IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In case of JITs, each of the JIT backends compiles the BPF nospec instruction
/either/ to a machine instruction which emits a speculation barrier /or/ to
/no/ machine instruction in case the underlying architecture is not affected
by Speculative Store Bypass or has different mitigations in place already.
This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence'
instruction for mitigation. In case of arm64, we rely on the firmware mitigation
as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled,
it works for all of the kernel code with no need to provide any additional
instructions here (hence only comment in arm64 JIT). Other archs can follow
as needed. The BPF nospec instruction is specifically targeting Spectre v4
since i) we don't use a serialization barrier for the Spectre v1 case, and
ii) mitigation instructions for v1 and v4 might be different on some archs.
The BPF nospec is required for a future commit, where the BPF verifier does
annotate intermediate BPF programs with speculation barriers.
Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Commit 91c960b0056672 ("bpf: Rename BPF_XADD and prepare to encode other
atomics in .imm") converted BPF_XADD to BPF_ATOMIC and updated all JIT
implementations to reject JIT'ing instructions with an immediate value
different from BPF_ADD. However, ppc32 BPF JIT was implemented around
the same time and didn't include the same change. Update the ppc32 JIT
accordingly.
Fixes: 51c66ad849a7 ("powerpc/bpf: Implement extended BPF on PPC32")
Cc: stable@vger.kernel.org # v5.13+
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/426699046d89fe50f66ecf74bd31c01eda976ba5.1625145429.git.naveen.n.rao@linux.vnet.ibm.com
blrl corrupts the link stack. Instead use bctrl when making function
calls from BPF programs.
Reported-by: Anton Blanchard <anton@ozlabs.org>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210609090024.1446800-1-naveen.n.rao@linux.vnet.ibm.com
If the target of a function call is within 32 Mbytes distance, use a
standard function call with 'bl' instead of the 'lis/ori/mtlr/blrl'
sequence.
In the first pass, no memory has been allocated yet and the code
position is not known yet (image pointer is NULL). This pass is there
to calculate the amount of memory to allocate for the EBPF code, so
assume the 4 instructions sequence is required, so that enough memory
is allocated.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/74944a1e3e5cfecc141e440a6ccd37920e186b70.1618227846.git.christophe.leroy@csgroup.eu
Implement Extended Berkeley Packet Filter on Powerpc 32
Test result with test_bpf module:
test_bpf: Summary: 378 PASSED, 0 FAILED, [354/366 JIT'ed]
Registers mapping:
[BPF_REG_0] = r11-r12
/* function arguments */
[BPF_REG_1] = r3-r4
[BPF_REG_2] = r5-r6
[BPF_REG_3] = r7-r8
[BPF_REG_4] = r9-r10
[BPF_REG_5] = r21-r22 (Args 9 and 10 come in via the stack)
/* non volatile registers */
[BPF_REG_6] = r23-r24
[BPF_REG_7] = r25-r26
[BPF_REG_8] = r27-r28
[BPF_REG_9] = r29-r30
/* frame pointer aka BPF_REG_10 */
[BPF_REG_FP] = r17-r18
/* eBPF jit internal registers */
[BPF_REG_AX] = r19-r20
[TMP_REG] = r31
As PPC32 doesn't have a redzone in the stack, a stack frame must always
be set in order to host at least the tail count counter.
The stack frame remains for tail calls, it is set by the first callee
and freed by the last callee.
r0 is used as temporary register as much as possible. It is referenced
directly in the code in order to avoid misusing it, because some
instructions interpret it as value 0 instead of register r0
(ex: addi, addis, stw, lwz, ...)
The following operations are not implemented:
case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
The following operations are only implemented for power of two constants:
case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/61d8b149176ddf99e7d5cef0b6dc1598583ca202.1616430991.git.christophe.leroy@csgroup.eu