IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Right now we switch the host fprs/vrs in kvm_arch_vcpu_load and switch
back in kvm_arch_vcpu_put. This process is already optimized
since commit 9977e886cb ("s390/kernel: lazy restore fpu registers")
avoiding double save/restores on schedule. We still reload the pointers
and test the guest fpc on each context switch, though.
We can minimize the cost of vcpu_load/put by doing the test in the
VCPU_RUN ioctl itself. As most VCPU threads almost never exit to
userspace in the common fast path, this allows to avoid this overhead
for the common case (eventfd driven I/O, all exits including sleep
handled in the kernel) - making kvm_arch_vcpu_load/put basically
disappear in perf top.
Also adapt the fpu get/set ioctls.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Right now we save the host access registers in kvm_arch_vcpu_load
and load them in kvm_arch_vcpu_put. Vice versa for the guest access
registers. On schedule this means, that we load/save access registers
multiple times.
e.g. VCPU_RUN with just one reschedule and then return does
[from user space via VCPU_RUN]
- save the host registers in kvm_arch_vcpu_load (via ioctl)
- load the guest registers in kvm_arch_vcpu_load (via ioctl)
- do guest stuff
- decide to schedule/sleep
- save the guest registers in kvm_arch_vcpu_put (via sched)
- load the host registers in kvm_arch_vcpu_put (via sched)
- save the host registers in switch_to (via sched)
- schedule
- return
- load the host registers in switch_to (via sched)
- save the host registers in kvm_arch_vcpu_load (via sched)
- load the guest registers in kvm_arch_vcpu_load (via sched)
- do guest stuff
- decide to go to userspace
- save the guest registers in kvm_arch_vcpu_put (via ioctl)
- load the host registers in kvm_arch_vcpu_put (via ioctl)
[back to user space]
As the kernel does not use access registers, we can avoid
this reloading and simply piggy back on switch_to (let it save
the guest values instead of host values in thread.acrs) by
moving the host/guest switch into the VCPU_RUN ioctl function.
We now do
[from user space via VCPU_RUN]
- save the host registers in kvm_arch_vcpu_ioctl_run
- load the guest registers in kvm_arch_vcpu_ioctl_run
- do guest stuff
- decide to schedule/sleep
- save the guest registers in switch_to
- schedule
- return
- load the guest registers in switch_to (via sched)
- do guest stuff
- decide to go to userspace
- save the guest registers in kvm_arch_vcpu_ioctl_run
- load the host registers in kvm_arch_vcpu_ioctl_run
This seems to save about 10% of the vcpu_put/load functions
according to perf.
As vcpu_load no longer switches the acrs, We can also loading
the acrs in kvm_arch_vcpu_ioctl_set_sregs.
Suggested-by: Fan Zhang <zhangfan@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Diag224 requires a page-aligned 4k buffer to store the name table
into. kmalloc does not guarantee page alignment, hence we replace it
with __get_free_page for the buffer allocation.
Cc: stable@vger.kernel.org # v4.8+
Reported-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Usually a validity intercept is a programming error of the host
because of invalid entries in the state description.
We can get a validity intercept if the mode of the runtime
instrumentation control block is wrong. As the host does not know
which modes are valid, this can be used by userspace to trigger
a WARN.
Instead of printing a WARN let's return an error to userspace as
this can only happen if userspace provides a malformed initial
value (e.g. on migration). The kernel should never warn on bogus
input. Instead let's log it into the s390 debug feature.
While at it, let's return -EINVAL for all validity intercepts as
this will trigger an error in QEMU like
error: kvm run failed Invalid argument
PSW=mask 0404c00180000000 addr 000000000063c226 cc 00
R00=000000000000004f R01=0000000000000004 R02=0000000000760005 R03=000000007fe0a000
R04=000000000064ba2a R05=000000049db73dd0 R06=000000000082c4b0 R07=0000000000000041
R08=0000000000000002 R09=000003e0804042a8 R10=0000000496152c42 R11=000000007fe0afb0
[...]
This will avoid an endless loop of validity intercepts.
Cc: stable@vger.kernel.org # v4.5+
Fixes: c6e5f16637 ("KVM: s390: implement the RI support of guest")
Acked-by: Fan Zhang <zhangfan@linux.vnet.ibm.com>
Reviewed-by: Pierre Morel <pmorel@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
All architectures:
Move `make kvmconfig` stubs from x86; use 64 bits for debugfs stats.
ARM:
Important fixes for not using an in-kernel irqchip; handle SError
exceptions and present them to guests if appropriate; proxying of GICV
access at EL2 if guest mappings are unsafe; GICv3 on AArch32 on ARMv8;
preparations for GICv3 save/restore, including ABI docs; cleanups and
a bit of optimizations.
MIPS:
A couple of fixes in preparation for supporting MIPS EVA host kernels;
MIPS SMP host & TLB invalidation fixes.
PPC:
Fix the bug which caused guests to falsely report lockups; other minor
fixes; a small optimization.
s390:
Lazy enablement of runtime instrumentation; up to 255 CPUs for nested
guests; rework of machine check deliver; cleanups and fixes.
x86:
IOMMU part of AMD's AVIC for vmexit-less interrupt delivery; Hyper-V
TSC page; per-vcpu tsc_offset in debugfs; accelerated INS/OUTS in
nVMX; cleanups and fixes.
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJX9iDrAAoJEED/6hsPKofoOPoIAIUlgojkb9l2l1XVDgsXdgQL
sRVhYSVv7/c8sk9vFImrD5ElOPZd+CEAIqFOu45+NM3cNi7gxip9yftUVs7wI5aC
eDZRWm1E4trDZLe54ZM9ThcqZzZZiELVGMfR1+ZndUycybwyWzafpXYsYyaXp3BW
hyHM3qVkoWO3dxBWFwHIoO/AUJrWYkRHEByKyvlC6KPxSdBPSa5c1AQwMCoE0Mo4
K/xUj4gBn9eMelNhg4Oqu/uh49/q+dtdoP2C+sVM8bSdquD+PmIeOhPFIcuGbGFI
B+oRpUhIuntN39gz8wInJ4/GRSeTuR2faNPxMn4E1i1u4LiuJvipcsOjPfe0a18=
=fZRB
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"All architectures:
- move `make kvmconfig` stubs from x86
- use 64 bits for debugfs stats
ARM:
- Important fixes for not using an in-kernel irqchip
- handle SError exceptions and present them to guests if appropriate
- proxying of GICV access at EL2 if guest mappings are unsafe
- GICv3 on AArch32 on ARMv8
- preparations for GICv3 save/restore, including ABI docs
- cleanups and a bit of optimizations
MIPS:
- A couple of fixes in preparation for supporting MIPS EVA host
kernels
- MIPS SMP host & TLB invalidation fixes
PPC:
- Fix the bug which caused guests to falsely report lockups
- other minor fixes
- a small optimization
s390:
- Lazy enablement of runtime instrumentation
- up to 255 CPUs for nested guests
- rework of machine check deliver
- cleanups and fixes
x86:
- IOMMU part of AMD's AVIC for vmexit-less interrupt delivery
- Hyper-V TSC page
- per-vcpu tsc_offset in debugfs
- accelerated INS/OUTS in nVMX
- cleanups and fixes"
* tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (140 commits)
KVM: MIPS: Drop dubious EntryHi optimisation
KVM: MIPS: Invalidate TLB by regenerating ASIDs
KVM: MIPS: Split kernel/user ASID regeneration
KVM: MIPS: Drop other CPU ASIDs on guest MMU changes
KVM: arm/arm64: vgic: Don't flush/sync without a working vgic
KVM: arm64: Require in-kernel irqchip for PMU support
KVM: PPC: Book3s PR: Allow access to unprivileged MMCR2 register
KVM: PPC: Book3S PR: Support 64kB page size on POWER8E and POWER8NVL
KVM: PPC: Book3S: Remove duplicate setting of the B field in tlbie
KVM: PPC: BookE: Fix a sanity check
KVM: PPC: Book3S HV: Take out virtual core piggybacking code
KVM: PPC: Book3S: Treat VTB as a per-subcore register, not per-thread
ARM: gic-v3: Work around definition of gic_write_bpr1
KVM: nVMX: Fix the NMI IDT-vectoring handling
KVM: VMX: Enable MSR-BASED TPR shadow even if APICv is inactive
KVM: nVMX: Fix reload apic access page warning
kvmconfig: add virtio-gpu to config fragment
config: move x86 kvm_guest.config to a common location
arm64: KVM: Remove duplicating init code for setting VMID
ARM: KVM: Support vgic-v3
...
Pull s390 updates from Martin Schwidefsky:
"The new features and main improvements in this merge for v4.9
- Support for the UBSAN sanitizer
- Set HAVE_EFFICIENT_UNALIGNED_ACCESS, it improves the code in some
places
- Improvements for the in-kernel fpu code, in particular the overhead
for multiple consecutive in kernel fpu users is recuded
- Add a SIMD implementation for the RAID6 gen and xor operations
- Add RAID6 recovery based on the XC instruction
- The PCI DMA flush logic has been improved to increase the speed of
the map / unmap operations
- The time synchronization code has seen some updates
And bug fixes all over the place"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (48 commits)
s390/con3270: fix insufficient space padding
s390/con3270: fix use of uninitialised data
MAINTAINERS: update DASD maintainer
s390/cio: fix accidental interrupt enabling during resume
s390/dasd: add missing \n to end of dev_err messages
s390/config: Enable config options for Docker
s390/dasd: make query host access interruptible
s390/dasd: fix panic during offline processing
s390/dasd: fix hanging offline processing
s390/pci_dma: improve lazy flush for unmap
s390/pci_dma: split dma_update_trans
s390/pci_dma: improve map_sg
s390/pci_dma: simplify dma address calculation
s390/pci_dma: remove dma address range check
iommu/s390: simplify registration of I/O address translation parameters
s390: migrate exception table users off module.h and onto extable.h
s390: export header for CLP ioctl
s390/vmur: fix irq pointer dereference in int handler
s390/dasd: add missing KOBJ_CHANGE event for unformatted devices
s390: enable UBSAN
...
Two stubs are added:
o kvm_arch_has_vcpu_debugfs(): must return true if the arch
supports creating debugfs entries in the vcpu debugfs dir
(which will be implemented by the next commit)
o kvm_arch_create_vcpu_debugfs(): code that creates debugfs
entries in the vcpu debugfs dir
For x86, this commit introduces a new file to avoid growing
arch/x86/kvm/x86.c even more.
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Reuse existing functionality from memdup_user() instead of keeping
duplicate source code.
This issue was detected by using the Coccinelle software.
* Return directly if this copy operation failed.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Message-Id: <c86f7520-885e-2829-ae9c-b81caa898e84@users.sourceforge.net>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
* A multiplication for the size determination of a memory allocation
indicated that an array data structure should be processed.
Thus reuse the corresponding function "kmalloc_array".
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
This issue was detected also by using the Coccinelle software.
* Replace the specification of data structures by pointer dereferences
to make the corresponding size determination a bit safer according to
the Linux coding style convention.
* Delete the local variable "size" which became unnecessary with
this refactoring.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Message-Id: <c3323f6b-4af2-0bfb-9399-e529952e378e@users.sourceforge.net>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the SCA entries aren't used by the hardware (no SIGPIF), we
can simply not set the entries, stick to the basic sca and allow more
than 64 VCPUs.
To hinder any other facility from using these entries, let's properly
provoke intercepts by not setting the MCN and keeping the entries
unset.
This effectively allows when running KVM under KVM (vSIE) or under z/VM to
provide more than 64 VCPUs to a guest. Let's limit it to 255 for now, to
not run into problems if the CPU numbers are limited somewhere else.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Only enable runtime instrumentation if the guest issues an RI related
instruction or if userspace changes the riccb to a valid state.
This makes entry/exit a tiny bit faster.
Initial patch by Christian Borntraeger
Signed-off-by: Fan Zhang <zhangfan@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The payload data for protection exceptions is a superset of the
payload of other translation exceptions. Let's set the additional
flags and use a fall through to minimize code duplication.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's avoid working with the PER_EVENT* defines, used for control register
manipulation, when checking the u8 PER code. Introduce separate defines
based on the existing defines.
Reviewed-by: Eric Farman <farman@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's also write the external damage code already provided by
struct kvm_s390_mchk_info.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Vector registers are only to be stored if the facility is available
and if the guest has set up the machine check extended save area.
If anything goes wrong while writing the vector registers, the vector
registers are to be marked as invalid. Please note that we are allowed
to write the registers although they are marked as invalid.
Machine checks and "store status" SIGP orders are two different concepts,
let's correctly separate these. As the SIGP part is completely handled in
user space, we can drop it.
This patch is based on a patch from Cornelia Huck.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Store status writes the prefix which is not to be done by a machine check.
Also, the psw is stored and later on overwritten by the failing-storage
address, which looks strange at first sight.
Store status and machine check handling look similar, but they are actually
two different things.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's factor this out to prepare for bigger changes. Reorder to calls to
match the logical order given in the PoP.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We store the address of riccbd at the wrong location, overwriting
gvrd. This means that our nested guest will not be able to use runtime
instrumentation. Also, a memory leak, if our KVM guest actually sets gvrd.
Not noticed until now, as KVM guests never make use of gvrd and runtime
instrumentation wasn't completely tested yet.
Reported-by: Fan Zhang <zhangfan@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
The CPACF code makes some assumptions about the availablity of hardware
support. E.g. if the machine supports KM(AES-256) without chaining it is
assumed that KMC(AES-256) with chaining is available as well. For the
existing CPUs this is true but the architecturally correct way is to
check each CPACF functions on its own. This is what the query function
of each instructions is all about.
Reviewed-by: Harald Freudenberger <freude@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Pull facility mask patch from the KVM tree.
* tag 's390forkvm' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux
KVM: s390: generate facility mask from readable list
Automatically generate the KVM facility mask out of a readable list.
Manually changing the masks is very error prone, especially if the
special IBM bit numbering has to be considered.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As the meaning of these variables and pointers seems to change more
frequently, let's directly access our save area, instead of going via
current->thread.
Right now, this is broken for set/get_fpu. They simply overwrite the
host registers, as the pointers to the current save area were turned
into the static host save area.
Cc: stable@vger.kernel.org # 4.7
Fixes: 3f6813b9a5 ("s390/fpu: allocate 'struct fpu' with the task_struct")
Reported-by: Hao QingFeng <haoqf@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
When triggering KVM_RUN without a user memory region being mapped
(KVM_SET_USER_MEMORY_REGION) a validity intercept occurs. This could
happen, if the user memory region was not mapped initially or if it
was unmapped after the vcpu is initialized. The function
kvm_s390_handle_requests checks for the KVM_REQ_MMU_RELOAD bit. The
check function always clears this bit. If gmap_mprotect_notify
returns an error code, the mapping failed, but the KVM_REQ_MMU_RELOAD
was not set anymore. So the next time kvm_s390_handle_requests is
called, the execution would fall trough the check for
KVM_REQ_MMU_RELOAD. The bit needs to be resetted, if
gmap_mprotect_notify returns an error code. Resetting the bit with
kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu) fixes the bug.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Julius Niedworok <jniedwor@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
When KVM_RUN is triggered on a VCPU without an initial reset, a
validity intercept occurs.
Setting the prefix will set the KVM_REQ_MMU_RELOAD bit initially,
thus preventing the bug.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Julius Niedworok <jniedwor@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
Pull s390 updates from Martin Schwidefsky:
"There are a couple of new things for s390 with this merge request:
- a new scheduling domain "drawer" is added to reflect the unusual
topology found on z13 machines. Performance tests showed up to 8
percent gain with the additional domain.
- the new crc-32 checksum crypto module uses the vector-galois-field
multiply and sum SIMD instruction to speed up crc-32 and crc-32c.
- proper __ro_after_init support, this requires RO_AFTER_INIT_DATA in
the generic vmlinux.lds linker script definitions.
- kcov instrumentation support. A prerequisite for that is the
inline assembly basic block cleanup, which is the reason for the
net/iucv/iucv.c change.
- support for 2GB pages is added to the hugetlbfs backend.
Then there are two removals:
- the oprofile hardware sampling support is dead code and is removed.
The oprofile user space uses the perf interface nowadays.
- the ETR clock synchronization is removed, this has been superseeded
be the STP clock synchronization. And it always has been
"interesting" code..
And the usual bug fixes and cleanups"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (82 commits)
s390/pci: Delete an unnecessary check before the function call "pci_dev_put"
s390/smp: clean up a condition
s390/cio/chp : Remove deprecated create_singlethread_workqueue
s390/chsc: improve channel path descriptor determination
s390/chsc: sanitize fmt check for chp_desc determination
s390/cio: make fmt1 channel path descriptor optional
s390/chsc: fix ioctl CHSC_INFO_CU command
s390/cio/device_ops: fix kernel doc
s390/cio: allow to reset channel measurement block
s390/console: Make preferred console handling more consistent
s390/mm: fix gmap tlb flush issues
s390/mm: add support for 2GB hugepages
s390: have unique symbol for __switch_to address
s390/cpuinfo: show maximum thread id
s390/ptrace: clarify bits in the per_struct
s390: stack address vs thread_info
s390: remove pointless load within __switch_to
s390: enable kcov support
s390/cpumf: use basic block for ecctr inline assembly
s390/hypfs: use basic block for diag inline assembly
...
We don't emulate ptff subfunctions, therefore react on any attempt of
execution by setting cc=3 (Requested function not available).
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We will use illegal instruction 0x0000 for handling 2 byte sw breakpoints
from user space. As it can be enabled dynamically via a capability,
let's move setting of ICTL_OPEREXC to the post creation step, so we avoid
any races when enabling that capability just while adding new cpus.
Acked-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
In case we have to emuluate an instruction or part of it (instruction,
partial instruction, operation exception), we have to inject a PER
instruction-fetching event for that instruction, if hardware told us to do
so.
In case we retry an instruction, we must not inject the PER event.
Please note that we don't filter the events properly yet, so guest
debugging will be visible for the guest.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Use the functions from context_tracking.h directly.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let's be careful first and allow nested virtualization only if enabled
by the system administrator. In addition, user space still has to
explicitly enable it via SCLP features for it to work.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We have certain SIE features that we cannot support for now.
Let's add these features, so user space can directly prepare to enable
them, so we don't have to update yet another component.
In addition, add a comment block, telling why it is for now not possible to
forward/enable these features.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Guest 2 sets up the epoch of guest 3 from his point of view. Therefore,
we have to add the guest 2 epoch to the guest 3 epoch. We also have to take
care of guest 2 epoch changes on STP syncs. This will work just fine by
also updating the guest 3 epoch when a vsie_block has been set for a VCPU.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Whenever a SIGP external call is injected via the SIGP external call
interpretation facility, the VCPU is not kicked. When a VCPU is currently
in the VSIE, the external call might not be processed immediately.
Therefore we have to provoke partial execution exceptions, which leads to a
kick of the VCPU and therefore also kick out of VSIE. This is done by
simulating the WAIT state. This bit has no other side effects.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As we want to make use of CPUSTAT_WAIT also when a VCPU is not idle but
to force interception of external calls, let's check in the bitmap instead.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Whenever we want to wake up a VCPU (e.g. when injecting an IRQ), we
have to kick it out of vsie, so the request will be handled faster.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can avoid one unneeded SIE entry after we reported a fault to g2.
Theoretically, g2 resolves the fault and we can create the shadow mapping
directly, instead of failing again when entering the SIE.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can easily enable ibs for guest 2, so he can use it for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can easily enable cei for guest 2, so he can use it for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can easily enable intervention bypass for guest 2, so it can use it
for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can easily forward guest-storage-limit-suppression if available.
One thing to care about is keeping the prefix properly mapped when
gsls in toggled on/off or the mso changes in between. Therefore we better
remap the prefix on any mso changes just like we already do with the
prefix.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can easily forward the guest-PER-enhancement facility to guest 2 if
available.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As we forward the whole SCA provided by guest 2, we can directly forward
SIIF if available.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's provide the 64-bit-SCAO facility to guest 2, so he can set up a SCA
for guest 3 that has a 64 bit address. Please note that we already require
the 64 bit SCAO for our vsie implementation, in order to forward the SCA
directly (by pinning the page).
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As soon as guest 2 is allowed to use run-time-instrumentation (indicated
via via STFLE), it can also enable it for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As soon as guest 2 is allowed to use the vector facility (indicated via
STFLE), it can also enable it for guest 3. We have to take care of the
sattellite block that might be used when not relying on lazy vector
copying (not the case for KVM).
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As soon as guest 2 is allowed to use transactional execution (indicated via
STFLE), he can also enable it for guest 3.
Active transactional execution requires also the second prefix page to be
mapped. If that page cannot be mapped, a validity icpt has to be presented
to the guest.
We have to take care of tx being toggled on/off, otherwise we might get
wrong prefix validity icpt.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As soon as message-security-assist extension 3 is enabled for guest 2,
we have to allow key wrapping for guest 3.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Issuing STFLE is extremely rare. Instead of copying 2k on every
VSIE call, let's do this lazily, when a guest 3 tries to execute
STFLE. We can setup the block and retry.
Unfortunately, we can't directly forward that facility list, as
we only have a 31 bit address for the facility list designation.
So let's use a DMA allocation for our vsie_page instead for now.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Introduced with ESOP, therefore available for the guest if it
is allowed to use ESOP.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If guest 2 is allowed to use edat 1 / edat 2, it can also set it up for
guest 3, so let's properly check and forward the edat cpuflags.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As soon as we forward an ibc to guest 2 (indicated via
kvm->arch.model.ibc), he can also use it for guest 3. Let's properly round
the ibc up/down, so we avoid any potential validity icpts from the
underlying SIE, if it doesn't simply round the values.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
In order to not always map the prefix, we have to take care of certain
aspects that implicitly unmap the prefix:
- Changes to the prefix address
- Changes to MSO, because the HVA of the prefix is changed
- Changes of the gmap shadow (e.g. unshadowed, asce or edat changes)
By properly handling these cases, we can stop remapping the prefix when
there is no reason to do so.
This also allows us now to not acquire any gmap shadow locks when
rerunning the vsie and still having a valid gmap shadow.
Please note, to detect changing gmap shadows, we have to keep the reference
of the gmap shadow. The address of a gmap shadow does otherwise not
reliably indicate if the gmap shadow has changed (the memory chunk
could get reused).
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch adds basic support for nested virtualization on s390x, called
VSIE (virtual SIE) and allows it to be used by the guest if the necessary
facilities are supported by the hardware and enabled for the guest.
In order to make this work, we have to shadow the sie control block
provided by guest 2. In order to gain some performance, we have to
reuse the same shadow blocks as good as possible. For now, we allow
as many shadow blocks as we have VCPUs (that way, every VCPU can run the
VSIE concurrently).
We have to watch out for the prefix getting unmapped out of our shadow
gmap and properly get the VCPU out of VSIE in that case, to fault the
prefix pages back in. We use the PROG_REQUEST bit for that purpose.
This patch is based on an initial prototype by Tobias Elpelt.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Nested virtualization will have to enable own gmaps. Current code
would enable the wrong gmap whenever scheduled out and back in,
therefore resulting in the wrong gmap being enabled.
This patch reenables the last enabled gmap, therefore avoiding having to
touch vcpu->arch.gmap when enabling a different gmap.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The default kvm gmap notifier doesn't have to handle shadow gmaps.
So let's just directly exit in case we get notified about one.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can easily support real-space designation just like EDAT1 and EDAT2.
So guest2 can provide for guest3 an asce with the real-space control being
set.
We simply have to allocate the biggest page table possible and fake all
levels.
There is no protection to consider. If we exceed guest memory, vsie code
will inject an addressing exception (via program intercept). In the future,
we could limit the fake table level to the gmap page table.
As the top level page table can never go away, such gmap shadows will never
get unshadowed, we'll have to come up with another way to limit the number
of kept gmap shadows.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Just like we already do with ste protection, let's take rte protection
into account. This way, the host pte doesn't have to be mapped writable.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the guest is enabled for EDAT2, we can easily create shadows for
guest2 -> guest3 provided tables that make use of EDAT2.
If guest2 references a 2GB page, this memory looks consecutive for guest2,
but it does not have to be so for us. Therefore we have to create fake
segment and page tables.
This works just like EDAT1 support, so page tables are removed when the
parent table (r3t table entry) is changed.
We don't hve to care about:
- ACCF-Validity Control in RTTE
- Access-Control Bits in RTTE
- Fetch-Protection Bit in RTTE
- Common-Region Bit in RTTE
Just like for EDAT1, all bits might be dropped and there is no guaranteed
that they are active.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the guest is enabled for EDAT1, we can easily create shadows for
guest2 -> guest3 provided tables that make use of EDAT1.
If guest2 references a 1MB page, this memory looks consecutive for guest2,
but it might not be so for us. Therefore we have to create fake page tables.
We can easily add that to our existing infrastructure. The invalidation
mechanism will make sure that fake page tables are removed when the parent
table (sgt table entry) is changed.
As EDAT1 also introduced protection on all page table levels, we have to
also shadow these correctly.
We don't have to care about:
- ACCF-Validity Control in STE
- Access-Control Bits in STE
- Fetch-Protection Bit in STE
- Common-Segment Bit in STE
As all bits might be dropped and there is no guaranteed that they are
active ("unpredictable whether the CPU uses these bits", "may be used").
Without using EDAT1 in the shadow ourselfes (STE-format control == 0),
simply shadowing these bits would not be enough. They would be ignored.
Please note that we are using the "fake" flag to make this look consistent
with further changes (EDAT2, real-space designation support) and don't let
the shadow functions handle fc=1 stes.
In the future, with huge pages in the host, gmap_shadow_pgt() could simply
try to map a huge host page if "fake" is set to one and indicate via return
value that no lower fake tables / shadow ptes are required.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If a guest ste is read-only, it doesn't make sense to force the ptes in as
writable in the host. If the source page is read-only in the host, it won't
have to be made writable. Please note that if the source page is not
available, it will still be faulted in writable. This can be changed
internally later on.
If ste protection is removed, underlying shadow tables are also removed,
therefore this change does not affect the guest.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's take the ipte_lock while working on guest 2 provided page table, just
like the other gaccess functions.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As gmap shadows contains correct protection permissions, protection
exceptons can directly be forwarded to guest 3. If we would encounter
a protection exception while faulting, the next guest 3 run will
automatically handle that for us.
Keep the dat_protection logic in place, as it will be helpful later.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Instead of doing it in the caller, let's just take the mmap_sem
in kvm_s390_shadow_fault(). By taking it as read, we allow parallel
faulting on shadow page tables, gmap shadow code is prepared for that.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We really want to avoid manually handling protection for nested
virtualization. By shadowing pages with the protection the guest asked us
for, the SIE can handle most protection-related actions for us (e.g.
special handling for MVPG) and we can directly forward protection
exceptions to the guest.
PTEs will now always be shadowed with the correct _PAGE_PROTECT flag.
Unshadowing will take care of any guest changes to the parent PTE and
any host changes to the host PTE. If the host PTE doesn't have the
fitting access rights or is not available, we have to fix it up.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch introduces function kvm_s390_shadow_fault() used to resolve a
fault on a shadow gmap. This function will do validity checking and
build up the shadow page table hierarchy in order to fault in the
requested page into the shadow page table structure.
If an exception occurs while shadowing, guest 2 has to be notified about
it using either an exception or a program interrupt intercept. If
concurrent unshadowing occurres, this function will simply return with
-EAGAIN and the caller has to retry.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's use a reference counter mechanism to control the lifetime of
gmap structures. This will be needed for further changes related to
gmap shadows.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The current gmap pte notifier forces a pte into to a read-write state.
If the pte is invalidated the gmap notifier is called to inform KVM
that the mapping will go away.
Extend this approach to allow read-write, read-only and no-access
as possible target states and call the pte notifier for any change
to the pte.
This mechanism is used to temporarily set specific access rights for
a pte without doing the heavy work of a true mprotect call.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Pass an address range to the page table invalidation notifier
for KVM. This allows to notify changes that affect a larger
virtual memory area, e.g. for 1MB pages.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The new created_vcpus field avoids possible races between enabling
capabilities and creating VCPUs.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Four bigger things:
1. The implementation of the STHYI opcode in the kernel. This is used
in libraries like qclib [1] to provide enough information for a
capacity and usage based software licence pricing. The STHYI content
is defined by the related z/VM documentation [2]. Its data can be
composed by accessing several other interfaces provided by LPAR or
the machine. This information is partially sensitive or root-only
so the kernel does the necessary filtering.
2. Preparation for nested virtualization (VSIE). KVM should query the
proper sclp interfaces for the availability of some features before
using it. In the past we have been sloppy and simply assumed that
several features are available. With this we should be able to handle
most cases of a missing feature.
3. CPU model interfaces extended by some additional features that are
not covered by a facility bit in STFLE. For example all the crypto
instructions of the coprocessor provide a query function. As reality
tends to be more complex (e.g. export regulations might block some
algorithms) we have to provide additional interfaces to query or
set these non-stfle features.
4. Several fixes and changes detected and fixed when doing 1-3.
All features change base s390 code. All relevant patches have an ACK
from the s390 or component maintainers.
The next pull request for 4.8 (part2) will contain the implementation
of VSIE.
[1] http://www.ibm.com/developerworks/linux/linux390/qclib.html
[2] https://www.ibm.com/support/knowledgecenter/SSB27U_6.3.0/com.ibm.zvm.v630.hcpb4/hcpb4sth.htm
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJXX+A6AAoJEBF7vIC1phx8SBoQAIkFTMxoGvY9lFkkreUXIyeX
XL0grybhsaKd4tT80FlobTl2ejpo/feRl5RfD5Oi75UCR4oMuk3Eb8bIyQjcKJvS
7sYFz+zP9TZ5S/rxvc3EanXpcNnfowKDuLUyOTaq0Hq8XQHaSwzYGGbtPgTdMDAp
DyhwNhYK8cPvmBS3KHX70ZOMfl9J4s0xvgs42BRJyyDGYrJOZcN1NLsG2l1dAb0L
au/Svb05PxhgQvqoUId3VSrmRKLm9tSk5DJdIRcmj1+4Mlhfw14LTV+wGuTLTgSZ
GOyEdum2E/b4QABWca7sxmgqo+Wo5voOW+WKOGLMiN2sK+JwvSnu4qmiRG/qgFCJ
EQDZer+OEQTu+YgZzjm/r5wbIkV/gqUenjjepk5iWrxK6EB7CmlQuZyyEKm3wO7i
LrEDqRU7SY+PuUu+Ov6/PHxmMy5DJuK+AedRe8uzuDSmYpSekYFLD44gctkPe56q
uq4Fhx3g3EIkPMcHnAae92vHLp/INCHCGoPb4Xh6CnaP4Xm+RntCv2hWxw30rHgc
IIYVy4fSyJuTeHpFcNgeBrbcx4jwvkfJ9kxezM864DA9hBBfcS3ZZDhLM5PPEaLr
usu7Gt6nHeFtwvXxZn/Y+SsYWCWpmbt6An/m+lqf05aAqyndhbwJ8Kftz3OAxKDw
b7o59x2wvV9dfakAHxNx
=fdBQ
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
KVM: s390: Features and fixes for 4.8 part1
Four bigger things:
1. The implementation of the STHYI opcode in the kernel. This is used
in libraries like qclib [1] to provide enough information for a
capacity and usage based software licence pricing. The STHYI content
is defined by the related z/VM documentation [2]. Its data can be
composed by accessing several other interfaces provided by LPAR or
the machine. This information is partially sensitive or root-only
so the kernel does the necessary filtering.
2. Preparation for nested virtualization (VSIE). KVM should query the
proper sclp interfaces for the availability of some features before
using it. In the past we have been sloppy and simply assumed that
several features are available. With this we should be able to handle
most cases of a missing feature.
3. CPU model interfaces extended by some additional features that are
not covered by a facility bit in STFLE. For example all the crypto
instructions of the coprocessor provide a query function. As reality
tends to be more complex (e.g. export regulations might block some
algorithms) we have to provide additional interfaces to query or
set these non-stfle features.
4. Several fixes and changes detected and fixed when doing 1-3.
All features change base s390 code. All relevant patches have an ACK
from the s390 or component maintainers.
The next pull request for 4.8 (part2) will contain the implementation
of VSIE.
[1] http://www.ibm.com/developerworks/linux/linux390/qclib.html
[2] https://www.ibm.com/support/knowledgecenter/SSB27U_6.3.0/com.ibm.zvm.v630.hcpb4/hcpb4sth.htm
The External-Time-Reference (ETR) clock synchronization interface has
been superseded by Server-Time-Protocol (STP). Remove the outdated
ETR interface.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Without the storage-key facility, SIE won't interpret SSKE, ISKE and
RRBE for us. So let's add proper interception handlers that will be called
if lazy sske cannot be enabled.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's trace and count all skey handling operations, even if lazy skey
handling was already activated. Also, don't enable lazy skey handling if
anything went wrong while enabling skey handling for the SIE.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
In theory, end could always end up being < start, if overflowing to 0.
Although very unlikely for now, let's just fix it.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We already indicate that facility but don't implement it in our pfmf
interception handler. Let's add a new storage key handling function for
conditionally setting the guest storage key.
As we will reuse this function later on, let's directly implement returning
the old key via parameter and indicating if any change happened via rc.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Depending on the addressing mode, we must not overwrite bit 0-31 of the
register. In addition, 24 bit and 31 bit have to set certain bits to 0,
which is guaranteed by converting the end address to an effective
address.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
These two bits are simply ignored when the conditional-SSKE facility is
not installed.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The current calculation is wrong if absolute != real address. Let's just
calculate the start address for 4k frames upfront. Otherwise, the
calculated end address will be wrong, resulting in wrong memory
location/storage keys getting touched.
To keep low-address protection working (using the effective address),
we have to move the check.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
No need to convert the storage key into an unsigned long, the target
function expects a char as argument.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's just split returning the key and reporting errors. This makes calling
code easier and avoids bugs as happened already.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Move the mmap semaphore locking out of set_guest_storage_key
and get_guest_storage_key. This makes the two functions more
like the other ptep_xxx operations and allows to avoid repeated
semaphore operations if multiple keys are read or written.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We currently have two issues with the I/O interrupt injection logging:
1. All QEMU versions up to 2.6 have a wrong encoding of device numbers
etc for the I/O interrupt type, so the inject VM_EVENT will have wrong
data. Let's fix this by using the interrupt parameters and not the
interrupt type number.
2. We only log in kvm_s390_inject_vm, but not when coming from
kvm_s390_reinject_io_int or from flic. Let's move the logging to the
common __inject_io function.
We also enhance the logging for delivery to match the data.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
We might need to debug some virtio things, so better have diagnose 500
logged.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Constrained transactional execution is an addon of transactional execution.
Let's enable the assist also if only TX is enabled for the guest.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
host-protection-interruption control was introduced with ESOP. So let's
enable it only if we have ESOP and add an explanatory comment why
we can live without it.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's enable interlock-and-broadcast suppression only if the facility is
actually available.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's enable interpretation of PFMFI only if the facility is
actually available. Emulation code still works in case the guest is
offered EDAT-1.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's only enable conditional-external-interruption if the facility is
actually available.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's enable intervention bypass only if the facility is acutally
available.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If guest-storage-limit-suppression is not available, we would for now
have a valid guest address space with size 0. So let's simply set the
origin to 0 and the limit to hamax.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's not provide the device attribute for cmma enabling and clearing
if the hardware doesn't support it.
This also helps getting rid of the undocumented return value "-EINVAL"
in case CMMA is not available when trying to enable it.
Also properly document the meaning of -EINVAL for CMMA clearing.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Now that we can detect if collaborative-memory-management interpretation
is available, replace the heuristic by a real hardware detection.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Without guest-PER enhancement, we can't provide any debugging support.
Therefore act like kernel support is missing.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Without that facility, we may only use scaol. So fallback
to DMA allocation in that case, so we won't overwrite random memory
via the SIE.
Also disallow ESCA, so we don't have to handle that allocation case.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We have certain instructions that indicate available subfunctions via
a query subfunction (crypto functions and ptff), or via a test bit
function (plo).
By exposing these "subfunction blocks" to user space, we allow user space
to
1) query available subfunctions and make sure subfunctions won't get lost
during migration - e.g. properly indicate them via a CPU model
2) change the subfunctions to be reported to the guest (even adding
unavailable ones)
This mechanism works just like the way we indicate the stfl(e) list to
user space.
This way, user space could even emulate some subfunctions in QEMU in the
future. If this is ever applicable, we have to make sure later on, that
unsupported subfunctions result in an intercept to QEMU.
Please note that support to indicate them to the guest is still missing
and requires hardware support. Usually, the IBC takes already care of these
subfunctions for migration safety. QEMU should make sure to always set
these bits properly according to the machine generation to be emulated.
Available subfunctions are only valid in combination with STFLE bits
retrieved via KVM_S390_VM_CPU_MACHINE and enabled via
KVM_S390_VM_CPU_PROCESSOR. If the applicable bits are available, the
indicated subfunctions are guaranteed to be correct.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's use our new function for preparing translation exceptions.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's use our new function for preparing translation exceptions. As we will
need the correct ar, let's pass that to guest_page_range().
This will also make sure that the guest address is stored in the tec
for applicable excptions.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's use our new function for preparing translation exceptions.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's use our new function for preparing translation exceptions.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's provide a function trans_exc() that can be used for handling
preparation of translation exceptions on a central basis. We will use
that function to replace existing code in gaccess.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's pass the effective guest address to get_vcpu_asce(), so we
can properly set the guest address in case we inject an ALC protection
exception.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
ESOP guarantees that during a protection exception, bit 61 of real location
168-175 will only be set to 1 if it was because of ALCP or DATP. If the
exception is due to LAP or KCP, the bit will always be set to 0.
The old SOP definition allowed bit 61 to be unpredictable in case of LAP
or KCP in some conditions. So ESOP replaces this unpredictability by
a guarantee.
Therefore, we can directly forward ESOP if it is available on our machine.
We don't have to do anything when ESOP is disabled - the guest will simply
expect unpredictable values. Our guest access functions are already
handling ESOP properly.
Please note that future functionality in KVM will require knowledge about
ESOP being enabled for a guest or not.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For now, we only have an interface to query and configure facilities
indicated via STFL(E). However, we also have features indicated via
SCLP, that have to be indicated to the guest by user space and usually
require KVM support.
This patch allows user space to query and configure available cpu features
for the guest.
Please note that disabling a feature doesn't necessarily mean that it is
completely disabled (e.g. ESOP is mostly handled by the SIE). We will try
our best to disable it.
Most features (e.g. SCLP) can't directly be forwarded, as most of them need
in addition to hardware support, support in KVM. As we later on want to
turn these features in KVM explicitly on/off (to simulate different
behavior), we have to filter all features provided by the hardware and
make them configurable.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We have a table of mnemonic names for intercepted program
interruptions, let's print readable name of the interruption in the
kvm_s390_intercept_prog trace event.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Store hypervisor information is a valid instruction not only in
supervisor state but also in problem state, i.e. the guest's
userspace. Its execution is not only computational and memory
intensive, but also has to get hold of the ipte lock to write to the
guest's memory.
This lock is not intended to be held often and long, especially not
from the untrusted guest userspace. Therefore we apply rate limiting
of sthyi executions per VM.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Acked-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Store Hypervisor Information is an emulated z/VM instruction that
provides a guest with basic information about the layers it is running
on. This includes information about the cpu configuration of both the
machine and the lpar, as well as their names, machine model and
machine type. This information enables an application to determine the
maximum capacity of CPs and IFLs available to software.
The instruction is available whenever the facility bit 74 is set,
otherwise executing it results in an operation exception.
It is important to check the validity flags in the sections before
using data from any structure member. It is not guaranteed that all
members will be valid on all machines / machine configurations.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This commit introduces code that handles operation exception
interceptions. With this handler we can emulate instructions by using
illegal opcodes.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Looks like we forgot about the special IBC value of 0 meaning "no IBC".
Let's fix that, otherwise it gets rounded up and suddenly an IBC is active
with the lowest possible machine.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Fixes: commit 053dd2308d ("KVM: s390: force ibc into valid range")
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Some wakeups should not be considered a sucessful poll. For example on
s390 I/O interrupts are usually floating, which means that _ALL_ CPUs
would be considered runnable - letting all vCPUs poll all the time for
transactional like workload, even if one vCPU would be enough.
This can result in huge CPU usage for large guests.
This patch lets architectures provide a way to qualify wakeups if they
should be considered a good/bad wakeups in regard to polls.
For s390 the implementation will fence of halt polling for anything but
known good, single vCPU events. The s390 implementation for floating
interrupts does a wakeup for one vCPU, but the interrupt will be delivered
by whatever CPU checks first for a pending interrupt. We prefer the
woken up CPU by marking the poll of this CPU as "good" poll.
This code will also mark several other wakeup reasons like IPI or
expired timers as "good". This will of course also mark some events as
not sucessful. As KVM on z runs always as a 2nd level hypervisor,
we prefer to not poll, unless we are really sure, though.
This patch successfully limits the CPU usage for cases like uperf 1byte
transactional ping pong workload or wakeup heavy workload like OLTP
while still providing a proper speedup.
This also introduced a new vcpu stat "halt_poll_no_tuning" that marks
wakeups that are considered not good for polling.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Radim Krčmář <rkrcmar@redhat.com> (for an earlier version)
Cc: David Matlack <dmatlack@google.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
[Rename config symbol. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a guest is initializing, KVM provides facility bits that can be
successfully used by the guest. It's done by applying
kvm_s390_fac_list_mask mask on host facility bits stored by the STFLE
instruction. Facility bits can be one of two kinds: it's either a
hypervisor managed bit or non-hypervisor managed.
The hardware provides information which bits need special handling.
Let's automatically passthrough to guests new facility bits, that
don't require hypervisor support.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Eric Farman <farman@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Some facility bits are in a range that is defined to be "ok for guests
without any necessary hypervisor changes". Enable those bits.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Some hardware variants will round the ibc value up/down themselves,
others will report a validity intercept. Let's always round it up/down.
This patch will also make sure that the ibc is set to 0 in case we don't
have ibc support (lowest_ibc == 0).
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We only have one cpuid for all VCPUs, so let's directly use the one in the
cpu model. Also always store it directly as u64, no need for struct cpuid.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If we don't have SIGP SENSE RUNNING STATUS enabled for the guest, let's
not enable interpretation so we can correctly report an invalid order.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Only enable PFMF interpretation if the necessary facility (EDAT1) is
available, otherwise the pfmf handler in priv.c will inject an exception
Reviewed-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
While we can not fully fence of the Nonquiescing Key-Setting facility,
we should as try our best to hide it.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We should never inject an exception after we manually rewound the PSW
(to retry the ESSA instruction in this case). This will mess up the PSW.
So this never worked and therefore never really triggered.
Looking at the details, we don't even have to perform any validity checks.
1. Bits 52-63 of an entry are stored as 0 by the hardware.
2. We are dealing with absolute addresses but only check for the prefix
starting at address 0. This isn't correct and doesn't make much sense,
cpus could still zap the prefix of other cpus. But as prefix pages
cannot be swapped out without a notifier being called for the affected
VCPU, a zap can never remove a protected prefix.
Reviewed-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Introduce a FLIC operation for clearing I/O interrupts for a subchannel.
Rationale: According to the platform specification, pending I/O
interruption requests have to be revoked in certain situations. For
instance, according to the Principles of Operation (page 17-27), a
subchannel put into the installed parameters initialized state is in the
same state as after an I/O system reset (just parameters possibly changed).
This implies that any I/O interrupts for that subchannel are no longer
pending (as I/O system resets clear I/O interrupts). Therefore, we need an
interface to clear pending I/O interrupts.
Signed-off-by: Halil Pasic <pasic@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
HAS_ATTR is useful for determining the supported attributes; let's
implement it.
Signed-off-by: Halil Pasic <pasic@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Pull s390 updates from Martin Schwidefsky:
- Add the CPU id for the new z13s machine
- Add a s390 specific XOR template for RAID-5 checksumming based on the
XC instruction. Remove all other alternatives, XC is always faster
- The merge of our four different stack tracers into a single one
- Tidy up the code related to page tables, several large inline
functions are now out-of-line. Bloat-o-meter reports ~11K text size
reduction
- A binary interface for the priviledged CLP instruction to retrieve
the hardware view of the installed PCI functions
- Improvements for the dasd format code
- Bug fixes and cleanups
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (31 commits)
s390/pci: enforce fmb page boundary rule
s390: fix floating pointer register corruption (again)
s390/cpumf: add missing lpp magic initialization
s390: Fix misspellings in comments
s390/mm: split arch/s390/mm/pgtable.c
s390/mm: uninline pmdp_xxx functions from pgtable.h
s390/mm: uninline ptep_xxx functions from pgtable.h
s390/pci: add ioctl interface for CLP
s390: Use pr_warn instead of pr_warning
s390/dasd: remove casts to dasd_*_private
s390/dasd: Refactor dasd format functions
s390/dasd: Simplify code in format logic
s390/dasd: Improve dasd format code
s390/percpu: remove this_cpu_cmpxchg_double_4
s390/cpumf: Improve guest detection heuristics
s390/fault: merge report_user_fault implementations
s390/dis: use correct escape sequence for '%' character
s390/kvm: simplify set_guest_storage_key
s390/oprofile: add z13/z13s model numbers
s390: add z13s model number to z13 elf platform
...
but lots of architecture-specific changes.
* ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
* PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
* s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
* x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using vector
hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest memory---currently
its only use is to speedup the legacy shadow paging (pre-EPT) case, but
in the future it will be used for virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW5r3BAAoJEL/70l94x66D2pMH/jTSWWwdTUJMctrDjPVzKzG0
yOzHW5vSLFoFlwEOY2VpslnXzn5TUVmCAfrdmFNmQcSw6hGb3K/xA/ZX/KLwWhyb
oZpr123ycahga+3q/ht/dFUBCCyWeIVMdsLSFwpobEBzPL0pMgc9joLgdUC6UpWX
tmN0LoCAeS7spC4TTiTTpw3gZ/L+aB0B6CXhOMjldb9q/2CsgaGyoVvKA199nk9o
Ngu7ImDt7l/x1VJX4/6E/17VHuwqAdUrrnbqerB/2oJ5ixsZsHMGzxQ3sHCmvyJx
WG5L00ubB1oAJAs9fBg58Y/MdiWX99XqFhdEfxq4foZEiQuCyxygVvq3JwZTxII=
=OUZZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One of the largest releases for KVM... Hardly any generic
changes, but lots of architecture-specific updates.
ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using
vector hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest
memory - currently its only use is to speedup the legacy shadow
paging (pre-EPT) case, but in the future it will be used for
virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits)
KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch
KVM: x86: disable MPX if host did not enable MPX XSAVE features
arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit
arm64: KVM: vgic-v3: Reset LRs at boot time
arm64: KVM: vgic-v3: Do not save an LR known to be empty
arm64: KVM: vgic-v3: Save maintenance interrupt state only if required
arm64: KVM: vgic-v3: Avoid accessing ICH registers
KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit
KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit
KVM: arm/arm64: vgic-v2: Reset LRs at boot time
KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty
KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function
KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required
KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
KVM: s390: allocate only one DMA page per VM
KVM: s390: enable STFLE interpretation only if enabled for the guest
KVM: s390: wake up when the VCPU cpu timer expires
KVM: s390: step the VCPU timer while in enabled wait
KVM: s390: protect VCPU cpu timer with a seqcount
KVM: s390: step VCPU cpu timer during kvm_run ioctl
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- Make schedstats a runtime tunable (disabled by default) and
optimize it via static keys.
As most distributions enable CONFIG_SCHEDSTATS=y due to its
instrumentation value, this is a nice performance enhancement.
(Mel Gorman)
- Implement 'simple waitqueues' (swait): these are just pure
waitqueues without any of the more complex features of full-blown
waitqueues (callbacks, wake flags, wake keys, etc.). Simple
waitqueues have less memory overhead and are faster.
Use simple waitqueues in the RCU code (in 4 different places) and
for handling KVM vCPU wakeups.
(Peter Zijlstra, Daniel Wagner, Thomas Gleixner, Paul Gortmaker,
Marcelo Tosatti)
- sched/numa enhancements (Rik van Riel)
- NOHZ performance enhancements (Rik van Riel)
- Various sched/deadline enhancements (Steven Rostedt)
- Various fixes (Peter Zijlstra)
- ... and a number of other fixes, cleanups and smaller enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
sched/cputime: Fix steal_account_process_tick() to always return jiffies
sched/deadline: Remove dl_new from struct sched_dl_entity
Revert "kbuild: Add option to turn incompatible pointer check into error"
sched/deadline: Remove superfluous call to switched_to_dl()
sched/debug: Fix preempt_disable_ip recording for preempt_disable()
sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity
time, acct: Drop irq save & restore from __acct_update_integrals()
acct, time: Change indentation in __acct_update_integrals()
sched, time: Remove non-power-of-two divides from __acct_update_integrals()
sched/rt: Kick RT bandwidth timer immediately on start up
sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched_debug
sched/debug: Move sched_domain_sysctl to debug.c
sched/debug: Move the /sys/kernel/debug/sched_features file setup into debug.c
sched/rt: Fix PI handling vs. sched_setscheduler()
sched/core: Remove duplicated sched_group_set_shares() prototype
sched/fair: Consolidate nohz CPU load update code
sched/fair: Avoid using decay_load_missed() with a negative value
sched/deadline: Always calculate end of period on sched_yield()
sched/cgroup: Fix cgroup entity load tracking tear-down
rcu: Use simple wait queues where possible in rcutree
...
The pgtable.c file is quite big, before it grows any larger split it
into pgtable.c, pgalloc.c and gmap.c. In addition move the gmap related
header definitions into the new gmap.h header and all of the pgste
helpers from pgtable.h to pgtable.c.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The code in the various ptep_xxx functions has grown quite large,
consolidate them to four out-of-line functions:
ptep_xchg_direct to exchange a pte with another with immediate flushing
ptep_xchg_lazy to exchange a pte with another in a batched update
ptep_modify_prot_start to begin a protection flags update
ptep_modify_prot_commit to commit a protection flags update
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
We can fit the 2k for the STFLE interpretation and the crypto
control block into one DMA page. As we now only have to allocate
one DMA page, we can clean up the code a bit.
As a nice side effect, this also fixes a problem with crycbd alignment in
case special allocation debug options are enabled, debugged by Sascha
Silbe.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Not setting the facility list designation disables STFLE interpretation,
this is what we want if the guest was told to not have it.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
When the VCPU cpu timer expires, we have to wake up just like when the ckc
triggers. For now, setting up a cpu timer in the guest and going into
enabled wait will never lead to a wakeup. This patch fixes this problem.
Just as for the ckc, we have to take care of waking up too early. We
have to recalculate the sleep time and go back to sleep.
Please note that the timer callback calls kvm_s390_get_cpu_timer() from
interrupt context. As the timer is canceled when leaving handle_wait(),
and we don't do any VCPU cpu timer writes/updates in that function, we can
be sure that we will never try to read the VCPU cpu timer from the same cpu
that is currentyl updating the timer (deadlock).
Reported-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Tested-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The cpu timer is a mean to measure task execution time. We want
to account everything for a VCPU for which it is responsible. Therefore,
if the VCPU wants to sleep, it shall be accounted for it.
We can easily get this done by not disabling cpu timer accounting when
scheduled out while sleeping because of enabled wait.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For now, only the owning VCPU thread (that has loaded the VCPU) can get a
consistent cpu timer value when calculating the delta. However, other
threads might also be interested in a more recent, consistent value. Of
special interest will be the timer callback of a VCPU that executes without
having the VCPU loaded and could run in parallel with the VCPU thread.
The cpu timer has a nice property: it is only updated by the owning VCPU
thread. And speaking about accounting, a consistent value can only be
calculated by looking at cputm_start and the cpu timer itself in
one shot, otherwise the result might be wrong.
As we only have one writing thread at a time (owning VCPU thread), we can
use a seqcount instead of a seqlock and retry if the VCPU refreshed its
cpu timer. This avoids any heavy locking and only introduces a counter
update/check plus a handful of smp_wmb().
The owning VCPU thread should never have to retry on reads, and also for
other threads this might be a very rare scenario.
Please note that we have to use the raw_* variants for locking the seqcount
as lockdep will produce false warnings otherwise. The rq->lock held during
vcpu_load/put is also acquired from hardirq context. Lockdep cannot know
that we avoid potential deadlocks by disabling preemption and thereby
disable concurrent write locking attempts (via vcpu_put/load).
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Architecturally we should only provide steal time if we are scheduled
away, and not if the host interprets a guest exit. We have to step
the guest CPU timer in these cases.
In the first shot, we will step the VCPU timer only during the kvm_run
ioctl. Therefore all time spent e.g. in interception handlers or on irq
delivery will be accounted for that VCPU.
We have to take care of a few special cases:
- Other VCPUs can test for pending irqs. We can only report a consistent
value for the VCPU thread itself when adding the delta.
- We have to take care of STP sync, therefore we have to extend
kvm_clock_sync() and disable preemption accordingly
- During any call to disable/enable/start/stop we could get premeempted
and therefore get start/stop calls. Therefore we have to make sure we
don't get into an inconsistent state.
Whenever a VCPU is scheduled out, sleeping, in user space or just about
to enter the SIE, the guest cpu timer isn't stepped.
Please note that all primitives are prepared to be called from both
environments (cpu timer accounting enabled or not), although not completely
used in this patch yet (e.g. kvm_s390_set_cpu_timer() will never be called
while cpu timer accounting is enabled).
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We want to manually step the cpu timer in certain scenarios in the future.
Let's abstract any access to the cpu timer, so we can hide the complexity
internally.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
By storing the cpu id, we have a way to verify if the current cpu is
owning a VCPU.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
With MACHINE_HAS_VX, we convert the floating point registers from the
vector registeres when storing the status. For other VCPUs, these are
stored to vcpu->run->s.regs.vrs, but we are using current->thread.fpu.vxrs,
which resolves to the currently loaded VCPU.
So kvm_s390_store_status_unloaded() currently writes the wrong floating
point registers (converted from the vector registers) when called from
another VCPU on a z13.
This is only the case for old user space not handling SIGP STORE STATUS and
SIGP STOP AND STORE STATUS, but relying on the kernel implementation. All
other calls come from the loaded VCPU via kvm_s390_store_status().
Fixes: 9abc2a08a7 (KVM: s390: fix memory overwrites when vx is disabled)
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: stable@vger.kernel.org # v4.4+
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The problem:
On -rt, an emulated LAPIC timer instances has the following path:
1) hard interrupt
2) ksoftirqd is scheduled
3) ksoftirqd wakes up vcpu thread
4) vcpu thread is scheduled
This extra context switch introduces unnecessary latency in the
LAPIC path for a KVM guest.
The solution:
Allow waking up vcpu thread from hardirq context,
thus avoiding the need for ksoftirqd to be scheduled.
Normal waitqueues make use of spinlocks, which on -RT
are sleepable locks. Therefore, waking up a waitqueue
waiter involves locking a sleeping lock, which
is not allowed from hard interrupt context.
cyclictest command line:
This patch reduces the average latency in my tests from 14us to 11us.
Daniel writes:
Paolo asked for numbers from kvm-unit-tests/tscdeadline_latency
benchmark on mainline. The test was run 1000 times on
tip/sched/core 4.4.0-rc8-01134-g0905f04:
./x86-run x86/tscdeadline_latency.flat -cpu host
with idle=poll.
The test seems not to deliver really stable numbers though most of
them are smaller. Paolo write:
"Anything above ~10000 cycles means that the host went to C1 or
lower---the number means more or less nothing in that case.
The mean shows an improvement indeed."
Before:
min max mean std
count 1000.000000 1000.000000 1000.000000 1000.000000
mean 5162.596000 2019270.084000 5824.491541 20681.645558
std 75.431231 622607.723969 89.575700 6492.272062
min 4466.000000 23928.000000 5537.926500 585.864966
25% 5163.000000 1613252.750000 5790.132275 16683.745433
50% 5175.000000 2281919.000000 5834.654000 23151.990026
75% 5190.000000 2382865.750000 5861.412950 24148.206168
max 5228.000000 4175158.000000 6254.827300 46481.048691
After
min max mean std
count 1000.000000 1000.00000 1000.000000 1000.000000
mean 5143.511000 2076886.10300 5813.312474 21207.357565
std 77.668322 610413.09583 86.541500 6331.915127
min 4427.000000 25103.00000 5529.756600 559.187707
25% 5148.000000 1691272.75000 5784.889825 17473.518244
50% 5160.000000 2308328.50000 5832.025000 23464.837068
75% 5172.000000 2393037.75000 5853.177675 24223.969976
max 5222.000000 3922458.00000 6186.720500 42520.379830
[Patch was originaly based on the swait implementation found in the -rt
tree. Daniel ported it to mainline's version and gathered the
benchmark numbers for tscdeadline_latency test.]
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-4-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A KVM_GET_DIRTY_LOG ioctl might take a long time.
This can result in fatal signals seemingly being ignored.
Lets bail out during the dirty bit sync, if a fatal signal
is pending.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Dirty log query can take a long time for huge guests.
Holding the mmap_sem for very long times can cause some unwanted
latencies.
Turns out that we do not need to hold the mmap semaphore.
We hold the slots_lock for gfn->hva translation and walk the page
tables with that address, so no need to look at the VMAs. KVM also
holds a reference to the mm, which should prevent other things
going away. During the walk we take the necessary ptl locks.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
On instruction-fetch exceptions, we have to forward the PSW by any
valid ilc and correctly use that ilc when injecting the irq. Injection
will already take care of rewinding the PSW if we injected a nullifying
program irq, so we don't need special handling prior to injection.
Until now, autodetection would have guessed an ilc of 0.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
On SIE faults, the ilc cannot be detected automatically, as the icptcode
is 0. The ilc indicated in the program irq will always be 0. Therefore we
have to manually specify the ilc in order to tell the guest which ilen was
used when forwarding the PSW.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Program irq injection during program irq intercepts is the last candidates
that injects nullifying irqs and relies on delivery to do the right thing.
As we should not rely on the icptcode during any delivery (because that
value will not be migrated), let's add a flag, telling prog IRQ delivery
to not rewind the PSW in case of nullifying prog IRQs.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
__extract_prog_irq() is used only once for getting the program check data
in one place. Let's combine it with an injection function to avoid a memset
and to prevent misuse on injection by simplifying the interface to only
have the VCPU as parameter.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's use our fresh new function read_guest_instr() to access
guest storage via the correct addressing schema.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
When an instruction is to be fetched, special handling applies to
secondary-space mode and access-register mode. The instruction is to be
fetched from primary space.
We can easily support this by selecting the right asce for translation.
Access registers will never be used during translation, so don't
include them in the interface. As we only want to read from the current
PSW address for now, let's also hide that detail.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We will need special handling when fetching instructions, so let's
introduce new guest access modes GACC_FETCH and GACC_STORE instead
of a write flag. An additional patch will then introduce GACC_IFETCH.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>