
the false condition. Update the comment to reflect that the state is
always live.
[ bp: Massage. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-6-bigeasy@linutronix.de
The preempt_disable() section was introduced in commit
a10b6a16cd ("x86/fpu: Make the fpu state change in fpu__clear() scheduler-atomic")
and it was said to be temporary.
fpu__initialize() initializes the FPU struct to its initial value and
then sets ->initialized to 1. The last part is the important one.
The content of the state does not matter because it gets set via
copy_init_fpstate_to_fpregs().
A preemption here has little meaning because the registers will always be
set to the same content after copy_init_fpstate_to_fpregs(). A softirq
with a kernel_fpu_begin() could also force to save FPU's registers after
fpu__initialize() without changing the outcome here.
Remove the preempt_disable() section in fpu__clear(), preemption here
does not hurt.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-4-bigeasy@linutronix.de
This is a preparation for the removal of the ->initialized member in the
fpu struct.
__fpu__restore_sig() is deactivating the FPU via fpu__drop() and then
setting manually ->initialized followed by fpu__restore(). The result is
that it is possible to manipulate fpu->state and the state of registers
won't be saved/restored on a context switch which would overwrite
fpu->state:
fpu__drop(fpu):
...
fpu->initialized = 0;
preempt_enable();
<--- context switch
Don't access the fpu->state while the content is read from user space
and examined/sanitized. Use a temporary kmalloc() buffer for the
preparation of the FPU registers and once the state is considered okay,
load it. Should something go wrong, return with an error and without
altering the original FPU registers.
The removal of fpu__initialize() is a nop because fpu->initialized is
already set for the user task.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-2-bigeasy@linutronix.de
Now that we removed support for the NULL device argument in the DMA API,
there is no need to cater for that in the x86 code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
The Performance and Energy Bias Hint (EPB) is expected to be set by
user space through the generic MSR interface, but that interface is
not particularly nice and there are security concerns regarding it,
so it is not always available.
For this reason, add a sysfs interface for reading and updating the
EPB, in the form of a new attribute, energy_perf_bias, located
under /sys/devices/system/cpu/cpu#/power/ for online CPUs that
support the EPB feature.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Borislav Petkov <bp@suse.de>
The current handling of MSR_IA32_ENERGY_PERF_BIAS in the kernel is
problematic, because it may cause changes made by user space to that
MSR (with the help of the x86_energy_perf_policy tool, for example)
to be lost every time a CPU goes offline and then back online as well
as during system-wide power management transitions into sleep states
and back into the working state.
The first problem is that if the current EPB value for a CPU going
online is 0 ('performance'), the kernel will change it to 6 ('normal')
regardless of whether or not this is the first bring-up of that CPU.
That also happens during system-wide resume from sleep states
(including, but not limited to, hibernation). However, the EPB may
have been adjusted by user space this way and the kernel should not
blindly override that setting.
The second problem is that if the platform firmware resets the EPB
values for any CPUs during system-wide resume from a sleep state,
the kernel will not restore their previous EPB values that may
have been set by user space before the preceding system-wide
suspend transition. Again, that behavior may at least be confusing
from the user space perspective.
In order to address these issues, rework the handling of
MSR_IA32_ENERGY_PERF_BIAS so that the EPB value is saved on CPU
offline and restored on CPU online as well as (for the boot CPU)
during the syscore stages of system-wide suspend and resume
transitions, respectively.
However, retain the policy by which the EPB is set to 6 ('normal')
on the first bring-up of each CPU if its initial value is 0, based
on the observation that 0 may mean 'not initialized' just as well as
'performance' in that case.
While at it, move the MSR_IA32_ENERGY_PERF_BIAS handling code into
a separate file and document it in Documentation/admin-guide.
Fixes: abe48b1082 (x86, intel, power: Initialize MSR_IA32_ENERGY_PERF_BIAS)
Fixes: b51ef52df7 (x86/cpu: Restore MSR_IA32_ENERGY_PERF_BIAS after resume)
Reported-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
One of the more common cases of allocation size calculations is finding the
size of a structure that has a zero-sized array at the end, along with
memory for some number of elements for that array. For example:
struct foo {
int stuff;
struct boo entry[];
};
instance = vzalloc(sizeof(struct foo) + count * sizeof(struct boo));
Instead of leaving these open-coded and prone to type mistakes, use the new
struct_size() helper:
instance = vzalloc(struct_size(instance, entry, count));
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190403184230.GA5295@embeddedor
Parsing entries in an ACPI table had assumed a generic header
structure. There is no standard ACPI header, though, so less common
layouts with different field sizes required custom parsers to go through
their subtable entry list.
Create the infrastructure for adding different table types so parsing
the entries array may be more reused for all ACPI system tables and
the common code doesn't need to be duplicated.
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Keith Busch <keith.busch@intel.com>
Tested-by: Brice Goglin <Brice.Goglin@inria.fr>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Occasionally GCC is less agressive with inlining and the following is
observed:
arch/x86/kernel/signal.o: warning: objtool: restore_sigcontext()+0x3cc: call to force_valid_ss.isra.5() with UACCESS enabled
arch/x86/kernel/signal.o: warning: objtool: do_signal()+0x384: call to frame_uc_flags.isra.0() with UACCESS enabled
Cure this by moving this code out of the AC=1 region, since it really
isn't needed for the user access.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Effectively reverts commit:
2c7577a758 ("sched/x86_64: Don't save flags on context switch")
Specifically because SMAP uses FLAGS.AC which invalidates the claim
that the kernel has clean flags.
In particular; while preemption from interrupt return is fine (the
IRET frame on the exception stack contains FLAGS) it breaks any code
that does synchonous scheduling, including preempt_enable().
This has become a significant issue ever since commit:
5b24a7a2aa ("Add 'unsafe' user access functions for batched accesses")
provided for means of having 'normal' C code between STAC / CLAC,
exposing the FLAGS.AC state. So far this hasn't led to trouble,
however fix it before it comes apart.
Reported-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Fixes: 5b24a7a2aa ("Add 'unsafe' user access functions for batched accesses")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
MDS is vulnerable with SMT. Make that clear with a one-time printk
whenever SMT first gets enabled.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
arch_smt_update() now has a dependency on both Spectre v2 and MDS
mitigations. Move its initial call to after all the mitigation decisions
have been made.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>