IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This reverts commit 9857a17f20.
That commit was completely broken, and I should have caught on to it
earlier. But happily, the kernel test robot noticed the breakage fairly
quickly.
The breakage is because "try_get_page()" is about avoiding the page
reference count overflow case, but is otherwise the exact same as a
plain "get_page()".
In contrast, "try_get_compound_head()" is an entirely different beast,
and uses __page_cache_add_speculative() because it's not just about the
page reference count, but also about possibly racing with the underlying
page going away.
So all the commentary about how
"try_get_page() has fallen a little behind in terms of maintenance,
try_get_compound_head() handles speculative page references more
thoroughly"
was just completely wrong: yes, try_get_compound_head() handles
speculative page references, but the point is that try_get_page() does
not, and must not.
So there's no lack of maintainance - there are fundamentally different
semantics.
A speculative page reference would be entirely wrong in "get_page()",
and it's entirely wrong in "try_get_page()". It's not about
speculation, it's purely about "uhhuh, you can't get this page because
you've tried to increment the reference count too much already".
The reason the kernel test robot noticed this bug was that it hit the
VM_BUG_ON() in __page_cache_add_speculative(), which is all about
verifying that the context of any speculative page access is correct.
But since that isn't what try_get_page() is all about, the VM_BUG_ON()
tests things that are not correct to test for try_get_page().
Reported-by: kernel test robot <oliver.sang@intel.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_get_page() is very similar to try_get_compound_head(), and in fact
try_get_page() has fallen a little behind in terms of maintenance:
try_get_compound_head() handles speculative page references more
thoroughly.
There are only two try_get_page() callsites, so just call
try_get_compound_head() directly from those, and remove try_get_page()
entirely.
Also, seeing as how this changes try_get_compound_head() into a non-static
function, provide some kerneldoc documentation for it.
Link: https://lkml.kernel.org/r/20210813044133.1536842-4-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It turns out that the SIGIO/FASYNC situation is almost exactly the same
as the EPOLLET case was: user space really wants to be notified after
every operation.
Now, in a perfect world it should be sufficient to only notify user
space on "state transitions" when the IO state changes (ie when a pipe
goes from unreadable to readable, or from unwritable to writable). User
space should then do as much as possible - fully emptying the buffer or
what not - and we'll notify it again the next time the state changes.
But as with EPOLLET, we have at least one case (stress-ng) where the
kernel sent SIGIO due to the pipe being marked for asynchronous
notification, but the user space signal handler then didn't actually
necessarily read it all before returning (it read more than what was
written, but since there could be multiple writes, it could leave data
pending).
The user space code then expected to get another SIGIO for subsequent
writes - even though the pipe had been readable the whole time - and
would only then read more.
This is arguably a user space bug - and Colin King already fixed the
stress-ng code in question - but the kernel regression rules are clear:
it doesn't matter if kernel people think that user space did something
silly and wrong. What matters is that it used to work.
So if user space depends on specific historical kernel behavior, it's a
regression when that behavior changes. It's on us: we were silly to
have that non-optimal historical behavior, and our old kernel behavior
was what user space was tested against.
Because of how the FASYNC notification was tied to wakeup behavior, this
was first broken by commits f467a6a664 and 1b6b26ae70 ("pipe: fix
and clarify pipe read/write wakeup logic"), but at the time it seems
nobody noticed. Probably because the stress-ng problem case ends up
being timing-dependent too.
It was then unwittingly fixed by commit 3a34b13a88 ("pipe: make pipe
writes always wake up readers") only to be broken again when by commit
3b844826b6 ("pipe: avoid unnecessary EPOLLET wakeups under normal
loads").
And at that point the kernel test robot noticed the performance
refression in the stress-ng.sigio.ops_per_sec case. So the "Fixes" tag
below is somewhat ad hoc, but it matches when the issue was noticed.
Fix it for good (knock wood) by simply making the kill_fasync() case
separate from the wakeup case. FASYNC is quite rare, and we clearly
shouldn't even try to use the "avoid unnecessary wakeups" logic for it.
Link: https://lore.kernel.org/lkml/20210824151337.GC27667@xsang-OptiPlex-9020/
Fixes: 3b844826b6 ("pipe: avoid unnecessary EPOLLET wakeups under normal loads")
Reported-by: kernel test robot <oliver.sang@intel.com>
Tested-by: Oliver Sang <oliver.sang@intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I had forgotten just how sensitive hackbench is to extra pipe wakeups,
and commit 3a34b13a88 ("pipe: make pipe writes always wake up
readers") ended up causing a quite noticeable regression on larger
machines.
Now, hackbench isn't necessarily a hugely meaningful benchmark, and it's
not clear that this matters in real life all that much, but as Mel
points out, it's used often enough when comparing kernels and so the
performance regression shows up like a sore thumb.
It's easy enough to fix at least for the common cases where pipes are
used purely for data transfer, and you never have any exciting poll
usage at all. So set a special 'poll_usage' flag when there is polling
activity, and make the ugly "EPOLLET has crazy legacy expectations"
semantics explicit to only that case.
I would love to limit it to just the broken EPOLLET case, but the pipe
code can't see the difference between epoll and regular select/poll, so
any non-read/write waiting will trigger the extra wakeup behavior. That
is sufficient for at least the hackbench case.
Apart from making the odd extra wakeup cases more explicitly about
EPOLLET, this also makes the extra wakeup be at the _end_ of the pipe
write, not at the first write chunk. That is actually much saner
semantics (as much as you can call any of the legacy edge-triggered
expectations for EPOLLET "sane") since it means that you know the wakeup
will happen once the write is done, rather than possibly in the middle
of one.
[ For stable people: I'm putting a "Fixes" tag on this, but I leave it
up to you to decide whether you actually want to backport it or not.
It likely has no impact outside of synthetic benchmarks - Linus ]
Link: https://lore.kernel.org/lkml/20210802024945.GA8372@xsang-OptiPlex-9020/
Fixes: 3a34b13a88 ("pipe: make pipe writes always wake up readers")
Reported-by: kernel test robot <oliver.sang@intel.com>
Tested-by: Sandeep Patil <sspatil@android.com>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This program always prints 4096 and hangs before the patch, and always
prints 8192 and exits successfully after:
int main()
{
int pipefd[2];
for (int i = 0; i < 1025; i++)
if (pipe(pipefd) == -1)
return 1;
size_t bufsz = fcntl(pipefd[1], F_GETPIPE_SZ);
printf("%zd\n", bufsz);
char *buf = calloc(bufsz, 1);
write(pipefd[1], buf, bufsz);
read(pipefd[0], buf, bufsz-1);
write(pipefd[1], buf, 1);
}
Note that you may need to increase your RLIMIT_NOFILE before running the
program.
Fixes: 759c01142a ("pipe: limit the per-user amount of pages allocated in pipes")
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/
Link: https://lore.kernel.org/lkml/1628127094.lxxn016tj7.none@localhost/
Signed-off-by: Alex Xu (Hello71) <alex_y_xu@yahoo.ca>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 1b6b26ae70 ("pipe: fix and clarify pipe write wakeup
logic") we have sanitized the pipe write logic, and would only try to
wake up readers if they needed it.
In particular, if the pipe already had data in it before the write,
there was no point in trying to wake up a reader, since any existing
readers must have been aware of the pre-existing data already. Doing
extraneous wakeups will only cause potential thundering herd problems.
However, it turns out that some Android libraries have misused the EPOLL
interface, and expected "edge triggered" be to "any new write will
trigger it". Even if there was no edge in sight.
Quoting Sandeep Patil:
"The commit 1b6b26ae70 ('pipe: fix and clarify pipe write wakeup
logic') changed pipe write logic to wakeup readers only if the pipe
was empty at the time of write. However, there are libraries that
relied upon the older behavior for notification scheme similar to
what's described in [1]
One such library 'realm-core'[2] is used by numerous Android
applications. The library uses a similar notification mechanism as GNU
Make but it never drains the pipe until it is full. When Android moved
to v5.10 kernel, all applications using this library stopped working.
The library has since been fixed[3] but it will be a while before all
applications incorporate the updated library"
Our regression rule for the kernel is that if applications break from
new behavior, it's a regression, even if it was because the application
did something patently wrong. Also note the original report [4] by
Michal Kerrisk about a test for this epoll behavior - but at that point
we didn't know of any actual broken use case.
So add the extraneous wakeup, to approximate the old behavior.
[ I say "approximate", because the exact old behavior was to do a wakeup
not for each write(), but for each pipe buffer chunk that was filled
in. The behavior introduced by this change is not that - this is just
"every write will cause a wakeup, whether necessary or not", which
seems to be sufficient for the broken library use. ]
It's worth noting that this adds the extraneous wakeup only for the
write side, while the read side still considers the "edge" to be purely
about reading enough from the pipe to allow further writes.
See commit f467a6a664 ("pipe: fix and clarify pipe read wakeup logic")
for the pipe read case, which remains that "only wake up if the pipe was
full, and we read something from it".
Link: https://lore.kernel.org/lkml/CAHk-=wjeG0q1vgzu4iJhW5juPkTsjTYmiqiMUYAebWW+0bam6w@mail.gmail.com/ [1]
Link: https://github.com/realm/realm-core [2]
Link: https://github.com/realm/realm-core/issues/4666 [3]
Link: https://lore.kernel.org/lkml/CAKgNAkjMBGeAwF=2MKK758BhxvW58wYTgYKB2V-gY1PwXxrH+Q@mail.gmail.com/ [4]
Link: https://lore.kernel.org/lkml/20210729222635.2937453-1-sspatil@android.com/
Reported-by: Sandeep Patil <sspatil@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Delete duplicate words in fs/*.c.
The doubled words that are being dropped are:
that, be, the, in, and, for
Link: https://lkml.kernel.org/r/20201224052810.25315-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit 36e2c7421f ("fs: don't allow splice read/write
without explicit ops") sendfile() could no longer send data
from a real file to a pipe, breaking for example certain cgit
setups (e.g. when running behind fcgiwrap), because in this
case cgit will try to do exactly this: sendfile() to a pipe.
Fix this by using iter_file_splice_write for the splice_write
method of pipes, as suggested by Christoph.
Cc: stable@vger.kernel.org
Fixes: 36e2c7421f ("fs: don't allow splice read/write without explicit ops")
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switch the block device lookup interfaces to directly work with a dev_t
so that struct block_device references are only acquired by the
blkdev_get variants (and the blk-cgroup special case). This means that
we now don't need an extra reference in the inode and can generally
simplify handling of struct block_device to keep the lookups contained
in the core block layer code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Coly Li <colyli@suse.de> [bcache]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull vfs fix from Al Viro:
"Fixes an obvious bug (memory leak introduced in 5.8)"
* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
pipe: Fix memory leaks in create_pipe_files()
The pipe splice code still used the old model of waiting for pipe IO by
using a non-specific "pipe_wait()" that waited for any pipe event to
happen, which depended on all pipe IO being entirely serialized by the
pipe lock. So by checking the state you were waiting for, and then
adding yourself to the wait queue before dropping the lock, you were
guaranteed to see all the wakeups.
Strictly speaking, the actual wakeups were not done under the lock, but
the pipe_wait() model still worked, because since the waiter held the
lock when checking whether it should sleep, it would always see the
current state, and the wakeup was always done after updating the state.
However, commit 0ddad21d3e ("pipe: use exclusive waits when reading or
writing") split the single wait-queue into two, and in the process also
made the "wait for event" code wait for _two_ wait queues, and that then
showed a race with the wakers that were not serialized by the pipe lock.
It's only splice that used that "pipe_wait()" model, so the problem
wasn't obvious, but Josef Bacik reports:
"I hit a hang with fstest btrfs/187, which does a btrfs send into
/dev/null. This works by creating a pipe, the write side is given to
the kernel to write into, and the read side is handed to a thread that
splices into a file, in this case /dev/null.
The box that was hung had the write side stuck here [pipe_write] and
the read side stuck here [splice_from_pipe_next -> pipe_wait].
[ more details about pipe_wait() scenario ]
The problem is we're doing the prepare_to_wait, which sets our state
each time, however we can be woken up either with reads or writes. In
the case above we race with the WRITER waking us up, and re-set our
state to INTERRUPTIBLE, and thus never break out of schedule"
Josef had a patch that avoided the issue in pipe_wait() by just making
it set the state only once, but the deeper problem is that pipe_wait()
depends on a level of synchonization by the pipe mutex that it really
shouldn't. And the whole "wait for any pipe state change" model really
isn't very good to begin with.
So rather than trying to work around things in pipe_wait(), remove that
legacy model of "wait for arbitrary pipe event" entirely, and actually
create functions that wait for the pipe actually being readable or
writable, and can do so without depending on the pipe lock serializing
everything.
Fixes: 0ddad21d3e ("pipe: use exclusive waits when reading or writing")
Link: https://lore.kernel.org/linux-fsdevel/bfa88b5ad6f069b2b679316b9e495a970130416c.1601567868.git.josef@toxicpanda.com/
Reported-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-and-tested-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calling pipe2() with O_NOTIFICATION_PIPE could results in memory
leaks unless watch_queue_init() is successful.
In case of watch_queue_init() failure in pipe2() we are left
with inode and pipe_inode_info instances that need to be freed. That
failure exit has been introduced in commit c73be61ced ("pipe: Add
general notification queue support") and its handling should've been
identical to nearby treatment of alloc_file_pseudo() failures - it
is dealing with the same situation. As it is, the mainline kernel
leaks in that case.
Another problem is that CONFIG_WATCH_QUEUE and !CONFIG_WATCH_QUEUE
cases are treated differently (and the former leaks just pipe_inode_info,
the latter - both pipe_inode_info and inode).
Fixed by providing a dummy wacth_queue_init() in !CONFIG_WATCH_QUEUE
case and by having failures of wacth_queue_init() handled the same way
we handle alloc_file_pseudo() ones.
Fixes: c73be61ced ("pipe: Add general notification queue support")
Signed-off-by: Qian Cai <cai@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl7U/i8ACgkQ+7dXa6fL
C2u2eg/+Oy6ybq0hPovYVkFI9WIG7ZCz7w9Q6BEnfYMqqn3dnfJxKQ3l4pnQEOWw
f4QfvpvevsYfMtOJkYcG6s66rQgbFdqc5TEyBBy0QNp3acRolN7IXkcopvv9xOpQ
JxedpbFG1PTFLWjvBpyjlrUPouwLzq2FXAf1Ox0ZIMw6165mYOMWoli1VL8dh0A0
Ai7JUB0WrvTNbrwhV413obIzXT/rPCdcrgbQcgrrLPex8lQ47ZAE9bq6k4q5HiwK
KRzEqkQgnzId6cCNTFBfkTWsx89zZunz7jkfM5yx30MvdAtPSxvvpfIPdZRZkXsP
E2K9Fk1/6OQZTC0Op3Pi/bt+hVG/mD1p0sQUDgo2MO3qlSS+5mMkR8h3mJEgwK12
72P4YfOJkuAy2z3v4lL0GYdUDAZY6i6G8TMxERKu/a9O3VjTWICDOyBUS6F8YEAK
C7HlbZxAEOKTVK0BTDTeEUBwSeDrBbvH6MnRlZCG5g1Fos2aWP0udhjiX8IfZLO7
GN6nWBvK1fYzfsUczdhgnoCzQs3suoDo04HnsTPGJ8De52T4x2RsjV+gPx0nrNAq
eWChl1JvMWsY2B3GLnl9XQz4NNN+EreKEkk+PULDGllrArrPsp5Vnhb9FJO1PVCU
hMDJHohPiXnKbc8f4Bd78OhIvnuoGfJPdM5MtNe2flUKy2a2ops=
=YTGf
-----END PGP SIGNATURE-----
Merge tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull notification queue from David Howells:
"This adds a general notification queue concept and adds an event
source for keys/keyrings, such as linking and unlinking keys and
changing their attributes.
Thanks to Debarshi Ray, we do have a pull request to use this to fix a
problem with gnome-online-accounts - as mentioned last time:
https://gitlab.gnome.org/GNOME/gnome-online-accounts/merge_requests/47
Without this, g-o-a has to constantly poll a keyring-based kerberos
cache to find out if kinit has changed anything.
[ There are other notification pending: mount/sb fsinfo notifications
for libmount that Karel Zak and Ian Kent have been working on, and
Christian Brauner would like to use them in lxc, but let's see how
this one works first ]
LSM hooks are included:
- A set of hooks are provided that allow an LSM to rule on whether or
not a watch may be set. Each of these hooks takes a different
"watched object" parameter, so they're not really shareable. The
LSM should use current's credentials. [Wanted by SELinux & Smack]
- A hook is provided to allow an LSM to rule on whether or not a
particular message may be posted to a particular queue. This is
given the credentials from the event generator (which may be the
system) and the watch setter. [Wanted by Smack]
I've provided SELinux and Smack with implementations of some of these
hooks.
WHY
===
Key/keyring notifications are desirable because if you have your
kerberos tickets in a file/directory, your Gnome desktop will monitor
that using something like fanotify and tell you if your credentials
cache changes.
However, we also have the ability to cache your kerberos tickets in
the session, user or persistent keyring so that it isn't left around
on disk across a reboot or logout. Keyrings, however, cannot currently
be monitored asynchronously, so the desktop has to poll for it - not
so good on a laptop. This facility will allow the desktop to avoid the
need to poll.
DESIGN DECISIONS
================
- The notification queue is built on top of a standard pipe. Messages
are effectively spliced in. The pipe is opened with a special flag:
pipe2(fds, O_NOTIFICATION_PIPE);
The special flag has the same value as O_EXCL (which doesn't seem
like it will ever be applicable in this context)[?]. It is given up
front to make it a lot easier to prohibit splice&co from accessing
the pipe.
[?] Should this be done some other way? I'd rather not use up a new
O_* flag if I can avoid it - should I add a pipe3() system call
instead?
The pipe is then configured::
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, queue_depth);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
Messages are then read out of the pipe using read().
- It should be possible to allow write() to insert data into the
notification pipes too, but this is currently disabled as the
kernel has to be able to insert messages into the pipe *without*
holding pipe->mutex and the code to make this work needs careful
auditing.
- sendfile(), splice() and vmsplice() are disabled on notification
pipes because of the pipe->mutex issue and also because they
sometimes want to revert what they just did - but one or more
notification messages might've been interleaved in the ring.
- The kernel inserts messages with the wait queue spinlock held. This
means that pipe_read() and pipe_write() have to take the spinlock
to update the queue pointers.
- Records in the buffer are binary, typed and have a length so that
they can be of varying size.
This allows multiple heterogeneous sources to share a common
buffer; there are 16 million types available, of which I've used
just a few, so there is scope for others to be used. Tags may be
specified when a watchpoint is created to help distinguish the
sources.
- Records are filterable as types have up to 256 subtypes that can be
individually filtered. Other filtration is also available.
- Notification pipes don't interfere with each other; each may be
bound to a different set of watches. Any particular notification
will be copied to all the queues that are currently watching for it
- and only those that are watching for it.
- When recording a notification, the kernel will not sleep, but will
rather mark a queue as having lost a message if there's
insufficient space. read() will fabricate a loss notification
message at an appropriate point later.
- The notification pipe is created and then watchpoints are attached
to it, using one of:
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);
watch_mount(AT_FDCWD, "/", 0, fd, 0x02);
watch_sb(AT_FDCWD, "/mnt", 0, fd, 0x03);
where in both cases, fd indicates the queue and the number after is
a tag between 0 and 255.
- Watches are removed if either the notification pipe is destroyed or
the watched object is destroyed. In the latter case, a message will
be generated indicating the enforced watch removal.
Things I want to avoid:
- Introducing features that make the core VFS dependent on the
network stack or networking namespaces (ie. usage of netlink).
- Dumping all this stuff into dmesg and having a daemon that sits
there parsing the output and distributing it as this then puts the
responsibility for security into userspace and makes handling
namespaces tricky. Further, dmesg might not exist or might be
inaccessible inside a container.
- Letting users see events they shouldn't be able to see.
TESTING AND MANPAGES
====================
- The keyutils tree has a pipe-watch branch that has keyctl commands
for making use of notifications. Proposed manual pages can also be
found on this branch, though a couple of them really need to go to
the main manpages repository instead.
If the kernel supports the watching of keys, then running "make
test" on that branch will cause the testing infrastructure to spawn
a monitoring process on the side that monitors a notifications pipe
for all the key/keyring changes induced by the tests and they'll
all be checked off to make sure they happened.
https://git.kernel.org/pub/scm/linux/kernel/git/dhowells/keyutils.git/log/?h=pipe-watch
- A test program is provided (samples/watch_queue/watch_test) that
can be used to monitor for keyrings, mount and superblock events.
Information on the notifications is simply logged to stdout"
* tag 'notifications-20200601' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
smack: Implement the watch_key and post_notification hooks
selinux: Implement the watch_key security hook
keys: Make the KEY_NEED_* perms an enum rather than a mask
pipe: Add notification lossage handling
pipe: Allow buffers to be marked read-whole-or-error for notifications
Add sample notification program
watch_queue: Add a key/keyring notification facility
security: Add hooks to rule on setting a watch
pipe: Add general notification queue support
pipe: Add O_NOTIFICATION_PIPE
security: Add a hook for the point of notification insertion
uapi: General notification queue definitions
And replace the arcane return value convention with a simple bool
where true means success and false means failure.
[AV: braino fix folded in]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
All the op vectors are exactly the same, they are just used to encode
packet or nomerge behavior. There already is a flag for the packet
behavior, so just add a new one to allow for merging. Inverting it vs
the previous nomerge special casing actually allows for much nicer code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add handling for loss of notifications by having read() insert a
loss-notification message after it has read the pipe buffer that was last
in the ring when the loss occurred.
Lossage can come about either by running out of notification descriptors or
by running out of space in the pipe ring.
Signed-off-by: David Howells <dhowells@redhat.com>
Allow a buffer to be marked such that read() must return the entire buffer
in one go or return ENOBUFS. Multiple buffers can be amalgamated into a
single read, but a short read will occur if the next "whole" buffer won't
fit.
This is useful for watch queue notifications to make sure we don't split a
notification across multiple reads, especially given that we need to
fabricate an overrun record under some circumstances - and that isn't in
the buffers.
Signed-off-by: David Howells <dhowells@redhat.com>
Make it possible to have a general notification queue built on top of a
standard pipe. Notifications are 'spliced' into the pipe and then read
out. splice(), vmsplice() and sendfile() are forbidden on pipes used for
notifications as post_one_notification() cannot take pipe->mutex. This
means that notifications could be posted in between individual pipe
buffers, making iov_iter_revert() difficult to effect.
The way the notification queue is used is:
(1) An application opens a pipe with a special flag and indicates the
number of messages it wishes to be able to queue at once (this can
only be set once):
pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[0], IOC_WATCH_QUEUE_SET_SIZE, queue_depth);
(2) The application then uses poll() and read() as normal to extract data
from the pipe. read() will return multiple notifications if the
buffer is big enough, but it will not split a notification across
buffers - rather it will return a short read or EMSGSIZE.
Notification messages include a length in the header so that the
caller can split them up.
Each message has a header that describes it:
struct watch_notification {
__u32 type:24;
__u32 subtype:8;
__u32 info;
};
The type indicates the source (eg. mount tree changes, superblock events,
keyring changes, block layer events) and the subtype indicates the event
type (eg. mount, unmount; EIO, EDQUOT; link, unlink). The info field
indicates a number of things, including the entry length, an ID assigned to
a watchpoint contributing to this buffer and type-specific flags.
Supplementary data, such as the key ID that generated an event, can be
attached in additional slots. The maximum message size is 127 bytes.
Messages may not be padded or aligned, so there is no guarantee, for
example, that the notification type will be on a 4-byte bounary.
Signed-off-by: David Howells <dhowells@redhat.com>
Rename (__)memcg_kmem_(un)charge() into (__)memcg_kmem_(un)charge_page()
to better reflect what they are actually doing:
1) call __memcg_kmem_(un)charge_memcg() to actually charge or uncharge
the current memcg
2) set or clear the PageKmemcg flag
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrei Vagin reported that commit 0ddad21d3e ("pipe: use exclusive
waits when reading or writing") broke one of the CRIU tests. He even
has a trivial reproducer:
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{
int p[2];
pid_t p1, p2;
int status;
if (pipe(p) == -1)
return 1;
p1 = fork();
if (p1 == 0) {
close(p[1]);
read(p[0], &status, sizeof(status));
return 0;
}
p2 = fork();
if (p2 == 0) {
close(p[1]);
read(p[0], &status, sizeof(status));
return 0;
}
sleep(1);
close(p[1]);
wait(&status);
wait(&status);
return 0;
}
and the problem - once he points it out - is obvious. We use these nice
exclusive waits, but when the last writer goes away, it then needs to
wake up _every_ reader (and conversely, the last reader disappearing
needs to wake every writer, of course).
In fact, when going through this, we had several small oddities around
how to wake things. We did in fact wake every reader when we changed
the size of the pipe buffers. But that's entirely pointless, since that
just acts as a possible source of new space - no new data to read.
And when we change the size of the buffer, we don't need to wake all
writers even when we add space - that case acts just as if somebody made
space by reading, and any writer that finds itself not filling it up
entirely will wake the next one.
On the other hand, on the exit path, we tried to limit the wakeups with
the proper poll keys etc, which is entirely pointless, because at that
point we obviously need to wake up everybody. So don't do that: just
wake up everybody - but only do that if the counts changed to zero.
So fix those non-IO wakeups to be more proper: space change doesn't add
any new data, but it might make room for writers, so it wakes up a
writer. And the actual changes to reader/writer counts should wake up
everybody, since everybody is affected (ie readers will all see EOF if
the writers have gone away, and writers will all get EPIPE if all
readers have gone away).
Fixes: 0ddad21d3e ("pipe: use exclusive waits when reading or writing")
Reported-and-tested-by: Andrei Vagin <avagin@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes the pipe code use separate wait-queues and exclusive waiting
for readers and writers, avoiding a nasty thundering herd problem when
there are lots of readers waiting for data on a pipe (or, less commonly,
lots of writers waiting for a pipe to have space).
While this isn't a common occurrence in the traditional "use a pipe as a
data transport" case, where you typically only have a single reader and
a single writer process, there is one common special case: using a pipe
as a source of "locking tokens" rather than for data communication.
In particular, the GNU make jobserver code ends up using a pipe as a way
to limit parallelism, where each job consumes a token by reading a byte
from the jobserver pipe, and releases the token by writing a byte back
to the pipe.
This pattern is fairly traditional on Unix, and works very well, but
will waste a lot of time waking up a lot of processes when only a single
reader needs to be woken up when a writer releases a new token.
A simplified test-case of just this pipe interaction is to create 64
processes, and then pass a single token around between them (this
test-case also intentionally passes another token that gets ignored to
test the "wake up next" logic too, in case anybody wonders about it):
#include <unistd.h>
int main(int argc, char **argv)
{
int fd[2], counters[2];
pipe(fd);
counters[0] = 0;
counters[1] = -1;
write(fd[1], counters, sizeof(counters));
/* 64 processes */
fork(); fork(); fork(); fork(); fork(); fork();
do {
int i;
read(fd[0], &i, sizeof(i));
if (i < 0)
continue;
counters[0] = i+1;
write(fd[1], counters, (1+(i & 1)) *sizeof(int));
} while (counters[0] < 1000000);
return 0;
}
and in a perfect world, passing that token around should only cause one
context switch per transfer, when the writer of a token causes a
directed wakeup of just a single reader.
But with the "writer wakes all readers" model we traditionally had, on
my test box the above case causes more than an order of magnitude more
scheduling: instead of the expected ~1M context switches, "perf stat"
shows
231,852.37 msec task-clock # 15.857 CPUs utilized
11,250,961 context-switches # 0.049 M/sec
616,304 cpu-migrations # 0.003 M/sec
1,648 page-faults # 0.007 K/sec
1,097,903,998,514 cycles # 4.735 GHz
120,781,778,352 instructions # 0.11 insn per cycle
27,997,056,043 branches # 120.754 M/sec
283,581,233 branch-misses # 1.01% of all branches
14.621273891 seconds time elapsed
0.018243000 seconds user
3.611468000 seconds sys
before this commit.
After this commit, I get
5,229.55 msec task-clock # 3.072 CPUs utilized
1,212,233 context-switches # 0.232 M/sec
103,951 cpu-migrations # 0.020 M/sec
1,328 page-faults # 0.254 K/sec
21,307,456,166 cycles # 4.074 GHz
12,947,819,999 instructions # 0.61 insn per cycle
2,881,985,678 branches # 551.096 M/sec
64,267,015 branch-misses # 2.23% of all branches
1.702148350 seconds time elapsed
0.004868000 seconds user
0.110786000 seconds sys
instead. Much better.
[ Note! This kernel improvement seems to be very good at triggering a
race condition in the make jobserver (in GNU make 4.2.1) for me. It's
a long known bug that was fixed back in June 2017 by GNU make commit
b552b0525198 ("[SV 51159] Use a non-blocking read with pselect to
avoid hangs.").
But there wasn't a new release of GNU make until 4.3 on Jan 19 2020,
so a number of distributions may still have the buggy version. Some
have backported the fix to their 4.2.1 release, though, and even
without the fix it's quite timing-dependent whether the bug actually
is hit. ]
Josh Triplett says:
"I've been hammering on your pipe fix patch (switching to exclusive
wait queues) for a month or so, on several different systems, and I've
run into no issues with it. The patch *substantially* improves
parallel build times on large (~100 CPU) systems, both with parallel
make and with other things that use make's pipe-based jobserver.
All current distributions (including stable and long-term stable
distributions) have versions of GNU make that no longer have the
jobserver bug"
Tested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LTP pipeio_1 test is hanging with v5.5-rc2-385-gb8e382a185eb,
with read side observing empty pipe and sleeping and write
side running out of space and then sleeping as well. In this
scenario there are 5 writers and 1 reader.
Problem is that after pipe_write() reacquires pipe lock, it
re-checks for empty pipe with potentially stale 'head' and
doesn't wake up read side anymore. pipe->tail can advance
beyond 'head', because there are multiple writers.
Use pipe->head for empty pipe check after reacquiring lock
to observe current state.
Testing: With patch, LTP pipeio_1 ran successfully in loop for 1 hour.
Without patch it hanged within a minute.
Fixes: 1b6b26ae70 ("pipe: fix and clarify pipe write wakeup logic")
Reported-by: Rachel Sibley <rasibley@redhat.com>
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's no need to separately check for signals while inside the locked
region, since we're going to do "wait_event_interruptible()" right
afterwards anyway, and the error handling is much simpler there.
The check for whether we had already read anything was also redundant,
since we no longer do the odd merging of reads when there are pending
writers.
But perhaps more importantly, this adds commentary about why we still
need to wake up possible writers even though we didn't read any data,
and why we can skip all the finishing touches now if we get a signal (or
had a signal pending) while waiting for more data.
[ This is a split-out cleanup from my "make pipe IO use exclusive wait
queues" thing, which I can't apply because it triggers a nasty bug in
the GNU make jobserver - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pipe_wait() may be simple, but since it relies on the pipe lock, it
means that we have to do the wakeup while holding the lock. That's
unfortunate, because the very first thing the waked entity will want to
do is to get the pipe lock for itself.
So get rid of the pipe_wait() usage by simply releasing the pipe lock,
doing the wakeup (if required) and then using wait_event_interruptible()
to wait on the right condition instead.
wait_event_interruptible() handles races on its own by comparing the
wakeup condition before and after adding itself to the wait queue, so
you can use an optimistic unlocked condition for it.
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This code is ancient, and goes back to when we only had a single page
for the pipe buffers. The exact history is hidden in the mists of time
(ie "before git", and in fact predates the BK repository too).
At that long-ago point in time, it actually helped to try to merge big
back-and-forth pipe reads and writes, and not limit pipe reads to the
single pipe buffer in length just because that was all we had at a time.
However, since then we've expanded the pipe buffers to multiple pages,
and this logic really doesn't seem to make sense. And a lot of it is
somewhat questionable (ie "hmm, the user asked for a non-blocking read,
but we see that there's a writer pending, so let's wait anyway to get
the extra data that the writer will have").
But more importantly, it makes the "go to sleep" logic much less
obvious, and considering the wakeup issues we've had, I want to make for
less of those kinds of things.
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the read side version of the previous commit: it simplifies the
logic to only wake up waiting writers when necessary, and makes sure to
use a synchronous wakeup. This time not so much for GNU make jobserver
reasons (that pipe never fills up), but simply to get the writer going
quickly again.
A bit less verbose commentary this time, if only because I assume that
the write side commentary isn't going to be ignored if you touch this
code.
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pipe rework ends up having been extra painful, partly becaused of
actual bugs with ordering and caching of the pipe state, but also
because of subtle performance issues.
In particular, the pipe rework caused the kernel build to inexplicably
slow down.
The reason turns out to be that the GNU make jobserver (which limits the
parallelism of the build) uses a pipe to implement a "token" system: a
parallel submake will read a character from the pipe to get the job
token before starting a new job, and will write a character back to the
pipe when it is done. The overall job limit is thus easily controlled
by just writing the appropriate number of initial token characters into
the pipe.
But to work well, that really means that the old behavior of write
wakeups being synchronous (WF_SYNC) is very important - when the pipe
writer wakes up a reader, we want the reader to actually get scheduled
immediately. Otherwise you lose the parallelism of the build.
The pipe rework lost that synchronous wakeup on write, and we had
clearly all forgotten the reasons and rules for it.
This rewrites the pipe write wakeup logic to do the required Wsync
wakeups, but also clarifies the logic and avoids extraneous wakeups.
It also ends up addign a number of comments about what oit does and why,
so that we hopefully don't end up forgetting about this next time we
change this code.
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel wait queues have a basic rule to them: you add yourself to
the wait-queue first, and then you check the things that you're going to
wait on. That avoids the races with the event you're waiting for.
The same goes for poll/select logic: the "poll_wait()" goes first, and
then you check the things you're polling for.
Of course, if you use locking, the ordering doesn't matter since the
lock will serialize with anything that changes the state you're looking
at. That's not the case here, though.
So move the poll_wait() first in pipe_poll(), before you start looking
at the pipe state.
Fixes: 8cefc107ca ("pipe: Use head and tail pointers for the ring, not cursor and length")
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge two fixes for the pipe rework from David Howells:
"Here are a couple of patches to fix bugs syzbot found in the pipe
changes:
- An assertion check will sometimes trip when polling a pipe because
the ring size and indices used are approximate and may be being
changed simultaneously.
An equivalent approximate calculation was done previously, but
without the assertion check, so I've just dropped the check. To
make it accurate, the pipe mutex would need to be taken or the spin
lock could be used - but usage of the spinlock would need to be
rolled out into splice, iov_iter and other places for that.
- The index mask and the max_usage values cannot be cached across
pipe_wait() as F_SETPIPE_SZ could have been called during the wait.
This can cause pipe_write() to break"
* pipe-rework:
pipe: Fix missing mask update after pipe_wait()
pipe: Remove assertion from pipe_poll()
Fix pipe_write() to not cache the ring index mask and max_usage as their
values are invalidated by calling pipe_wait() because the latter
function drops the pipe lock, thereby allowing F_SETPIPE_SZ change them.
Without this, pipe_write() may subsequently miscalculate the array
indices and pipe fullness, leading to an oops like the following:
BUG: KASAN: slab-out-of-bounds in pipe_write+0xc25/0xe10 fs/pipe.c:481
Write of size 8 at addr ffff8880771167a8 by task syz-executor.3/7987
...
CPU: 1 PID: 7987 Comm: syz-executor.3 Not tainted 5.4.0-rc2-syzkaller #0
...
Call Trace:
pipe_write+0xc25/0xe10 fs/pipe.c:481
call_write_iter include/linux/fs.h:1895 [inline]
new_sync_write+0x3fd/0x7e0 fs/read_write.c:483
__vfs_write+0x94/0x110 fs/read_write.c:496
vfs_write+0x18a/0x520 fs/read_write.c:558
ksys_write+0x105/0x220 fs/read_write.c:611
__do_sys_write fs/read_write.c:623 [inline]
__se_sys_write fs/read_write.c:620 [inline]
__x64_sys_write+0x6e/0xb0 fs/read_write.c:620
do_syscall_64+0xca/0x5d0 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
This is not a problem for pipe_read() as the mask is recalculated on
each pass of the loop, after pipe_wait() has been called.
Fixes: 8cefc107ca ("pipe: Use head and tail pointers for the ring, not cursor and length")
Reported-by: syzbot+838eb0878ffd51f27c41@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Eric Biggers <ebiggers@kernel.org>
[ Changed it to use a temporary variable 'mask' to avoid long lines -Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An assertion check was added to pipe_poll() to make sure that the ring
occupancy isn't seen to overflow the ring size. However, since no locks
are held when the three values are read, it is possible for F_SETPIPE_SZ
to intervene and muck up the calculation, thereby causing the oops.
Fix this by simply removing the assertion and accepting that the
calculation might be approximate.
Note that the previous code also had a similar issue, though there was
no assertion check, since the occupancy counter and the ring size were
not read with a lock held, so it's possible that the poll check might
have malfunctioned then too.
Also wake up all the waiters so that they can reissue their checks if
there was a competing read or write.
Fixes: 8cefc107ca ("pipe: Use head and tail pointers for the ring, not cursor and length")
Reported-by: syzbot+d37abaade33a934f16f2@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl3O0OoACgkQ+7dXa6fL
C2tAwA//VH9Y81azemXFdflDF90sSH3TCASlKHVYHbBNAkH/QP5F00G4BEM4nNqH
F3x7qcU9vzfGdumF1pc90Yt6XSYlsQEGF+xMyMw/VS2wKs40yv+b/doVbzOWbN9C
NfrklgHeuuBk+JzU2llDisVqKRTLt4SmDpYu1ZdcchUQFZCCl3BpgdSEC+xXrHay
+KlRPVNMSd2kXMCDuSWrr71lVNdCTdf3nNC5p1i780+VrgpIBIG/jmiNdCcd7PLH
1aesPlr8UZY3+bmRtqe587fVRAhT2qA2xibKtyf9R0hrDtUKR4NSnpPmaeIjb26e
LhVntcChhYxQqzy/T4ScTDNVjpSlwi6QMo5DwAwzNGf2nf/v5/CZ+vGYDVdXRFHj
tgH1+8eDpHsi7jJp6E4cmZjiolsUx/ePDDTrQ4qbdDMO7fmIV6YQKFAMTLJepLBY
qnJVqoBq3qn40zv6tVZmKgWiXQ65jEkBItZhEUmcQRBiSbBDPweIdEzx/mwzkX7U
1gShGdut6YP4GX7BnOhkiQmzucS85mgkUfG43+mBfYXb+4zNTEjhhkqhEduz2SQP
xnjHxEM+MTGCj3PozIpJxNKzMTEceYY7cAUdNEMDQcHog7OCnIdGBIc7BPnsN8yA
CPzntwP4mmLfK3weq3PIGC6d9xfc9PpmiR9docxQOvE6sk2Ifeo=
=FKC7
-----END PGP SIGNATURE-----
Merge tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull pipe rework from David Howells:
"This is my set of preparatory patches for building a general
notification queue on top of pipes. It makes a number of significant
changes:
- It removes the nr_exclusive argument from __wake_up_sync_key() as
this is always 1. This prepares for the next step:
- Adds wake_up_interruptible_sync_poll_locked() so that poll can be
woken up from a function that's holding the poll waitqueue
spinlock.
- Change the pipe buffer ring to be managed in terms of unbounded
head and tail indices rather than bounded index and length. This
means that reading the pipe only needs to modify one index, not
two.
- A selection of helper functions are provided to query the state of
the pipe buffer, plus a couple to apply updates to the pipe
indices.
- The pipe ring is allowed to have kernel-reserved slots. This allows
many notification messages to be spliced in by the kernel without
allowing userspace to pin too many pages if it writes to the same
pipe.
- Advance the head and tail indices inside the pipe waitqueue lock
and use wake_up_interruptible_sync_poll_locked() to poke poll
without having to take the lock twice.
- Rearrange pipe_write() to preallocate the buffer it is going to
write into and then drop the spinlock. This allows kernel
notifications to then be added the ring whilst it is filling the
buffer it allocated. The read side is stalled because the pipe
mutex is still held.
- Don't wake up readers on a pipe if there was already data in it
when we added more.
- Don't wake up writers on a pipe if the ring wasn't full before we
removed a buffer"
* tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
pipe: Remove sync on wake_ups
pipe: Increase the writer-wakeup threshold to reduce context-switch count
pipe: Check for ring full inside of the spinlock in pipe_write()
pipe: Remove redundant wakeup from pipe_write()
pipe: Rearrange sequence in pipe_write() to preallocate slot
pipe: Conditionalise wakeup in pipe_read()
pipe: Advance tail pointer inside of wait spinlock in pipe_read()
pipe: Allow pipes to have kernel-reserved slots
pipe: Use head and tail pointers for the ring, not cursor and length
Add wake_up_interruptible_sync_poll_locked()
Remove the nr_exclusive argument from __wake_up_sync_key()
pipe: Reduce #inclusion of pipe_fs_i.h
In commit 3975b097e5 ("convert stream-like files -> stream_open, even
if they use noop_llseek") Kirill used a coccinelle script to change
"nonseekable_open()" to "stream_open()", which changed the trivial cases
of stream-like file descriptors to the new model with FMODE_STREAM.
However, the two big cases - sockets and pipes - don't actually have
that trivial pattern at all, and were thus never converted to
FMODE_STREAM even though it makes lots of sense to do so.
That's particularly true when looking forward to the next change:
getting rid of FMODE_ATOMIC_POS entirely, and just using FMODE_STREAM to
decide whether f_pos updates are needed or not. And if they are, we'll
always do them atomically.
This came up because KCSAN (correctly) noted that the non-locked f_pos
updates are data races: they are clearly benign for the case where we
don't care, but it would be good to just not have that issue exist at
all.
Note that the reason we used FMODE_ATOMIC_POS originally is that only
doing it for the minimal required case is "safer" in that it's possible
that the f_pos locking can cause unnecessary serialization across the
whole write() call. And in the worst case, that kind of serialization
can cause deadlock issues: think writers that need readers to empty the
state using the same file descriptor.
[ Note that the locking is per-file descriptor - because it protects
"f_pos", which is obviously per-file descriptor - so it only affects
cases where you literally use the same file descriptor to both read
and write.
So a regular pipe that has separate reading and writing file
descriptors doesn't really have this situation even though it's the
obvious case of "reader empties what a bit writer concurrently fills"
But we want to make pipes as being stream-line anyway, because we
don't want the unnecessary overhead of locking, and because a named
pipe can be (ab-)used by reading and writing to the same file
descriptor. ]
There are likely a lot of other cases that might want FMODE_STREAM, and
looking for ".llseek = no_llseek" users and other cases that don't have
an lseek file operation at all and making them use "stream_open()" might
be a good idea. But pipes and sockets are likely to be the two main
cases.
Cc: Kirill Smelkov <kirr@nexedi.com>
Cc: Eic Dumazet <edumazet@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Marco Elver <elver@google.com>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Paul McKenney <paulmck@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Increase the threshold at which the reader sends a wake event to the
writers in the queue such that the queue must be half empty before the wake
is issued rather than the wake being issued when just a single slot
available.
This reduces the number of context switches in the tests significantly,
without altering the amount of work achieved. With my pipe-bench program,
there's a 20% reduction versus an unpatched kernel.
Suggested-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: David Howells <dhowells@redhat.com>
Make pipe_write() check to see if the ring has become full between it
taking the pipe mutex, checking the ring status and then taking the
spinlock.
This can happen if a notification is written into the pipe as that happens
without the pipe mutex.
Signed-off-by: David Howells <dhowells@redhat.com>
Rearrange the sequence in pipe_write() so that the allocation of the new
buffer, the allocation of a ring slot and the attachment to the ring is
done under the pipe wait spinlock and then the lock is dropped and the
buffer can be filled.
The data copy needs to be done with the spinlock unheld and irqs enabled,
so the lock needs to be dropped first. However, the reader can't progress
as we're holding pipe->mutex.
We also need to drop the lock as that would impact others looking at the
pipe waitqueue, such as poll(), the consumer and a future kernel message
writer.
We just abandon the preallocated slot if we get a copy error. Future
writes may continue it and a future read will eventually recycle it.
Signed-off-by: David Howells <dhowells@redhat.com>
Only do a wakeup in pipe_read() if we made space in a completely full
buffer. The producer shouldn't be waiting on pipe->wait otherwise.
Signed-off-by: David Howells <dhowells@redhat.com>
Advance the pipe ring tail pointer inside of wait spinlock in pipe_read()
so that the pipe can be written into with kernel notifications from
contexts where pipe->mutex cannot be taken.
Signed-off-by: David Howells <dhowells@redhat.com>
Split pipe->ring_size into two numbers:
(1) pipe->ring_size - indicates the hard size of the pipe ring.
(2) pipe->max_usage - indicates the maximum number of pipe ring slots that
userspace orchestrated events can fill.
This allows for a pipe that is both writable by the general kernel
notification facility and by userspace, allowing plenty of ring space for
notifications to be added whilst preventing userspace from being able to
pin too much unswappable kernel space.
Signed-off-by: David Howells <dhowells@redhat.com>
Convert pipes to use head and tail pointers for the buffer ring rather than
pointer and length as the latter requires two atomic ops to update (or a
combined op) whereas the former only requires one.
(1) The head pointer is the point at which production occurs and points to
the slot in which the next buffer will be placed. This is equivalent
to pipe->curbuf + pipe->nrbufs.
The head pointer belongs to the write-side.
(2) The tail pointer is the point at which consumption occurs. It points
to the next slot to be consumed. This is equivalent to pipe->curbuf.
The tail pointer belongs to the read-side.
(3) head and tail are allowed to run to UINT_MAX and wrap naturally. They
are only masked off when the array is being accessed, e.g.:
pipe->bufs[head & mask]
This means that it is not necessary to have a dead slot in the ring as
head == tail isn't ambiguous.
(4) The ring is empty if "head == tail".
A helper, pipe_empty(), is provided for this.
(5) The occupancy of the ring is "head - tail".
A helper, pipe_occupancy(), is provided for this.
(6) The number of free slots in the ring is "pipe->ring_size - occupancy".
A helper, pipe_space_for_user() is provided to indicate how many slots
userspace may use.
(7) The ring is full if "head - tail >= pipe->ring_size".
A helper, pipe_full(), is provided for this.
Signed-off-by: David Howells <dhowells@redhat.com>
Convert the pipe filesystem to the new internal mount API as the old
one will be obsoleted and removed. This allows greater flexibility in
communication of mount parameters between userspace, the VFS and the
filesystem.
See Documentation/filesystems/mount_api.txt for more information.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Once upon a time we used to set ->d_name of e.g. pipefs root
so that d_path() on pipes would work. These days it's
completely pointless - dentries of pipes are not even connected
to pipefs root. However, mount_pseudo() had set the root
dentry name (passed as the second argument) and callers
kept inventing names to pass to it. Including those that
didn't *have* any non-root dentries to start with...
All of that had been pointless for about 8 years now; it's
time to get rid of that cargo-culting...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Merge page ref overflow branch.
Jann Horn reported that he can overflow the page ref count with
sufficient memory (and a filesystem that is intentionally extremely
slow).
Admittedly it's not exactly easy. To have more than four billion
references to a page requires a minimum of 32GB of kernel memory just
for the pointers to the pages, much less any metadata to keep track of
those pointers. Jann needed a total of 140GB of memory and a specially
crafted filesystem that leaves all reads pending (in order to not ever
free the page references and just keep adding more).
Still, we have a fairly straightforward way to limit the two obvious
user-controllable sources of page references: direct-IO like page
references gotten through get_user_pages(), and the splice pipe page
duplication. So let's just do that.
* branch page-refs:
fs: prevent page refcount overflow in pipe_buf_get
mm: prevent get_user_pages() from overflowing page refcount
mm: add 'try_get_page()' helper function
mm: make page ref count overflow check tighter and more explicit
Change pipe_buf_get() to return a bool indicating whether it succeeded
in raising the refcount of the page (if the thing in the pipe is a page).
This removes another mechanism for overflowing the page refcount. All
callers converted to handle a failure.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull misc vfs updates from Al Viro:
"Assorted fixes (really no common topic here)"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Make __vfs_write() static
vfs: fix preadv64v2 and pwritev64v2 compat syscalls with offset == -1
pipe: stop using ->can_merge
splice: don't merge into linked buffers
fs: move generic stat response attr handling to vfs_getattr_nosec
orangefs: don't reinitialize result_mask in ->getattr
fs/devpts: always delete dcache dentry-s in dput()
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.
This is purely code cleanup patch without any functional change. Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same. This should not matter as
memcg_charge_slab() is not in the hot path.
Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Al Viro pointed out that since there is only one pipe buffer type to which
new data can be appended, it isn't necessary to have a ->can_merge field in
struct pipe_buf_operations, we can just check for a magic type.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>