IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
It is a good measure to ensure correctness if the structures that are
meant to remain constant are only processed by functions that thake
constant arguments.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot_wm_encode function deals with setting thresholds for pause
frame start and stop. In Ocelot and Felix the register layout is the
same, but for Seville, it isn't. The easiest way to accommodate Seville
hardware configuration is to introduce a function pointer for setting
this up.
Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Seville has a different bitwise layout than Ocelot and Felix.
Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With this patch we try to kill 2 birds with 1 stone.
First of all, some switches that use tag_ocelot.c don't have the exact
same bitfield layout for the DSA tags. The destination ports field is
different for Seville VSC9953 for example. So the choices are to either
duplicate tag_ocelot.c into a new tag_seville.c (sub-optimal) or somehow
take into account a supposed ocelot->dest_ports_offset when packing this
field into the DSA injection header (again not ideal).
Secondly, tag_ocelot.c already needs to memset a 128-bit area to zero
and call some packing() functions of dubious performance in the
fastpath. And most of the values it needs to pack are pretty much
constant (BYPASS=1, SRC_PORT=CPU, DEST=port index). So it would be good
if we could improve that.
The proposed solution is to allocate a memory area per port at probe
time, initialize that with the statically defined bits as per chip
hardware revision, and just perform a simpler memcpy in the fastpath.
Other alternatives have been analyzed, such as:
- Create a separate tag_seville.c: too much code duplication for just 1
bit field difference.
- Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like
tag_brcm.c, which would have a separate .xmit function. Again, too
much code duplication for just 1 bit field difference.
- Allocate the template from the init function of the tag_ocelot.c
module, instead of from the driver: couldn't figure out a method of
accessing the correct port template corresponding to the correct
tagger in the .xmit function.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently Felix and Ocelot share the same bit layout in these per-port
registers, but Seville does not. So we need reg_fields for that.
Actually since these are per-port registers, we need to also specify the
number of ports, and register size per port, and use the regmap API for
multiple ports.
There's a more subtle point to be made about the other 2 register
fields:
- QSYS_SWITCH_PORT_MODE_SCH_NEXT_CFG
- QSYS_SWITCH_PORT_MODE_INGRESS_DROP_MODE
which we are not writing any longer, for 2 reasons:
- Using the previous API (ocelot_write_rix), we were only writing 1 for
Felix and Ocelot, which was their hardware-default value, and which
there wasn't any intention in changing.
- In the case of SCH_NEXT_CFG, in fact Seville does not have this
register field at all, and therefore, if we want to have common code
we would be required to not write to it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add the register definitions for the MSCC MIIM MDIO controller in
preparation for seville_vsc9959.c to create its accessors for the
internal MDIO bus.
Since we've introduced elements to ocelot_regfields that are not
instantiated by felix and ocelot, we need to define the size of the
regfields arrays explicitly, otherwise ocelot_regfields_init, which
iterates up to REGFIELD_MAX, will fault on the undefined regfield
entries (if we're lucky).
Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At the moment, there are some minimal register differences between
VSC7514 Ocelot and VSC9959 Felix. To be precise, the PCS1G registers are
missing from Felix because it was integrated with an NXP PCS.
But with VSC9953 Seville (not yet introduced), the register differences
are more pronounced. The MAC registers are located at different offsets
within the DEV_GMII target. So we need to refactor the driver to keep a
regmap even for per-port registers. The callers of the ocelot_port_readl
and ocelot_port_writel were kept unchanged, only the implementation is
now more generic.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current iterators are impossible to understand at first glance
without switching back and forth between the definitions and their
actual use in the for loops.
So introduce some convenience names to help readability.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds the mdb hooks in felix and exports the mdb functions from
ocelot.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Access Control Lists (and their respective Access Control Entries) are
specifically entries in the VCAP IS2, the security enforcement block,
according to the documentation.
Let's rename the structures and functions to something more generic, so
that VCAP IS1 structures (which would otherwise have to be called
Ingress Classification Entries) can reuse the same code without
confusion.
Some renaming that was done:
struct ocelot_ace_rule -> struct ocelot_vcap_filter
struct ocelot_acl_block -> struct ocelot_vcap_block
enum ocelot_ace_type -> enum ocelot_vcap_key_type
struct ocelot_ace_vlan -> struct ocelot_vcap_key_vlan
enum ocelot_ace_action -> enum ocelot_vcap_action
struct ocelot_ace_stats -> struct ocelot_vcap_stats
enum ocelot_ace_type -> enum ocelot_vcap_key_type
struct ocelot_ace_frame_* -> struct ocelot_vcap_key_*
No functional change is intended.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When running 'bridge fdb dump' on Felix, sometimes learnt and static MAC
addresses would appear, sometimes they wouldn't.
Turns out, the MAC table has 4096 entries on VSC7514 (Ocelot) and 8192
entries on VSC9959 (Felix), so the existing code from the Ocelot common
library only dumped half of Felix's MAC table. They are both organized
as a 4-way set-associative TCAM, so we just need a single variable
indicating the correct number of rows.
Fixes: 56051948773e ("net: dsa: ocelot: add driver for Felix switch family")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Support 4 PTP programmable pins with only PTP_PF_PEROUT function
for now. The PTP_PF_EXTTS function will be supported in the
future, and it should be implemented separately for Felix and
Ocelot, because of different hardware interrupt implementation
in them.
Since the hardware is not able to support absolute start time,
the periodic clock request only allows start time 0 0. But nsec
could be accepted for PPS case for phase adjustment.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add wave programming registers definitions for Ocelot platforms.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are 5 PTP_PINS register groups on Ocelot switch.
Except the one used for TOD operations, there are still
4 register groups for programmable pins. So redefine the
4 programmable pins.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Ocelot PTP clock driver had been embedded into ocelot.c driver.
It had supported basic gettime64/settime64/adjtime/adjfine functions
by now which were used by both Ocelot switch and Felix switch.
This patch is to move current ptp clock code out of ocelot.c driver
maintaining as a single ocelot_ptp.c.
For futher new features implementation, the common code could be put
in ocelot_ptp.c and the switch specific code should be in specific
switch driver. The interrupt implementation in SoC is different
between Ocelot and Felix.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
To rehash a previous explanation given in commit 1c44ce560b4d ("net:
mscc: ocelot: fix vlan_filtering when enslaving to bridge before link is
up"), the switch driver operates the in a mode where a single VLAN can
be transmitted as untagged on a particular egress port. That is the
"native VLAN on trunk port" use case.
The configuration for this native VLAN is driven in 2 ways:
- Set the egress port rewriter to strip the VLAN tag for the native
VID (as it is egress-untagged, after all).
- Configure the ingress port to drop untagged and priority-tagged
traffic, if there is no native VLAN. The intention of this setting is
that a trunk port with no native VLAN should not accept untagged
traffic.
Since both of the above configurations for the native VLAN should only
be done if VLAN awareness is requested, they are actually done from the
ocelot_port_vlan_filtering function, after the basic procedure of
toggling the VLAN awareness flag of the port.
But there's a problem with that simplistic approach: we are trying to
juggle with 2 independent variables from a single function:
- Native VLAN of the port - its value is held in port->vid.
- VLAN awareness state of the port - currently there are some issues
here, more on that later*.
The actual problem can be seen when enslaving the switch ports to a VLAN
filtering bridge:
0. The driver configures a pvid of zero for each port, when in
standalone mode. While the bridge configures a default_pvid of 1 for
each port that gets added as a slave to it.
1. The bridge calls ocelot_port_vlan_filtering with vlan_aware=true.
The VLAN-filtering-dependent portion of the native VLAN
configuration is done, considering that the native VLAN is 0.
2. The bridge calls ocelot_vlan_add with vid=1, pvid=true,
untagged=true. The native VLAN changes to 1 (change which gets
propagated to hardware).
3. ??? - nobody calls ocelot_port_vlan_filtering again, to reapply the
VLAN-filtering-dependent portion of the native VLAN configuration,
for the new native VLAN of 1. One can notice that after toggling "ip
link set dev br0 type bridge vlan_filtering 0 && ip link set dev br0
type bridge vlan_filtering 1", the new native VLAN finally makes it
through and untagged traffic finally starts flowing again. But
obviously that shouldn't be needed.
So it is clear that 2 independent variables need to both re-trigger the
native VLAN configuration. So we introduce the second variable as
ocelot_port->vlan_aware.
*Actually both the DSA Felix driver and the Ocelot driver already had
each its own variable:
- Ocelot: ocelot_port_private->vlan_aware
- Felix: dsa_port->vlan_filtering
but the common Ocelot library needs to work with a single, common,
variable, so there is some refactoring done to move the vlan_aware
property from the private structure into the common ocelot_port
structure.
Fixes: 97bb69e1e36e ("net: mscc: ocelot: break apart ocelot_vlan_port_apply")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is a trivial passthrough towards the ocelot library, which
support port policers since commit 2c1d029a017f ("net: mscc: ocelot:
Implement port policers via tc command").
Some data structure conversion between the DSA core and the Ocelot
library is necessary, for policer parameters.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ocelot has 384 policers that can be allocated to ingress ports,
QoS classes per port, and VCAP IS2 entries. ocelot_police.c
supports to set policers which can be allocated to police action
of VCAP IS2. We allocate policers from maximum pol_id, and
decrease the pol_id when add a new vcap_is2 entry which is
police action.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Changing the MTU for this switch means altering the
DEV_GMII:MAC_CFG_STATUS:MAC_MAXLEN_CFG field MAX_LEN, which in turn
limits the size of frames that can be received.
Special accounting needs to be done for the DSA CPU port (NPI port in
hardware terms). The NPI port configuration needs to be held inside the
private ocelot structure, since it is now accessed from multiple places.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
What the driver writes into MAC_MAXLEN_CFG does not actually represent
VLAN_ETH_FRAME_LEN but instead ETH_FRAME_LEN + ETH_FCS_LEN. Yes they are
numerically equal, but the difference is important, as the switch treats
VLAN-tagged traffic specially and knows to increase the maximum accepted
frame size automatically. So it is always wrong to account for VLAN in
the MAC_MAXLEN_CFG register.
Unconditionally increase the maximum allowed frame size for
double-tagged traffic. Accounting for the additional length does not
mean that the other VLAN membership checks aren't performed, so there's
no harm done.
Also, stop abusing the MTU name for configuring the MRU. There is no
support for configuring the MRU on an interface at the moment.
Fixes: a556c76adc05 ("net: mscc: Add initial Ocelot switch support")
Fixes: fa914e9c4d94 ("net: mscc: ocelot: create a helper for changing the port MTU")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Compared to other DSA switches, in the Ocelot cores, the RX filtering is
a much more important concern.
Firstly, the primary use case for Ocelot is non-DSA, so there isn't any
secondary Ethernet MAC [the DSA master's one] to implicitly drop frames
having a DMAC we are not interested in. So the switch driver itself
needs to install FDB entries towards the CPU port module (PGID_CPU) for
the MAC address of each switch port, in each VLAN installed on the port.
Every address that is not whitelisted is implicitly dropped. This is in
order to achieve a behavior similar to N standalone net devices.
Secondly, even in the secondary use case of DSA, such as illustrated by
Felix with the NPI port mode, that secondary Ethernet MAC is present,
but its RX filter is bypassed. This is because the DSA tags themselves
are placed before Ethernet, so the DMAC that the switch ports see is
not seen by the DSA master too (since it's shifter to the right).
So RX filtering is pretty important. A good RX filter won't bother the
CPU in case the switch port receives a frame that it's not interested
in, and there exists no other line of defense.
Ocelot is pretty strict when it comes to RX filtering: non-IP multicast
and broadcast traffic is allowed to go to the CPU port module, but
unknown unicast isn't. This means that traffic reception for any other
MAC addresses than the ones configured on each switch port net device
won't work. This includes use cases such as macvlan or bridging with a
non-Ocelot (so-called "foreign") interface. But this seems to be fine
for the scenarios that the Linux system embedded inside an Ocelot switch
is intended for - it is simply not interested in unknown unicast
traffic, as explained in Allan Nielsen's presentation [0].
On the other hand, the Felix DSA switch is integrated in more
general-purpose Linux systems, so it can't afford to drop that sort of
traffic in hardware, even if it will end up doing so later, in software.
Actually, unknown unicast means more for Felix than it does for Ocelot.
Felix doesn't attempt to perform the whitelisting of switch port MAC
addresses towards PGID_CPU at all, mainly because it is too complicated
to be feasible: while the MAC addresses are unique in Ocelot, by default
in DSA all ports are equal and inherited from the DSA master. This adds
into account the question of reference counting MAC addresses (delayed
ocelot_mact_forget), not to mention reference counting for the VLAN IDs
that those MAC addresses are installed in. This reference counting
should be done in the DSA core, and the fact that it wasn't needed so
far is due to the fact that the other DSA switches don't have the DSA
tag placed before Ethernet, so the DSA master is able to whitelist the
MAC addresses in hardware.
So this means that even regular traffic termination on a Felix switch
port happens through flooding (because neither Felix nor Ocelot learn
source MAC addresses from CPU-injected frames).
So far we've explained that whitelisting towards PGID_CPU:
- helps to reduce the likelihood of spamming the CPU with frames it
won't process very far anyway
- is implemented in the ocelot driver
- is sufficient for the ocelot use cases
- is not feasible in DSA
- breaks use cases in DSA, in the current status (whitelisting enabled
but no MAC address whitelisted)
So the proposed patch allows unknown unicast frames to be sent to the
CPU port module. This is done for the Felix DSA driver only, as Ocelot
seems to be happy without it.
[0]: https://www.youtube.com/watch?v=B1HhxEcU7Jg
Suggested-by: Allan W. Nielsen <allan.nielsen@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Allan W. Nielsen <allan.nielsen@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ocelot has the concept of a CPU port. The CPU port is represented in the
forwarding and the queueing system, but it is not a physical device. The
CPU port can either be accessed via register-based injection/extraction
(which is the case of Ocelot), via Frame-DMA (similar to the first one),
or "connected" to a physical Ethernet port (called NPI in the datasheet)
which is the case of the Felix DSA switch.
In Ocelot the CPU port is at index 11.
In Felix the CPU port is at index 6.
The CPU bit is treated special in the forwarding, as it is never cleared
from the forwarding port mask (once added to it). Other than that, it is
treated the same as a normal front port.
Both Felix and Ocelot should use the CPU port in the same way. This
means that Felix should not use the NPI port directly when forwarding to
the CPU, but instead use the CPU port.
This patch is fixing this such that Felix will use port 6 as its CPU
port, and just use the NPI port to carry the traffic.
Therefore, eliminate the "ocelot->cpu" variable which was holding the
index of the NPI port for Felix, and the index of the CPU port module
for Ocelot, so the variable was actually configuring different things
for different drivers and causing at least part of the confusion.
Also remove the "ocelot->num_cpu_ports" variable, which is the result of
another confusion. The 2 CPU ports mentioned in the datasheet are
because there are two frame extraction channels (register based or DMA
based). This is of no relevance to the driver at the moment, and
invisible to the analyzer module.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Suggested-by: Allan W. Nielsen <allan.nielsen@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Export the cls_flower methods from the ocelot driver and hook them up to
the DSA passthrough layer.
Tables for the VCAP IS2 parameters, as well as half key packing (field
offsets and lengths) need to be defined for the VSC9959 core, as they
are different from Ocelot, mainly due to the different port count.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove the definitions for the VCAP IS2 table from ocelot_ace.c, since
it is specific to VSC7514.
The VSC9959 VCAP IS2 table supports more rules (1024 instead of 64) and
has a different width for the action (89 bits instead of 99).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Felix driver is now using its own PHYLINK instance, not calling into
ocelot_adjust_link. So the port_pcs_init function pointer is an
unnecessary indirection. Remove it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Allan W. Nielsen <allan.nielsen@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The IGR_PORT_MASK key width is different between the 11-port VSC7514 and
the 6-port VSC9959 switches. And since IGR_PORT_MASK is one of the first
fields of a VCAP key entry, it means that all further field
offset/length pairs are shifted between the 2.
The ocelot driver performs packing of VCAP half keys with the help of
some preprocessor macros:
- A set of macros for defining the HKO (Half Key Offset) and HKL (Half
Key Length) of each possible key field. The offset of each field is
defined as the sum between the offset and the sum of the previous
field.
- A set of accessors on top of vcap_key_set for shorter (aka less
typing) access to the HKO and HKL of each key field.
Since the field offsets and lengths are different between switches,
defining them through the preprocessor isn't going to fly. So introduce
a structure holding (offset, length) pairs and instantiate it in
ocelot_board.c for VSC7514. In a future patch, a similar structure will
be instantiated in felix_vsc9959.c for NXP LS1028A.
The accessors also need to go. They are based on macro name
concatenation, which is horrible to understand and follow.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot tc-flower offload binds a second flow block callback (apart
from the one for matchall) just because it uses a different block
private structure (ocelot_port_private for matchall, ocelot_port_block
for flower).
But ocelot_port_block just appears to be boilerplate, and doesn't help
with anything in particular at all, it's just useless glue between the
(global!) struct ocelot_acl_block *block pointer, and a per-netdevice
struct ocelot_port_private *priv.
So let's just simplify that, and make struct ocelot_port_private be the
private structure for the block offload. This makes us able to use the
same flow callback as in the case of matchall.
This also reveals that the struct ocelot_acl_block *block is used rather
strangely, as mentioned above: it is defined globally, allocated at
probe time, and freed at unbind time. So just move the structure to the
main ocelot structure, which gives further opportunity for
simplification.
Also get rid of backpointers from struct ocelot_acl_block and struct
ocelot_ace_rule back to struct ocelot, by reworking the function
prototypes, where necessary, to use a more DSA-friendly "struct ocelot
*ocelot, int port" format.
And finally, remove the debugging prints that were added during
development, since they provide no useful information at this point.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Allan W. Nielsen <allan.nielsen@microchip.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since the Felix DSA driver is implementing its own PHYLINK instance due
to SoC differences, it needs access to the few registers that are
common, mainly for flow control.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Ocelot switchdev driver and the Felix DSA one need it for different
reasons. Felix (or at least the VSC9959 instantiation in NXP LS1028A) is
integrated with the traditional NXP Layerscape PCS design which does not
support runtime configuration of SerDes protocol. So it needs to
pre-validate the phy-mode from the device tree and prevent PHYLINK from
attempting to change it. For this, it needs to cache it in a private
variable.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert to use skb queue instead of the list of skbs.
The skb queue could provide protection with lock.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert to use ocelot_port_add_txtstamp_skb() for adding skbs which
require TX timestamp into list. Export it so that DSA Felix driver
could reuse it too.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The method getting TX timestamp by reading timestamp FIFO and
matching skbs list is common for DSA Felix driver too.
So move code out of ocelot_board.c, convert to use
ocelot_get_txtstamp() function and export it.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Export ocelot_hwstamp_get/set functions so that DSA driver
is able to reuse them.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Felix DSA driver needs to write to SYS_RAM_INIT_RAM_INIT for its own
chip initialization process.
Also update the MAINTAINERS file such that the headers exported by the
ocelot driver are under the same maintainers' umbrella as the driver
itself.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We will be registering another switch driver based on ocelot, which
lives under drivers/net/dsa.
Make sure the Felix DSA front-end has the necessary abstractions to
implement a new Ocelot driver instantiation. This includes the function
prototypes for implementing DSA callbacks.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since HSIO address space can be accessed by different drivers, let's
simplify the register address definitions so that it can be easily used
by all drivers and put the register address definition in the
include/soc/mscc/ocelot_hsio.h header file.
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since HSIO address space can be used by different drivers (PLL, SerDes
muxing, temperature sensor), let's move it somewhere it can be included
by all drivers.
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Quentin Schulz <quentin.schulz@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>